

NIH Public Access

Author Manuscript

J Am Chem Soc. Author manuscript; available in PMC 2010 March 11

Published in final edited form as:

J Am Chem Soc. 2009 March 11; 131(9): 3164–3165. doi:10.1021/ja809634u.

Hyperpolarized ¹H NMR Employing Low γ Nucleus for Spin Polarization Storage

Eduard Y. Chekmenev^{†,‡}, Valerie A. Norton[‡], Daniel P. Weitekamp[‡], and Pratip Bhattacharya^{†,*}

† Enhanced Magnetic Resonance Laboratory, Huntington Medical Research Institutes, Pasadena, CA 91105

‡ A. A. Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA 91125

Abstract

Here, we demonstrate the utility of low gamma nuclei for spin storage of hyperpolarization followed by proton detection, which theoretically can provide up to ~(gamma[1H]/gamma[X])² gain in sensitivity in hyperpolarized biomedical MR. This is exemplified by hyperpolarized 1-¹³C sites of 2,2,3,3-tetrafluoropropyl 1-¹³C-propionate-d₃ (TFPP), ¹³C T₁=67 s in D₂O, and 1-¹³C-succinated₂, ¹³C T₁=105 s in D₂O, pH 11, using PASADENA. In a representative example, the spin polarization was stored on ¹³C for 24 s and 70 s respectively while the samples were transferred from a low magnetic field polarizer operating at 1.76 mT to a 4.7 T animal MR scanner. Following sample delivery, the refocused INEPT pulse sequence was used to transfer spin polarization from ¹³C to protons with efficiency of 50% for TFPP and 41% for 1-¹³C-succinate-d₂ increasing the overall NMR sensitivity by factor of 7.9 and 6.5 respectively. The low gamma nuclei exemplified here by ¹³C with T₁ of tens of seconds acts as an efficient spin polarization storage, while J-coupled protons are better for NMR detection.

The PASADENA (parahydrogen and synthesis allow dramatically enhanced nuclear alignment)^{1,2} and DNP (Dynamic Nuclear Polarization)³ methods efficiently hyperpolarize biologically relevant nuclei such as ¹H, ³¹P, ¹³C, ¹⁵N achieving the signal enhancement by factor of ~100,000 on currently utilized MRI scanners. Recently, many groups have demonstrated the utility of hyperpolarized MR in biological systems using hyperpolarized ¹³C biomarkers with relatively long spin lattice relaxation time T₁ on the order of tens of seconds.^{4–7} Moreover, hyperpolarized ¹⁵N for biomedical MR has been proposed due to even longer spin lattice relaxations times.⁸ An additional increase of up to tens of minutes in the life time of hyperpolarized agent *in vivo* could be achieved by using the singlet states of low gamma (γ) nuclei.⁹ However, as NMR receptivity scales as γ^3 for spin ½ nuclei, direct NMR detection of low γ nuclei results in lower signal-to-noise ratio compared to proton detection. While protons are better nuclei for detection, short spin lattice relaxation times prevent direct ¹H hyperpolarized MR in biomedical applications.

Here, we demonstrate the utility of ¹³C for spin storage of hyperpolarization followed by ¹H detection using INEPT, ¹⁰ which theoretically can provide up to $\sim (\gamma_{1H}/\gamma_X)^2$ gain in sensitivity in hyperpolarized biomedical MR. Specifically, we hyperpolarized the ¹³C site of two well studied molecules, 1-¹³C-succinate-d₂^{5,11} and 2,2,3,3-tetrafluoropropyl 1-¹³C-propionate-d₃ (TFPP), by PASADENA (Fig. 1). Both molecules are accessible from unsaturated precursors containing a double bond by molecular cis addition of parahydrogen. Hyperpolarized succinate^{5,11} can be potentially exploited as a metabolic biomarker of cancer,

pratip@caltech.edu.

while hyperpolarized TFPP has been shown to be a specific binder to lipids with an unique chemical shift signature in the lipid bound state 12 potentially useful for plaque imaging. 13

Parahydrogen addition and transfer of spin order to ¹³C has been described previously.^{5,14} A home built PASADENA polarizer was employed to hydrogenate 2,2,3,3-tetrafluoropropyl 1^{-13} C-acrylate-d₃ (TFPA) to yield hyperpolarized TFPP and 1^{-13} C-fumarate-d₂ (CIL, Andover, MA) to yield hyperpolarized 1^{-13} C-succinate-d₂ in deuterated solvent. The spin order transfer was performed using untuned saddle coil at 1.76 mT utilizing the heteronuclear spin order transfer pulse sequence described by Goldman and Johannesson¹⁵ and was tailored to the hetero- and homonuclear J coupling of propionate^{14,16} for TFPP and succinate at pH 11 (Fig. 2).⁵

In vitro 1^{-13} C succinate spin lattice relaxation time T₁ is 105 ± 1 s in D₂O at pH 11 and *in* vivo T₁ is in excess of 43 s at 4.7 T, which is significantly longer than the previously published values at pH 3.5 In vitro 1^{-13} C TFPP T₁=67±1 s in deuterated medium and *in* vivo T₁ is in excess of 16 s at 4.7 T.¹³ Such long spin lattice relaxation times provide an efficient storage of spin polarization in long lived low γ nuclear spin states, which is exemplified here by 13 C TFPP and succinate. The principal motivation for development of long lived nuclear spin states is their utility to monitor biochemical pools *in* vivo such as stable isotope enrichment of metabolic events or receptor binding. NMR signal detection utilizing polarization transfer from long lived low γ nuclear spin states to J-coupled protons provides a potential to further increase MR signal in such studies (Fig. 2) utilizing the strategy of two sequential polarization transfers. 17

In one experiment, 2.4 mL of 6.2 mM 1-¹³C-succinate-d₂ was hyperpolarized at the ¹³C site to 10.7%. Hyperpolarization was then kept on ¹³C for 70 s. During this time, the polarized sample was transferred from a low magnetic field polarizer operating at 1.76 mT to 4.7 T animal MR scanner. The ¹³C polarization decayed from 10.7% to 5.5% corresponding to final ¹³C signal enhancement by a factor of 13,500. Then the refocused INEPT pulse sequence¹⁰ with $\tau^{INEPT} = 34$ ms and $\tau^{refocus} = 32$ ms (Fig. 2) was used to transfer polarization from ¹³C to protons within 1-¹³C-succinate-d₂ (Figs. 3A and 3B). We found that the two protons were successfully hyperpolarized corresponding to 41% polarization transfer efficiency and 1,350 fold ¹H NMR signal enhancement per two methylene protons. In a separate experiment, 2.4 mL of 2.9 mM TFPP was polarized to 14% and the hyperpolarization was stored on the 1-¹³C site for 24 s, during which the polarization decayed to 9.5% corresponding to the final signal enhancement of 23,300 fold at this site (Fig. 3E). The delays of the refocused INEPT were $\tau^{INEPT} = 20$ ms and $\tau^{refocus} = 16$ ms. The combined intensity of the three NMR lines corresponding to four hydrogen atoms (Fig. 3F) was enhanced by a factor of 2,930, corresponding to the 50% polarization transfer efficiency by the refocused INEPT sequence.

To quantify the degree of hyperpolarization, we used the reference of a single scan spectrum of thermally polarized 100% natural abundance ethanol (Fig. 3A) and 3M sodium 1^{-13} C-acetate (Fig. 3B) at 4.7 T using the formula:

$$\% \mathbf{P}_{\mathbf{X}} = \frac{\chi_{\text{ref}}}{\chi_{\text{expt}}} \cdot \frac{S_{\text{expt}}}{S_{\text{ref}}} \cdot \frac{\mathbf{P}_{\mathbf{X}}^{o}}{\sin\theta} \cdot 100\%$$

where P_x^o is the nuclear polarization at equilibrium at 298 K and 4.7 T, according to the Boltzmann distribution, θ is the angle of the detection pulse, χ_{ref} and χ_{expt} are the molar concentrations of sites in the reference and the experimental molecule, respectively, and S_{ref} and S_{expt} are the signal from the reference and experimental molecular sites, respectively. Under the experimental conditions, P_{13C}^o is 246,600⁻¹ and P_{1H}^o is 62,000⁻¹. The achieved %

J Am Chem Soc. Author manuscript; available in PMC 2010 March 11.

 P_{1H} was 2.2% for 1-¹³C-succinate-d₂ and 4.8% for TFPP. The efficiency of the polarization transfer from ¹³C to ¹H reported here, 41% for 1-¹³C-succinate-d₂ and 50% for TFPP, is a ratio between the ¹H polarization detected after the transfer and ¹³C polarization as measured by a 12° excitation pulse before the INEPT transfer. While the efficiency of the polarization transfer was 50% or below, hyperpolarized protons are inherently 15.8 fold more sensitive compared to hyperpolarized ¹³C. As a result, proton detection of hyperpolarized 1-¹³C-succinate-d₂ and TFPP increased the overall sensitivity by a factor of 6.5 and 7.9, respectively.

The method demonstrated herein can potentially be applied to these and other hyperpolarized ¹³C metabolic contrast agents *in vivo* including hyperpolarized pyruvate, ¹⁸ lactate, bicarbonate,⁶ alanine, glutamine,⁷ choline.⁸ More importantly, using this approach, hyperpolarized ¹⁵N MR would become an attractive biomedical tool due to the much longer spin lattice relaxation time owing to low γ , but now with the added advantage of more sensitive detection using proton NMR ($\gamma 2_{15N} \approx \gamma^2_{1H}/100$). Furthermore, proton imaging, localized spectroscopy and chemical shift imaging (CSI) will allow improved spatial resolution by γ_{1H}/γ_X in each dimension at a given gradient strength.

Acknowledgements

We thank the following for funding: NIH 1K99CA134749-01, R01 CA 122513, 1R21 CA118509, Rudi Schulte Research Institute, James G. Boswell Fellowship, AHA, American Brain Tumor Association, Beckman Institute, Tobacco Related Disease Research Program 16KT-0044, Prevent Cancer Foundation.

References

- 1. Bowers CR, Weitekamp DP. Phys Rev Lett 1986;57:2645-2648. [PubMed: 10033824]
- 2. Bowers CR, Weitekamp DP. J Am Chem Soc 1987;109:5541-5542.
- 3. Abragam A, Goldman M. Rep Prog Phys 1978;41:395-467.
- Golman K, in't Zandt R, Thaning M. Proc Natl Acad Sci U S A 2006;103:11270–11275. [PubMed: 16837573]
- Chekmenev EY, Hovener J, Norton VA, Harris K, Batchelder LS, Bhattacharya P, Ross BD, Weitekamp DP. J Am Chem Soc 2008;130:4212–4213. [PubMed: 18335934]
- Gallagher FA, Kettunen MI, Day SE, Hu DE, Ardenkjaer-Larsen JH, in't Zandt R, Jensen PR, Karlsson M, Golman K. Nature 2008;453:940–U973. [PubMed: 18509335]
- 7. Gallagher FA, Kettunen MI, Day SE, Lerche M, Brindle KM. Magn Reson Med 2008;60:253–257. [PubMed: 18666104]
- Gabellieri C, Reynolds S, Lavie A, Payne GS, Leach MO, Eykyn TR. J Am Chem Soc 2008;130:4598– 4599. [PubMed: 18345678]
- Pileio G, Carravetta M, Hughes E, Levitt MH. J Am Chem Soc 2008;130:12582–12583. [PubMed: 18729363]
- 10. Morris GA, Freeman R. J Am Chem Soc 1979;101:760-762.
- Bhattacharya P, Chekmenev EY, Perman WH, Harris KC, Lin AP, Norton VA, Tan CT, Ross BD, Weitekamp DP. J Magn Reson 2007;186:150–155. [PubMed: 17303454]
- Chekmenev EY, Chow SK, Tofan D, Weitekamp DP, Ross BD, Bhattacharya P. J Phys Chem B 2008;112:6285–6287. [PubMed: 18422359]
- Chekmenev EY, et al. Towards Receptor Targeted¹³C Hyperpolarized MR Biosensors. Angew Chem Int Ed. submitted
- Bhattacharya P, Harris K, Lin AP, Mansson M, Norton VA, Perman WH, Weitekamp DP, Ross BD. Magn Reson Mat Phys Biol Med 2005;18:245–256.
- 15. Goldman M, Johannesson H. C R Physique 2005;6:575–581.
- 16. Goldman M, Johannesson H, Axelsson O, Karlsson M. C R Chimie 2006;9:357-363.
- 17. Aime S, Gobetto R, Reineri F, Canet D. J Chem Phys 2003;119:8890-8896.

JAm Chem Soc. Author manuscript; available in PMC 2010 March 11.

 Golman K, in't Zandt R, Lerche M, Pehrson R, Ardenkjaer-Larsen JH. Cancer Res 2006;66:10855– 10860. [PubMed: 17108122]

J Am Chem Soc. Author manuscript; available in PMC 2010 March 11.

Chekmenev et al.

Figure 1.

Cis molecular addition of parahydrogen to 1^{-13} C-fumarate-d₂ to produce 1^{-13} C-succinate-d₂ and cis molecular addition of parahydrogen to TFPA to produce TFPP. The catalytic reaction was carried out at 60°C in D₂O with reactant concentrations of 3–6 mM. TFPP aqueous solution used 10% v/v acetone-d₆ necessary to dissolve hyperpolarized product.

Chekmenev et al.

Figure 2.

The experimental diagram of molecular cis addition of parahydrogen followed by hyperpolarization of X nucleus exemplified by ¹³C, polarization storage on X nucleus (potentially allowing monitoring of biochemical events on the time scale of minutes) followed by polarization transfer back to more sensitive protons for NMR detection.

Chekmenev et al.

Figure 3.

A) 13 C reference spectrum of 2.8 mL 17M ethanol with 188 mM 13 C concentration per site, B) 1 H NMR spectrum of 2.8 mL 3M sodium 13 C-acetate in D₂O, C) 13 C NMR spectrum of hyperpolarized 6.2 mM ${}^{1-13}$ C-succinate-d_{2,3}, 13 C polarization of 5.5% after being stored for 70 s, T₁=105 s, the spectrum is acquired using a 12° excitation pulse, D) 1 H NMR spectrum of hyperpolarized 6.2 mM ${}^{1-13}$ C-succinate-d_{2,3} where net 1 H signal enhancement is 1,350 fold with 41% spin polarization transfer efficiency, E) 13 C NMR spectrum of hyperpolarized 2.9 mM TFPP. 13 C polarization is 9.5% after being stored for 24 s, T₁=67 s. The spectrum is acquired using a 12° excitation pulse, F) 1 H NMR spectrum of hyperpolarized 2.9 mM TFPP where net 1 H signal enhancement is 2,930 fold with 51% efficiency.

JAm Chem Soc. Author manuscript; available in PMC 2010 March 11.