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ABSTRACT

In silico prediction of transcription factor binding
sites (TFBSs) is central to the task of gene regula-
tory network elucidation. Genomic DNA sequence
information provides a basis for these predictions,
due to the sequence specificity of TF-binding
events. However, DNA sequence alone is an impo-
verished source of information for the task of TFBS
prediction in eukaryotes, as additional factors, such
as chromatin structure regulate binding events. We
show that incorporating high-throughput chromatin
modification estimates can greatly improve the
accuracy of in silico prediction of in vivo binding
for a wide range of TFs in human and mouse. This
improvement is superior to the improvement gained
by equivalent use of either transcription start site
proximity or phylogenetic conservation information.
Importantly, predictions made with the use of chro-
matin structure information are tissue specific.
This result supports the biological hypothesis that
chromatin modulates TF binding to produce tissue-
specific binding profiles in higher eukaryotes, and
suggests that the use of chromatin modification
information can lead to accurate tissue-specific
transcriptional regulatory network elucidation.

INTRODUCTION

Transcription factors (TFs) mediate cellular response
to intrinsic and extrinsic signals by controlling rates of
transcription initiation throughout the genome. In eukary-
otes, a typical TF will bind to occurrences of a number
of similar, short DNA sequence (6-10bp). With some
eukaryotic haploid genomes containing gigabases of
DNA, the number of such sequence instances is vast.
For a typical TF, only a minority of potential binding
sites will engage in the regulatory program of the cell.

Clearly, molecular mechanisms are at work in vivo to
restrict binding of TFs to a subset of potential sites. The
packaging of DNA and proteins to form chromatin is
a critical property of the eukaryotic genome, affecting a
range molecular processes including gene transcription,
replication and DNA repair (1). Both the DNA and the
histone proteins that comprise chromatin are subject to
covalent modifications. Most of these modifications can
be adjusted dynamically, and exhibit distinct genomic dis-
tributions under different cellular conditions. Covalent
modifications to chromatin are hypothesized to modulate
accessibility of DNA to TFs (2-4) and hence comprise a
mechanism that the eukaryotic cell can employ to restrict
TF binding.

In this article, we evaluate the use of chromatin modifi-
cation information for improving predictions of TF bind-
ing sites (TFBSs) in silico. We consider the chromatin
modification H3K4me3 (trimethylation of lysine 4 of his-
tone H3), which has long been regarded as a marker for
open chromatin and actively transcribed genes (1). The
genome-wide distribution of this mark was recently char-
acterized in several mouse and human tissues (5-7).

Computational analysis of TFBSs is a prerequisite to
the elucidation of gene regulatory networks. Numerous
tools have been developed to address challenges, such as
de novo motif discovery (8,9), TFBS prediction (10), and
statistical evaluation of binding site over-representation
(11). However existing TFBS prediction tools are plagued
by a lack of specificity. In order to predict all bona fide
in vivo binding sites for a typical TF, considering only a
model for the DNA sequence specificity, algorithms typi-
cally incur around 1000 false positive (FP) predictions for
every true positive prediction. This very low specificity
rate is unacceptable for almost all applications, and has
been termed the ‘futility theorem’ (12). Current attempts
to mitigate this problem typically encapsulate the concept
of combinatorial interactions between TFs (13,14) or else
make use of phylogenetic information (15,16). Several
studies have shown that estimates of chromatin struc-
ture can be used to improve binding site predictions for
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individual TFs (17,18), but the generality of this result is
yet to be established.

Here, we show that data estimating the distribution of
chromatin modifications can be used to greatly improve
the accuracy of genome-scale TFBS prediction for all
14 mouse TF and all 10 human TFs considered. The
improvement gained are consistently highest when the
chromatin modification data are derived from that same
tissue in which the TFBS predictions are being made,
which indicates that our approach yields tissue-specific
TFBS predictions. This result supports the hypothesis
that chromatin structure modulates the binding of TFs,
yielding different binding outcomes in different cell types.
In addition, chromatin modification information yields
better performance than simple filtering using either tran-
scriptional start site (TSS) or phylogenetic conservation
information, indicating that our approach represents a sig-
nificant advance on existing methods for refining TFBS
prediction.

MATERIALS AND METHODS
Overview of approach

We evaluate the usefulness of H3K4me3 distribution
information when applied as a filter in the context of
TFBS prediction. We also evaluate TSS location informa-
tion in the same manner in order to exclude the possibility
that any benefit derived from H3K4me3 information is
simply an outcome of a positive correlation between
distribution of H3K4me3 and TSS location. Finally, we
evaluate a filter based on conservation information in
order to compare the benefit of using chromatin infor-
mation with a commonly used approach in comparative
genomics. In all three cases, we scan mouse genomic
sequence using a log-odds position weight matrix
(PWM) representing a single TF, scoring all nucleotides
on both strands as potential TFBSs. We then filter these
predictions, eliminating any that do not pass a threshold
value. The parameters considered for threshold filter-
ing are H3K4me3 density, distance to nearest TSS and
phastCons (19) conservation score. We then measure
the accuracy of the remaining predictions, sorted accord-
ing to their PWM score. To do this, we first construct a
‘gold-standard’ for true TFBS sites, based on available

Table 1. Filtering thresholds considered
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high-throughput estimates of the in vivo binding locations
of the given TF under investigation. Our accuracy metric
is an receiver operating characteristic (ROC)-like curve
that plots the number of FPs incurred at each in a range
of true positive (TP) rates.

TFBS prediction approach

Our basic TFBS prediction approach is to exclude all
PWM-predicted sites that do not pass a filter threshold
based on auxiliary non-sequence information. For
mouse, six types of filter were studied: distance to nearest
KnownGenes TSS (20), distance to nearest CAGE Trans-
criptional Unit (CAGE TU) (21), embryonic stem (ES)
cell H3K4me3 density, mouse embryonic fibroblast
(MEF) H3K4me3 density, neural precursor (NP)
H3K4me3 density (5) and phastCons score (19). For
human, we studied four types of filter studied: ES cell
H3K4me3 density, liver H3K4me3 density, pro-B cell
H3K4me3 density (7) and T-cell H3K4me3 density (6).

Filtering thresholds were selected across a broad range
of possible values, and an equal number of thresholds was
considered for each filter type, to facilitate a fair compar-
ison of the different types of filter. The filtering thresholds
considered are given in Table 1.

Each nucleotide position in the corresponding genome
(assembly mm8 for mouse, assembly hgl8 for human) was
scored using the PWM for a given TF as described below
in ‘Assignment of PWM scores’. The scored nucleotides
were then paired with the corresponding H3K4me3 signal,
distance to TSS, and gold-standard status (binding site or
non-binding site). All H3K4me3 signals (summarized
in Supplementary Table 3) for the given organism were
considered. TSS information sources considered were
KnownGenes (20) for mouse and human, and CAGE
TUs (21) for mouse. For mouse TFs, each nucleotide posi-
tion was paired with the corresponding masked phastCons
(19) score, defined below in the ‘Phylogenetic conservation
data’ section.

Mouse genomic positions were excluded at this point if
they did not have H3K4me3 estimates due to overlap with
repetitive elements [as defined by Mikkelsen et al. (5)].
Repetitive elements were also excluded in the study
using human data, as we made use of the repeat-masked

Filter type

Thresholds considered

Distance to nearest mouse KnownGene TSS
Distance to nearest mouse CAGE TU
Mouse ES cell H3K4me3 density

Mouse MEF cell H3K4me3 density

Mouse NP cell H3K4me3 density

Mouse masked phastCons score

Distance to nearest human KnownGene TSS
Human ES cell H3K4me3 density

Human liver H3K4me3 density

Human REH cell H3K4me3 density

Human T-cell H3K4me3 density

{10000, 5000, 2000, 1000, 500, 200} base pairs
{10000, 5000, 2000, 1000, 500, 200} base pairs
{1, 2, 4, 8, 16, 32} arbitrary units

{1, 2, 4, 8, 16, 32} arbitrary units

{1, 2, 4, 8, 16, 32} arbitrary units

{0.1, 0.2, 0.3, 0.5, 0.7, 1} arbitrary units
{10000, 5000, 2000, 1000, 500, 200} base pairs
{0, 0.1, 0.2, 0.5, 0.7, 1} arbitrary units

{0, 0.1, 0.2, 0.5, 0.7, 1} arbitrary units
{0, 0.1, 0.2, 0.5, 0.7, 1} arbitrary units
{1, 2, 4, 8, 16, 32} arbitrary units

VWV WVVAVWVWVWVANA

Units for each H3K4me3 density threshold are defined in section ‘Histone modification data’. Units for the masked phastCons

score are defined in the ‘Phylogenetic conservation data’ section.
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human genomic sequence when performing the TFs
PWM scan.

When predicting binding sites for TFs whose distribu-
tion was estimated by chromatin immunoprecipitation
(ChIP) with DNA microarrays (ChIP-chip), as opposed
to sequencing approaches (ChIP-seq or ChIP-PET) (22),
we also excluded locations that were not encompassed by
the ChIP-chip microarray probes. For gold-standard data-
sets derived from the Jiang et al. (23) data, the regions
probed by microarrays were restricted to selected gene
promoters. For HNF1A, HNF4A, HNF6 and FOXA2,
the probed regions only encompassed gene promoters as
defined by Odom et al. (24). For human Nanog, Oct4,
Sox2 and E2F4, the microarrays only encompassed gene
promoters as defined by Boyer er al. (25). For human
cMyc and Spl, the microarrays only encompassed all
non-repetitive regions in human chromosomes 21 and 22.

In order to get estimates of the variance in FP rates,
we randomly split the paired data into four equal-sized
groups. The ordering of positions within each group was
then randomized. Binding site predictions were performed
for each of the resulting replicates as follows. First, all
nucleotides that did not pass the given filtering criteria
were excluded. Predictions were then made in order of
increasing PWM P-value, starting with the nucleotide
exhibiting the lowest (i.e. best) PWM P-value. A TP was
noted each time a gold-standard TFBS nucleotide was
encountered. A FP was noted each time a non-gold-
standard TFBS nucleotide was encountered. Using the
four replicates, the mean and standard error of the
number of FPs incurred at each TP rate were computed
to produce data points and error bars on an ROC-like
curve for that filtering approach.

The above procedure was carried out for each of the
gold-standard datasets listed in Supplementary Table 1.

Best relative FP improvement

In order to compare the performance of different filtering
approaches, we employ a ‘best relative FP improvement’
metric. This value represents the best improvement in
FP rate that a given filter approach can attain at a speci-
fied true positive rate, over all filtering thresholds consid-
ered for that filter type. We define the best relative FP
improvement, /[, at a percent sensitivity rate (i.e. TP
rate) of s as:

L=1-X/Y. 1

Here, X is the number of FPs incurred by the best
performing filter of the specified type, and Y is the
number of FPs incurred by the PWM scan with no filter
when the sensitivity is s percent.

Figure 1 illustrates the calculation of Igo for the
H3K4me3 filter type for the TF E2FI1.

Assignment of PWM scores

MAST (26) was used to assign a PWM score to each
nucleotide position in the genome, using the parameters
specified in the ‘Gold-standard TFBS data’ section.
A P-value threshold of 0.005 was applied in order to
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Figure 1. Improvement in E2F1 TFBS prediction by H3K4me3 signal
filtering. ROC-like plot shows the TP rate versus the actual number
of FPs. Error bars indicate standard error. The TF gold-standard and
H3K4me3 data are each derived from mouse ES cells. This figure also
serves to illustrate calculation of the ‘best relative FP improvement
statistic’, (Z;), defined in the Methods section.

limit the amount of data processed. As a result of applying
this threshold, a small number of regions that were esti-
mated to bind a given TF (according to high-throughput
ChIP) were excluded from the analysis as they did not
contain a nucleotide position with a P-value below this
threshold. Typically fewer than 5% of the regions were
excluded as a result of this procedure (see Supplementary
Table 1).

Histone modification data

Mouse ES, MEF and NP ChIP-seq H3K4me3 density
estimates were obtained from Mikkelsen et al. (5). These
estimates represent the density of antibody-enriched
fragments, calculated at 25-bp resolution. Each value is
calculated by adding one to the density for each uniquely
aligned fragment occurring within 200bp of the given
position. Reads occurring within 300bp, but further
than 200 bp, from a given position contribute a count of
0.25 to the density in that 25 bp interval.

Human T-cell ChIP-seq H3K4me3 density estimates
were obtained from Barski er al. (6). These estimates
represent the density of antibody-enriched fragments, cal-
culated at 200-bp resolution, except for CCCTC-binding
factor (CTCF), which was calculated at 400-bp resolution.
The density in each window is equal to the number of tags
that mapped to that genomic window.

Human ES cell, liver and REH ChIP-chip H3K4me3
density estimates were obtained from Guenther et al. (7).
We processed the original ChIP-chip data using the fol-
lowing approach. For each 200 bp window in the human
genome, we retrieved data from all probes located within
500 bp of the centre of that window. We then averaged the
H3K4me3 log enrichment ratio for those probes [as pro-
vided by Guenther et al. (7)]. Thus, the units of H3K4me3
represent the mean log fluorescence enrichment ratio of all
probes within 500bp of the centre of the given 200 bp
genomic window.



The publications from which the H3K4me3 datasets
were derived are summarized in Supplementary Table 3.

Phylogenetic conservation data

We used the mm8 phastCons (19) score as our measure
of mouse genomic phylogenetic conservation. This mea-
sure of conservation is based on a multiple alignment of
17 vertebrate genomes. However, we modified the score by
assigning a score of zero to all locations that overlap a
KnownGenes exon. We did this in an attempt to improve
the performance of phastCons filtering, since phylogenetic
conservation of a protein-coding region cannot be inter-
preted as evidence for functional regulatory elements.
We refer to the resulting score as the ‘masked’
phastCons score.

In addition, we considered the raw phastCons score as a
phylogenetic conservation filter. Performance of this filter
was similar to the masked phastCons score filter (data not
shown).

TSS proximity data

The KnownGene (20) and CAGE TU (21) databases
from the February 2006 (mm8) assembly were each used
separately as estimates of TSS positions in mouse. The
KnownGenes database comprises gene predictions based
on expressed sequence tag (EST) data, and contains 31 863
annotated TSS, whereas the CAGE TU database is
derived from analysis of CAGE tags, and contains
39362 annotations.

Creating a TFBS ‘gold-standard’

Genomic regions estimated to be enriched for TF binding
in various human and mouse tissues were obtained from
high-throughput ChIP datasets as summarized in Supple-
mentary Table 1. The mouse ES cell distribution for K1f4,
Oct4 and Nanog have been estimated in multiple publi-
cations. For these TFs, we used each publication dataset
to generate an independent gold-standard dataset. We
preprocessed the regions estimated as being bound by
designating a single nucleotide as a binding site and desig-
nating the rest as non-binding sites. The designated site
was chosen by scanning both DNA strands of the region
with a PWM for the given TF and selecting the single
nucleotide position that exhibited the closest match to
the PWM. If more than 1-nt position exhibited the closest
match to the PWM, then the first such position encoun-
tered (counting from 5" of the positive strand) was arbi-
trarily chosen as the binding site position. MAST (26) was
used to determine how closely each nucleotide in a given
ChIP peak region matched the PWM, using the following
parameters:

mast <pwm_file> <sequence_file> -text

-stdout -hit_list -mt 0.005

Designating a single nucleotide in a given region as a bind-
ing site invokes an assumption that a binding event
observed by the high-throughput ChIP assay occurs as a
result of the given TF binding to the nucleotide position
exhibiting the strongest match to its PWM. Clearly there
will be cases when this assumption is violated, due to TF
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binding to other sequences within a region designated as a
ChIP peak. Thus, some gold-standard binding sites will in
fact be non-binding sites, and some sites marked as non-
binding sites should in fact be labelled as gold-standard
sites. However, whilst the gold-standard information is
not a perfect reflection of in vivo binding, it is the same
for all TFBS predictors, and does not favour any individ-
ual approach. This issue is more prominent for TFBS
datasets in which the publishing authors did not provide
a precise binding site location estimate, but provided
broad genomic coordinates instead.

Binding regions declared by Chen et al. (27) were typi-
cally short (~10bp), corresponding to the ChIP peak
signal locations. Sequences pulled down by ChIP are typi-
cally larger than 500 bp, and so the location of the nucleo-
tide giving rise to a strong ChIP-seq or ChIP-chip signal
will not necessarily coincide with the estimated location of
the ChIP signal peak. We wished to ensure that the
regions scanned by MAST during gold-standard definition
included the nucleotide that was responsible for the high
ChIP signal. Thus for TFBS datasets derived from Chen
et al. (27), we expanded the declared binding regions by
100 bp either side, resulting in binding regions ~200 bp in
width. For datasets derived from Cawley et al. (28), Odom
et al. (24) and Boyer et al. (25), binding regions esti-
mated by the authors smaller than 500 bp in width were
expanded equally on either side to 500 bp. For all remain-
ing TFBS datasets, we used the estimated binding regions
as defined by the authors.

Verifying the ‘gold-standard’

We employed the protocol established by Kheradpour
et al. (29) to generate a set of column-shuffied PWM
variants for each of the mouse TFs investigated. For
most TFs, 10 variants were generated. However for the
Klfs, Zfx and Stat3, the protocol yielded seven, two and
three variant motifs, respectively. The resulting ‘random’
motifs are similar to the original in terms of information
content and number of sites predicted in the genome, but
dissimilar to the PWM of any known TF in the organism.
For each mouse TFBS dataset, we then scanned each
author-defined binding region (ADR), using the column-
shuffled variants of the PWM corresponding to the TF
(as stated in Supplementary Table 2). From this scan,
we calculated the optimal scores for each PWM in all
ADRs. This process allows us to estimate null distribu-
tions of the optimal ADR PWM scores.

We used the null distribution to compute the P-value
of each optimal ADR PWM score observed under the
original motif. We then used methods described by
Storey and Tibshirani (30) to compute g-values, which
indicate false discovery rate. Thus the g-value of a given
author-defined TF-binding region is equal to the fraction
of gold-standard sites that are estimated to be incorrect,
when that author-defined region is the least significant
region (i.e. has the least significant optimal match to the
PWM) to be included in the gold-standard dataset.

As stated in the ‘Creating a TFBS gold-standard’
section, we excluded author-defined TF-binding regions
that did not encompass a nucleotide with a PWM score
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Table 2. Quality of gold-standard datasets

Gold-standard dataset g-value # ADRs retained
Esrrb 0.02 21647
CTCF 0.05 39609
KIf2 0.14 219
Tefep2ll 0.15 24398
Oct4 [Loh (31)] 0.17 859
KIf4 [Chen (27)] 0.17 9912
Smad1 0.19 770
Sox2 0.29 2498
Stat3 0.32 1368
KIf5 0.36 198
Oct4 [Chen (27)] 0.39 2073
Zfx 0.40 256
Klf4 [Jiang (23)] 0.43 225
cMyc 0.48 825
nMyc 0.60 1077
Nanog [Chen (27)] 0.69 5
Nanog [Loh (31)] 0.91 3

‘g-value’ reported is the g-value of the author-defined TF-binding
region (ADR) that had the worst match to the PWM and yet passed
our MAST threshold. ‘# ADRs retained’ is the number of author-
defined TF-binding regions that would be retained if a g-value thresh-
old of 0.1 were applied.

P-value below the threshold 0.005. Using this threshold,
the vast majority of gold-standard nucleotides are esti-
mated to be true in vivo TF-binding nucleotides, as indi-
cated by the g-value statistic (Table 2). g-values are lower
than 0.05 for Esrrb and CTCF gold-standard datasets,
and 12 out of 17 TFBS gold-standard datasets have
g-values lower than 0.4. Morever, by modifying the
MAST P-value threshold used when defining the gold-
standard, a false discovery rate lower than 0.1 could be
achieved whilst retaining a large number (>200) of ADRs,
for all TFs except Nanog.

Both Nanog gold-standard datasets exhibited relatively
high g-values. This potentially indicates that the Nanog
motif employed here does not fully account for Nanog’s
DNA-binding behaviour. This is consistent with recent
studies that suggest Nanog might bind indirectly, via
and Oct/Sox heterodimer (31,32).

Position weight matrices

A PWM was assigned to each TF, and used when per-
forming both gold-standard pre-processing and binding
site prediction for the given TF. The PWM assigned to
each TF and the source of each PWM is summarized in
Supplementary Table 2. The position-specific frequency
matrix for each TF is provided in Supplementary
Material, in addition to the corresponding LOGO (33)
representation.

For some TFs, no accurate PWM information was
available. In these cases, we performed de novo motif dis-
covery on high-throughput binding datasets in order to
obtain a PWM.

For HNF1A, we performed de novo discovery on all
sequences that Odom et al. (24) estimated to bind that
TF. We used MEME (8), with the following parameters:

meme <HNF1lA bound sequences> -w 13 -dna
-revcomp -text

We performed motif discovery on Chen et al. (27) binding
datasets, selecting the first 100 binding regions sorted
according to chromosomal location, in order to facilitate
motif discovery in reasonable time. We used GLAM (9),
with the following parameters:

glam -a 11 -b 13 <Esrrb bound sequences>
glam -a 18 -b 20 <CTCF bound sequences>
glam -a 14 -b 16 <Oct4 bound sequences>
glam -a 9 -b 11 <K1f4 bound sequences>

glam -a 9 -b 11 <Stat3 bound sequences>
glam -a 13 -b 15 <Tcfcp2ll bound sequences>
glam -a 11 -b 13 <Zfx bound sequences>

glam -a 15 -b 17 <Smadl bound sequences>

We made no effort to ensure that all PWMs were indepen-
dent of the gold-standard sequence datasets. The PWMs
HNF1A, CTCF, Klf4, Oct/Sox, Stat3, Zfx, Esrrb and
Tecfcep2ll were all derived by performing motif discovery
on a subset of the sequences used to define the gold-
standard. All other PWMs were obtained from inde-
pendent data sources, such as the JASPAR database.
However, our analysis focuses on the relative benefit of
H3K4me3 information, rather than absolute predictive
performance of any particular TFBS predictor. Deriving
PWMs from the gold-standard sequences is not expected
to favour any particular filtering scheme, and so using
such PWMs has allowed us to achieve our goal of a fair
estimation of the relative benefit of the various filtering
types.

Uniform background frequencies were used when
converting frequency matrices into log-odds PWMs.
A pseudo-count value of 0.0001 was added to each value
in each column of all frequency matrices before converting
to PWMs.

RESULTS

First, we illustrate the benefit of using H3K4me3 data to
improve prediction of TFBSs. We then provide evidence
that H3K4me3 information is more useful than TSS anno-
tation and phylogenetic conservation information in the
context of TFBS prediction. We also provide evidence that
TFBS predictions using H3K4me3 information are tissue
specific. We show that the above observations are general
for all 14 TFs investigated in mouse. We present further
evidence supporting the tissue specificity of TFBS predic-
tions, based on experiments with 10 human TFs. Finally,
we demonstrate that our approach can be easily applied
as-is for in silico prediction of binding sites for other TFs
not investigated here.

Benefit of H3K4me3 filtering

We measure the effect of incorporating H3K4me3 distri-
bution information as a filter to a PWM scan, for 14 TFs
and the insulator-binding protein CTCF in mouse ES
cells. Figure 1 clearly shows that filtering TFBS predic-
tions based on H3K4me3 information can greatly improve
specificity over a wide range of sensitivity levels. For
example, employing a H3K4me3 filter with a threshold
of 4.0 results in a 78% reduction in the number of FP
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Figure 2. Comparison of H3K4me3 and TSS proximity filter perfor-
mance for KlIf4 TFBS prediction. ROC-like plot shows the TP rate
versus the actual number of FPs. Error bars indicate standard error.
The TF gold-standard and H3K4me3 data are each derived from
mouse ES cells. A subset of all CAGE thresholds are presented for
clarity.

E2f1 binding site predictions, relative to a PWM scan, at a
sensitivity (i.e. TP rate) of 80%.

Each filter has an upper limit on the TP rate that can be
achieved. For example, applying the filter H3K4me3 >8
can yield a maximum sensitivity of 70%, as this filter elim-
inates 30% of the actual positives.

Superiority over TSS-based filtering

The chromatin modification H3K4me3 is known to asso-
ciate with TSS. Therefore, it is plausible that the improve-
ment in predictive accuracy yielded by H3K4me3
information might simply be a result of this correlation.
In order to address this possibility, we compare the
H3K4me3 filter against a filter based on proximity to
the nearest TSS. We considered two independent TSS
data sources; the UCSC KnownGenes database (20) and
the CAGE TUs (21).

We find that the performance of H3K4me3 filtering
is significantly superior to TSS proximity filtering over a
large range of sensitivities, for all TFs considered. Figure 2
shows that a H3K4me3 filter of 2.0 attains an equal or
higher specificity than a CAGE TU TSS filter over all
sensitivity rates, for the TF Klf4. Relative performance
of H3K4me3 and CAGE TU filtering is similar for the
remaining 13 mouse TFs considered and CTCF. In all
cases, H3K4me3 filtering performs better than CAGE
TU filtering over most sensitivities, and never performs
worse (data not shown).

Superiority over phastCons-based filtering

Researchers frequently use phylogenetic information in
an attempt to improve the accuracy of TFBS predictions.
One commonly used approach is to filter out predictions
that occur in regions of low sequence conservation. The
program phastCons can be used to estimate the extent of
phylogenetic conservation at each position in a given
genome. PhastCons scores have previously been computed
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Figure 3. Comparison of H3K4me3 and phastCons filter performance
for nMyc TFBS prediction. ROC-like plot shows the TP rate versus the
actual number of FPs. Error bars indicate standard error. The TF gold-
standard and H3K4me3 datasets are each derived from mouse ES cells.
PhastCons filter performance for the other mouse TFs considered is
similar to performance shown here for nMyc, as the optimal phastCons
filter never outperforms the optimal H3K4me3 filter, for any TF or
sensitivity level.

for the mouse genome, based on a multiple alignment of
the mouse genome with other vertebrate genomes (19).

In order to perform a preliminary comparison of chro-
matin and phylogenetic information in the task of TFBS
prediction, we evaluate the effect of a phylogenetic con-
servation filter, using the phastCons score at each genomic
position as our measure of conservation. The phastCons
filter produces very little improvement relative to the
PWM scan, for all sensitivities and all TFs considered
(data not shown). For example, employing a phastCons
filter only proves effective at very low sensitivity rates for
the TF nMyc (Figure 3). Even at low sensitivity rates, all
phastCons filters are less effective at reducing the FP rate
compared with a H3K4me3 filter threshold of 2.0 for this
TF. Similar results are observed for all other TFSs, as the
optimal phastCons filter never outperforms the optimal
H3K4me3 filter for any range of sensitivities and all
TFs. This result suggests that estimates of epigenetic
chromatin modifications might prove intrinsically more
useful than phylogenetic conservation in the task of
TFBS prediction. However, multiple approaches have
been developed for making use of phylogenetic informa-
tion (29,34,35), and such approaches may prove effective
in combination with chromatin structure information as
the two information sources are orthogonal.

Tissue specificity of TFBS predictions

Individual TFs can regulate target gene expression in dis-
tinct tissues and/or developmental stages. For example,
Klf4 is a critical regulator of pluripotency and self-renewal
in ES cells (36), but also regulates skin development (37).
The genomic distribution of chromatin modifications dif-
fers between tissues (5), and may influence TF binding to
yield distinct TF-binding profiles in different tissues. With
this in mind, we investigate whether predictions generated
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using a H3K4me3 filter are tissue specific. In particular,
we test whether the accuracy of TFBS predictions is high-
est when the H3K4me3 data derives from the same tissue
as the ‘gold-standard” TFBS data used for assessing
predictive accuracy. We find that predictive accuracy is
greatest when the H3K4me3 data is derived from ES
cells, rather than MEFs or NPs. This is consistent with
the hypothesis that chromatin modifications direct tissue-
specific TF binding, as the TFBS gold-standard data
were derived from mouse ES cells. The mouse cMyc TF
exemplifies this outcome (Figure 4).

Consistency of H3K4me3 filter performance over multiple TFs

In Figures 5 and 6, we illustrate the tissue specificity and
superiority of ES H3K4me3 filtering in mouse ES cells
over all TFs considered. The TFBS gold-standard datasets
for these TFs are derived from mouse ES cells.

We measure the effect of TSS annotation, phylogenetic
conservation and H3K4me3 distribution filtering for
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Figure 4. Tissue specificity of cMyc TFBS predictions made with
H3K4me3 filter. ROC-like plot shows the TP rate versus the actual
number of FPs. Error bars indicate standard error. The TF gold-
standard data are each derived from mouse ES cells.
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14 mouse TFs and the insulator binding protein CTCF.
We find that a H3K4me3 filter significantly improves the
FP rate of predictions for all 14 TFs, but not for CTCF.
The ‘gold-standard’ distribution for each TF (and CTCF)
was estimated in mouse ES cells. For KIf4, Oct4 and
Nanog, multiple gold-standard datasets were available.
We employ each such gold-standard dataset indepen-
dently. In order to summarize the effect of the six types
of filter considered (KnownGene, CAGE, phastCons, ES-,
MEF- and NP-H3K3me3), we calculate the best relative
FP rate at a sensitivity level of 20% (I, as defined in the
Methods section) for each filter type. Figure 5 indicates
that the ES H3K4me3 filter outperforms all other filters
at this sensitivity level, for 14 of the 18 gold-standard
datasets. For the remaining four TFs tested (cMyc,
E2f1, nMyc and Zfx), the ES H3K4me3 filter outperforms
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Figure 6. Filter performance in mouse ES cells at sensitivity 80%.
The best relative FP rate (as defined in the Methods section) of each
filter type has been plotted for the TFs cMyc, E2F1, nMyc and ZfXx.
PhastCons filtering failed to yield a positive relative FP rate improve-
ment for any of the four gold-standard datasets at this sensitivity level,
and so has been omitted. Error bars indicate standard error. For a
given TF and filter, if the filter cannot attain a sensitivity of 80%
due to actual positive elimination, then the bar is omitted from
the plot.
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errors smaller than —1 have been truncated to —1, to allow clearer visualization of relative FP improvement values between 0 and 1.



the other filters at a higher sensitivity of 80% (Figure 6).
Thus, the benefit of H3K4me3 information in facilitating
accurate tissue-specific TFBS predictions appears to be
general for most if not all TFs.

Independent confirmation of tissue specificity for human TFs

The superior performance of ES H3K4me3 filtering
relative to NP and MEF H3K4me3 filtering observed
in mouse could, in principle, be attributed to superior
quality of the ES-derived H3K4me3 data. To control for
H3K4me3 data quality, and to investigate the issue of
tissue specificity more closely, we perform additional
experiments using H3K4me3 and TFBS data derived
from several human tissues. We make use of genome-
scale binding estimates for 10 TFs, as derived in three
tissues (human liver, human ES cells and a T-cell line)
(24,25,28), in combination with genome-wide H3K4me3
distribution estimates from the same three tissues plus
REH (pro-B) cells.

For each of the 10 TFs considered, we measure I», for
the H3K4me3 filters based on chromatin data from four
distinct tissue types: liver, ES, T-cells and REH cells.
We find that TFBS accuracy is consistently highest when
the chromatin and binding data derive from the same
tissue, as shown in Figure 7. For instance, prediction of
binding sites for TFs HNF4A, HNF1A, HNF6 and
FOXAZ2, whose distribution was estimated in liver, is max-
imal when the H3K4me3 information is also derived
from liver. If this was simply an outcome of the liver
H3K4me3 data being of higher quality than REH, T-cell
and hES data, then we would expect liver data to yield
maximal predictive improvement for TFs whose distribu-
tion was estimated in these other tissues. Instead, predic-
tion of T-cell binding sites is most accurate using T-cell
H3K4me3 estimates, and prediction of hES binding sites is
most accurate using hES H3K4me3 estimates. E2F4 is the
only TF that does not exhibit this pattern. These results
provide a strong and independent confirmation that
H3K4me3 information facilitates tissue-specific prediction
of TFBSs.
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Practicality of H3K4me3 filtering

We find that the optimal H3K4me3 filter stringency at
a given sensitivity level varies depending on the TF
under investigation. For example, at a sensitivity of
20%, a threshold of 2.0 yields the best performance for
Esrrb, whereas a threshold of 16.0 yields the best perfor-
mance for cMyec.

This might suggest that substantial ‘tuning’ of the
H3K4me3 filter threshold is required for it to be useful
in practice. In fact, we find that a significant improvement
in predictive performance is obtained for all TFs using a
single H3K4me3 threshold value. For example, a thresh-
old of 1.0 yields a significant improvement for all TFs
considered in mouse (excluding insulator-binding protein
CTCEF), at a sensitivity of 20% (Figure 8a). A threshold of
2.0 yields an even more significant improvement in the
relative FP rate for all TFs considered in mouse, at a
sensitivity of 10% (Figure 8b). Therefore, availability of
a training dataset for the TF of interest is not a require-
ment in order for a researcher to employ our simple
approach for improving TFBS prediction.

DISCUSSION

We have shown that high-throughput chromatin modifi-
cation information can greatly improve prediction of
TFBSs in higher eukaryotes. Using H3K4me3 informa-
tion as a simple filter to PWM-based predictions yields
a significant improvement in predictive accuracy for the
14 mouse and 10 human TFs considered. Filtering based
on H3K4me3 significantly outperforms filtering based on
TSS location or phylogenetic conservation information,
over a wide range of sensitivities.

There are several possible explanations for the super-
ior performance of H3K4me3 information relative to
TSS information. We consider three such explanations.
First, genome-wide H3K4me3 distribution estimates
might be better able to facilitate TSS identification,
compared with previously available TSS data sources.
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Figure 7. Tissue specificity of TFBS predictions in three human tissues. The best relative FP rate (as defined in the Methods section) of each
H3K4me3 filter is shown for the 10 human gold-standard TFBS datasets. Each arrow indicates the results for the H3K4me3 filter using data
estimated from the same tissue as the given TFBS gold-standard data. For example, the distribution of HNF4A TFBSs was estimated in liver, so the
arrow points to the liver results for HNF4A. Error bars indicate standard error. Barplot mean and standard errors smaller than —1 have been
truncated to —1, to allow clearer visualization of relative FP improvement values between 0 and 1.
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Figure 8. Performance of H3K4me3 filtering without optimization of threshold. The relative FP rate has been plotted for a H3K4me3 filter, with a
threshold of 1.0 at a sensitivity of 20% (a) and a more stringent threshold of 2.0 at the lower sensitivity of 10% (b). Error bars indicate standard
error. Note that the results presented are relative FP improvement of a filter with a single given threshold, rather than best relative FP improvement.

That is, we have not optimized the filtering threshold used.

Second, H3K4me3 might be indicative of enhancer
regions as well as promoter regions, as suggested by
recent high-throughput characterization of the modifica-
tion (6). Third, some of the performance difference could
be due to H3K4me3 information facilitating tissue-specific
TFBS predictions.

The first potential explanation for the relative success
of H3K4me3 filtering compared with TSS filtering
(improved ability to locate real TSSs) seems unlikely.
Genomic H3K4me3 distribution estimates are unlikely
to be superior to CAGE data in the task of identifying
TSSs, as CAGE is a highly sensitive and specific method
for TSS determination (38).

The second potential explanation (ability to locate
enhancer regions) seems more likely. Anecdotal evidence
suggests that H3K4me3 does denote enhancer regions
in many instances. For example, the red box in
Figure 9a is situated ~7500-bp upstream of the annotated
Bmp4 gene promoter. This region could conceivably cor-
respond to an upstream alternative promoter, however
none of the three TSS databases considered [CAGE TU
(21), KnownGene (20) and NIA Gene (39)] support this
possibility. A more plausible explanation is that it repre-
sents an enhancer region for Bmp4. In Figure 9b, the
shaded region lies downstream of all transcripts registered

in the two gene annotation databases, which suggests the
selected region cannot designate an alternative TSS for
the transcriptional unit, and is instead likely to be an
enhancer. In both anecdotal examples, TFBS prediction
should derive more benefit from H3K4me3 information
compared with the available gene annotation information.

A comparison of the performance of the CAGE TU and
H3K4me3 filters suggests that H3K4me3 identification
of enhancer regions probably accounts for a large fraction
of the difference in performance of these two filter types.
Only 74% of Zfx binding sites reside within 10kb of
a CAGE TU, suggesting that a large fraction of binding
sites occur within enhancer regions. In contrast, 96% of
Zfx binding sites co-occur with an ES H3K4me3 signal
>1.0. An ES H3K4me3 signal filter of 1.0 performs
significantly better than an unfiltered PWM scan for all
sensitivities <96%. Taken together, these observations
suggest that H3K4me3 does denote many enhancer
regions, and that this accounts for a large fraction of the
difference in performance between the CAGE TU and the
H3K4me3 filter types.

Our final suggestion for the cause of the superiority
of H3K4me3 filtering (tissue specificity) is well supported
by our results. We have provided strong evidence that
chromatin modification information facilitates prediction
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Figure 9. Overlap between H3K4me3 and TF occupancy in ES cells at the Bmp4 (a) and Otx2 (b) gene loci. The track labelled ‘ES_K4 wig’ indicates
the distribution of H3K4me3 in mouse ES cells, as published by Mikkelsen ez a/. (5). Units of H3K4me3 density are described in the Methods
section. UCSC KnownGenes and NIA Genes are shown in the lowest two tracks for each displayed region. CAGE TU locations are indicated, as are
binding locations for TFs Nanog, Oct4, KIf2, KIf4 and KIf5 estimated by Jiang et al. (23) and Loh ef al. (31). Red boxes indicate regions at which
the available H3K4me3 information should be of greater benefit to TFBS prediction, compared with the available TSS location information, due to

the large distance between the TFBSs and known TSSs.

of tissue-specific TFBSs. For all TFs investigated except
human E2F4, the chromatin information source that
proves most effective derives from the same tissue in
which the TFBS ChIP assay was performed. The TF
E2F4 in human does not follow this pattern, perhaps
because it is also highly expressed in the other two
mouse tissues considered, MEFs and NPs. However, the
pattern is consistent for all remaining 27 gold-standard
datasets considered. Additionally, we have controlled for
the factor of H3K4me3 data source quality by our formu-
lation of the analysis conducted with human TFs.
Same-tissue H3K4me3 data proved more useful than
other H3K4me3 data when predicting mouse ES cell
TFBSs. However for TFs Zfx, cMyc, nMyc and E2F1,
this advantage only becomes evident at high sensitivity
levels (Figure 6). Interestingly, these four TFs are rela-
tively broadly expressed, whereas the remaining TFs are
more ES-cell specific in their expression pattern. Our data

support the biological hypothesis that the four broadly
expressed TFs target a range of tissue-independent bind-
ing sites, but also target some ES-cell specific binding sites.

The ability to predict tissue-specific TFBSs is a clear
advantage of our method, given that TFs can act in dif-
ferent regulatory frameworks in different tissue types. We
expect that proliferating high-throughput chromatin mod-
ification datasets will facilitate tissue-specific regulatory
network characterization.

There was a single exception to our observation that
H3K4me3 information improves accuracy of binding site
predictions. The accuracy of site predictions for the DNA-
binding protein CTCF is not improved by H3K4me3
filtering at a sensitivity of 20%, in contrast to all other
mouse DNA-binding proteins considered (Figure 5). This
is not surprising since CTCF binds to transcriptionally
inert regions of the genome that function as insulators
or boundary elements (40).
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The genomic binding distribution of CTCF is thought
to be invariant between different tissues (40), which
is consistent with the hypothesis that tissue-specific
chromatin modifications do not modulate binding of
this particular DNA-binding protein. The observed negli-
gible predictive improvement for CTCF supports this
model.

CTCF has 11 C,H, zinc fingers a very wide and infor-
mation-rich binding motif (40). Chen et al. (27) estimate
the CTCF PWM to be 19 residues wide, which is nearly
twice the median width of all PWMs in the JASPAR
database. Consequently, it is possible to predict a large
number of CTCF binding sites with high precision using
the PWM model for DNA binding alone. For example, at
a sensitivity of 20%, 57% of such predictions are TPs.
This value far exceeds the specificity achieved with a
PWM scan for all other factors considered here, with
PWM scans for other factors typically achieving ~5%
TP enrichment at this sensitivity.

The very simple strategy for harnessing phylogenetic
information (phastCons filtering) proved ineffective at
improving specificity, at all sensitivities considered. More
sophisticated comparative genomics methods could poten-
tially yield better predictive performance. However, the
difference in performance between chromatin informa-
tion and phylogenetic information is easily explained.
Chromatin structure data directly reflects the molecular
parameters that control TF-binding events, whereas phy-
logenetic conservation is indirect and subject to many con-
founding evolutionary variables. Regardless, chromatin
structure and phylogenetic data are complementary, and
comprise orthogonal sources of information that can be
utilized simultaneously in TFBS prediction.

We have shown that accurate tissue-specific TFBS pre-
dictions can be generated by employing chromatin infor-
mation. We have employed a simple approach here in
order to facilitate simple and direct comparisons between
chromatin structure information and other relevant
sources of information. The approach presented here is
thus preliminary and we intend to develop a more flexible
and powerful framework for harnessing large-scale chro-
matin structure estimates. Nonetheless, this approach is
readily applicable for researchers wishing to identify
TFBSs in tissues for which H3K4me3 data are pub-
lished, including tissues listed in Supplementary Table 3.
A researcher who is interested in predicting a small
number of loci that are highly likely to be true binding
sites should apply a stringent filter (Figure 8b), and the
stringency of the filter should be relaxed as the researcher
searches for additional binding sites (Figure 8a).

Currently, genome-wide H3K4me3 distribution esti-
mates are available for a limited number of tissues and
organisms. However, rapid improvements in sequencing
and microarray technology promise to yield many more
such datasets in the near future.
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