Severe Progressive Subcutaneous Abscesses and Necrotizing Tenosynovitis Caused by *Rhodococcus aurantiacus*

MICHIO TSUKAMURA,¹* KAZUO HIKOSAKA,² KENICHIRO NISHIMURA,² AND SUSUMU HARA³

National Chubu Hospital, Obu, Aichi 474,¹ and Department of Orthopedics, Fujita Gakuen Health University Medical School,² and Central Laboratories, Fujita Gakuen Health University,³ Toyoake, Aichi 470-11, Japan

Received 24 August 1987/Accepted 9 October 1987

A case of severe progressive subcutaneous abscesses and necrotizing tenosynovitis of the right arm of a 30-year-old woman caused by *Rhodococcus aurantiacus* is reported.

Rhodococcus aurantiacus was reported by Tsukamura and Mizuno (6) as *Gordona aurantiaca*. The name was changed to *R. aurantiacus* (7). However, this taxon differs from other rhodococci by several characteristics (3, 7). A case of lung infection caused by this organism was reported by Tsukamura and Kawakami (5), and a case of lethal meningitis was reported by Prinz et al. (1). Here, we report the third case of infection caused by this organism.

CASE REPORT

The patient was a 30-year-old female (school teacher). In May 1981, she felt pain in her right forearm and was diagnosed as suffering from de Quervain disease (painful tenosynovitis due to relative narrowness of the common tendon sheath of the abductor pollicis longus and the extensor pollicis brevis). In September 1982, she visited our orthopedics clinic, since an incision of the right forearm performed elsewhere had not healed. We incised this surgical wound repeatedly to derive pus. The wound did not improve. Instead, multiple abscesses, necrotizing tenosynovitis, and muscle necrosis of the right forearm developed. In November 1986, the right forearm was amputated. A month after this procedure, the amputation site showed signs of severe infection that progressed to involve the upper arm, leading to its amputation on 20 December 1986. In January 1987, the surgical wound again showed signs of infection, and pus was obtained by incision. At present, there is a fistula in the right shoulder that produces a small amount of pus continuously. During the entire period, the patient had slight fever, and the leukocyte count ranged from 6,000 to 12,000/mm³. No immunological abnormalities were found, including acquired immunodeficiency syndrome.

Originally, various bacteria were isolated from the pus on only one or two occasions. These were *Staphylococcus aureus*, *Staphylococcus epidermidis*, *Peptococcus* sp., *Serratia liquefaciens*, *Klebsiella pneumoniae*, *Klebsiella* sp., *Pseudomonas aeruginosa*, *Pseudomonas fluorescens*, and *Enterobacter cloacae*. Fungi were not isolated. Since only a few colonies of these bacteria were recovered on isolation media, it was unlikely that they represented the cause of the disease. Examinations for acid-fast bacteria with Ogawa egg medium (4) after pretreatment with a 4% NaOH solution for 20 min were carried out repeatedly without recovery of mycobacteria. During the entire period of illness, various antibiotics were administered to the patient without success. The drugs included penicillins (amoxicillin, benzylpenicillin, piperacillin, carbenicillin, ampicillin, and sulbenicillin), cephalosporins (cefoperazone, cefaclor, cefazolin, ceftizoxime, and cefotaxime), cephamycin (cefmetazole), oxacephem (moxalactam), cephalexin, amikacin, gentamicin, minocycline, erythromycin, and norfloxacin. After the causative organism was found to be *R. aurantiacus*, we used a combination of ofloxacin (0.4 g daily), minocycline (200 mg daily), sulfadimethoxine (1.0 g daily), and rifampin (0.45 g daily), which were administered orally. However, until now, no marked improvement was achieved. Instead, the organism became resistant to 5 μ g of ofloxacin per ml 2 months after the beginning of the administration.

Histological examination of resected tissue specimens showed subcutaneous abscesses containing epitheloid cells and giant cells.

MATERIALS AND METHODS

Isolation of slightly acid-fast bacteria. From December 1986, pus specimens were examined by adding an equal volume of a 2% NaOH solution to the pus, followed by incubation at room temperature for 5 min. The mixture was inoculated on Ogawa egg medium slants with a pipette that delivers a 0.1-ml sample. The inoculated slants were incubated at 28°C for 7 days. Slightly acid-fast bacteria were isolated from the pus each time, and five isolates were obtained showing two or three colonies on the isolation medium. From March 1987, the pus mixture was inoculated with a spiral loop that delivers 0.02 ml of sample. The spiral loop was used to facilitate neutralization of the inoculated material on medium and to obtain better adhesion to the medium. From March to June 1987, six isolates were obtained by this method. The specimens showed from several to 60 colonies. Thus, a total of 11 isolates were studied.

Identification. The isolates were identified with 114 tests. Of these, 104 have been described previously (2). To these 104, the following 10 tests were added: Gram reactivity, growth at 42°C, utilization of L-serine as the sole nitrogen source, utilization of succinamide as the sole nitrogen source, resistance to 5% NaCl, resistance to isoniazid (10 μ g/ml), resistance to ofloxacin (1 μ g/ml), resistance to ofloxacin (20 μ g/ml), and resistance to mitomycin C (5 μ g/ml) (the resistance tests were performed in Ogawa egg medium). The results of the tests were read after incubation at 37°C for 7 days. The matching coefficient (*M* value) was calculated as the percent

^{*} Corresponding author.

202 TSUKAMURA ET AL.

TABLE 1	1. 1	Comparison	of the	characters of R	!. ai	urantiacus	and	other	rhodococci	i ^a
---------	------	------------	--------	-----------------	-------	------------	-----	-------	------------	----------------

	% of strains with character?											
Character	Present isolates $(n = 11)$	R. aur-antiacus(n = 11)	R. bron- chialis (n = 7)	R. rubro- pertinctus $(n = 11)$	R. terrae (n = 9)	R. sputi (n = 9)	$\begin{array}{l} R. \ aichiensis\\ (n=5) \end{array}$	R. rho-dochrous(n = 5)	R. lenti- fragmentus (n = 9)	R. eryth-ropolis(n = 4)	R. equi (n = 8)	
Gram reactivity	100	100	100	100	100	100	100	100	100	100	100	
Strong acid-fastness	18	18	0	0	0	0	0	0	0	0	0	
Weak or partial acid-	100	100	100	100	100	100	100	60	100	0	0	
fastness												
Permanent mycelium	0	0	0	0	0	0	0	0	0	0	0	
Fragmenting mycelium	Ŏ	Ō	Ō	9	Ō	0	0	20	78	25	0	
Long rods (>7 μ m long)	Ō	Ō	14	9	Ō	0	20	60	78	100	0	
Intermediate rods	36	73	100	100	100	100	100	100	78	100	13	
(3-6 µm long)												
Short rods ($<2 \mu m \log$)	100	100	100	100	100	100	100	100	78	100	100	
Cross bars of the cell	0	9	29	0	0	33	20	20	0	0	0	
Cord formation	0	0	0	0	0	0	0	0	0	0	0	
Rough colonies	100	100	100	91	89	89	100	80	100	75	0	
Colony pigmentation in	100	100	100	100	100	100	100	100	100	100	100	
the dark												
Photochromogenicity	0	0	0	0	0	0	0	0	0	0	0	
Growth												
After 3 days	100	100	100	100	100	100	100	100	100	100	100	
28°C	100	100	100	100	100	100	100	100	100	100	100	
37°C	100	100	100	100	100	100	100	100	100	100	100	
42°C	91	9	100	45	0	0	80	40	44	0	25	
45°C	27	0	0	0	0	0	0	0	0	0	0	
52°C	0	0	0	0	0	0	0	0	0	0	0	
Resistance to 0.2% sodium <i>p</i> -aminosalicy-	100	100	100	100	100	100	100	100	100	100	100	
Degradation of <i>p</i> -amino- salicylate to catechol Resistance to	0	0	0	0	0	0	0	0	0	0	0	
$NH_2OH \cdot HCI$												
125 μg/ml	100	100	86	91	100	78	100	100	100	100	100	
250 μg/ml	91	100	0	9	33	0	40	0	100	75	100	
500 μg/ml	45	0	0	0	0	0	0	0	/8	0	100	
Growth on modified	100	100	100	100	100	100	100	100	100	100	100	
Sauton agar medium	100	100	71	100	100	100	100	100	90	50	25	
Tolerance to 0.1%	100	100	/1	100	100	100	100	100	89	50	25	
sodium salicylate	0	0	0	0	0	0	0	0	0	0	٥	
late to catechol	0	U	U	U	U	U	U	U	U	U	U	
	100	100	100	100	100	100	100	100	100	50	20	
0.1%	100	100	100	100	100	100	100	100	100	50	38 20	
0.2% Arrulaulfatasa	100	100	100	100	100	100	100	100	100	25	30	
A dovo	٥	٥	٥	0	٥	٥	0	٥	0	٥	٥	
14 days	0	19	0	0	0	22	0	0	0	0	0	
Resistance to thiophene- 2-caroxylic acid	100	100	100	100	100	100	100	100	100	100	100	
hydrazide (10 µg/ml) Resistance to salicylate	100	100	100	100	100	100	100	100	100	100	100	
(0.5 mg/ml) Resistance to ethambu-	100	100	100	100	100	100	100	80	11	0	75	
tol (5 μg/ml) Tolerance to sodium nitrite	100	100	100	100	100	100	100	00		v	15	
0.1%	100	100	100	100	100	11	100	80	100	25	13	
0.2%	100	82	100	100	100	0	0	80	56	0	Ő	
Tolerance to 1% Tween 80	100	100	100	100	100	67	100	0	78	Ő	63	
Resistance to <i>p</i> -nitro- benzoic acid (0.5 mg/ml)	91	100	100	100	100	44	60	100	100	0	38	
Resistance to rifampin (25 µg/ml)	82	82	0	64	89	44	0	0	0	0	13	
Niacin production	0	0	0	0	0	0	0	0	0	0	0	

Continued on following page

	% of strains with character ^b											
Character	Present isolates (n = 11)	<i>R. aur-</i> <i>antiacus</i> (<i>n</i> = 11)	R. bron-chialis(n = 7)	R. rubro-pertinctus(n = 11)	<i>R. terrae</i> (<i>n</i> = 9)	R. sputi (n = 9)	R. aichiensis (n = 5)	R. rho-dochrous(n = 5)	R. lenti- fragmentus (n = 9)	R. eryth- ropolis (n = 4)	R. equi (n = 8)	
Tween 80 hydrolysis												
7 days	0	0	0	0	0	0	0	0	0	0	٥	
14 days	27	100	ŏ	sš	67	11	40	ŏ	Ő	ŏ	13	
Catalase (foam height	100	100	100	100	100	100	100	100	100	100	100	
more than 45 mm)	100	100	100	100	100	100	100	100	100	100	100	
a-Esterase activity	٥	0	٥	45	100	33	٥	٥	0	0	50	
B-Esterase activity	64	Ň	43	55	100	0	0	Ň	0	0	50	
B-Galactosidase activity	18	100		0	100	0	0	0	0	0	50	
Acid phosphatase	55	73	100	Ň	Ň	100	100	60	0	100	100	
activity	55	15	100	U	0	100	100	00	U	100	100	
Nitrate reduced to												
nitrite												
6 h	36	0	100	82	100	44	100	100	100	٥	100	
24 h	36	ň	100	82	100	44	100	100	100	Ŏ	100	
Acetamidase activity	100	100	100	02	100	78	80	100	100	75	100	
Renzamidase activity	100	100	100	Ň	Ő	/0	0	0	100	,5	100	
Urease activity	100	100	100	100	100	100	100	20	0	100	15	
Isonicotinamidase	100	100	100	100	100	100	100	20	0	100	0	
activity	U	U	U	U	U	U	U	U	0	U	U	
Nicotinamidase activity	100	100	71	0	100	80	100	٥	100	0	0	
Pyrazinamidase activity	100	100	71	9	100	79	100	0	100	0	12	
Salicylamidase activity	100	100	/1	9	100	/0	100	0	100	0	15	
Allentoinese activity	01	100	0	100	100	54	100	0	0	0	0	
Succinamidase activity	91	100	0	100	100	50	100	0	0	0	0	
L Glutamate as simulta-	100	100	100	100	100	100	100	100	100	25	62	
neous N and C source	100	100	100	100	100	100	100	100	100	25	05	
L Serine as simulto	01	100	٥	0	44	80	100	0		0	0	
L-Serine as simula-	91	100	U	9	44	09	100	U	44	U	U	
Chaosemine as simulte	01	100	42	01	100	54	60	60	70	0	0	
Diucosainine as siniuita-	91	100	43	91	100	30	00	00	/8	U	U	
A cetomide as simulto	100	100	100	0	0	100	100	0	(7	0	75	
Acetainiue as simulta-	100	100	100	U	U	100	100	U	0/	U	15	
Repromide of simulto	0	0	0	0	0	0	0	0	51	0	•	
neous N and C source	U	U	U	0	U	U	U	U	20	U	U	
Monoethoolomine of	100	100	0	100	100	70	100	0	100	0	12	
simultaneous N and C	100	100	U	100	100	/0	100	U	100	U	15	
Trimethylene diamine as	٥	0	0	0	٥	0	٥	٥	0	0	0	
simultaneous N and C	U	U	U	U	U	U	U	U	U	U	U	
Chucese on C course	100	100	100	100	100	100	100	100	100	100	100	
(dutomate for N)	100	100	100	100	100	100	100	100	100	100	100	
(glutaliate Iol IN)	100	100	100	100	100	100	100	100	100	100	100	
(dutomoto for N)	100	100	100	100	100	100	100	100	100	100	100	
(giutaliate IOI IN)	100	100	100	100	100	100	100	100	100	100	100	
Succinate as C source	100	100	100	100	100	100	100	100	100	100	100	
(giulamate for N)	100	100	100	100	100	100	100	100	100	100	100	
Pyruvale as C source	100	100	100	100	100	100	100	100	100	100	100	
(giutaliate for N)	100	100	100	100	100	100	100	100	100	100	100	
Citrate as C source	100	100	100	100	100	67	100	100	100	100	100	
Citrate as C source	100	100	100	100	100	100	100	40	/0	100	100	
Malata as C source	100	100	100	100	100	100	100	100	100	100	100	
Malate as C source	100	100	100	100	100	100	100	100	100	100	100	
Pyruvale as C source	100	100	100	100	100	100	100	100	100	100	100	
Melanate as C source	10	33	57	100	100	11	0	00	100	0	0	
Furnemente as C source	100	100	100	100	100	80	20	80	100	100	80	
Fumarate as C source	100	100	100	100	100	100	20	100	100	100	100	
Glucose as C source	100	100	100	100	100	100	100	100	100	100	100	
Sucrose as C source	100	100	100	100	100	100	100	100	100	100	88	
Ethonol on C source	100	100	100	100	100	100	100	90 90	100	100	100	
Emanoi as C source	100	100	100	100	100	100	100	100	100	100	100	
<i>n</i> -rropanoi as C source	100	100	100	100	47	100	200	100	200	75	88	
C source	100	91	100	U	07	22	20		07	15	00	
1 3-Butylene alvool oo	Δ	٥	Δ	87	າາ	Λ	20	n	0	n	0	
C source	U	v	v	02		v	20	v	v	v	v	
C SULLE												

TABLE 1-Continued

Continued on following page

	% of strains with character ^h											
Character	Present isolates (n = 11)	R. aur- antiacus (n = 11)	R. bron- chialis (n = 7)	R. rubro- pertinctus (n = 11)	R. terrae (n = 9)	R. sputi (n = 9)	R. aichiensis (n = 5)	R. rho-dochrous(n = 5)	R. lenti- fragmentus (n = 9)	R. eryth- ropolis (n = 4)	R. equi (n = 8)	
1,4-Butylene glycol as C source	100	0	14	82	0	0	0	0	0	0	0	
2,3-Butylene glycol as C source	100	91	29	82	44	100	100	100	44	50	0	
n-Butanol as C source	100	100	100	0	100	100	80	100	100	25	100	
iso-Butanol as C source	100	100	100	0	100	100	80	100	100	25	100	
Acid from glucose	100	100	100	100	100	100	100	100	100	0	0	
Acid from mannose	100	100	100	100	100	100	100	100	100	0	0	
Mannose as C source	100	100	100	100	100	100	100	100	100	100	38	
p-Galactose as C source	100	100	0	0	0	0	0	0	0	0	0	
L-Arabinose as C source	0	0	0	0	0	0	0	0	0	0	0	
D-Xvlose as C source	0	0	0	0	0	0	0	0	0	0	0	
L-Rhamnose as C source	Ō	Ó	0	0	100	0	0	0	0	0	0	
Trehalose as C source	100	100	100	100	100	89	100	0	78	0	0	
Inositol as C source	91	100	100	0	0	0	0	0	0	0	0	
Mannitol as C source	55	100	0	100	100	100	60	0	100	0	0	
Sorbitol as C source	55	100	Ō	100	100	100	60	0	100	0	0	
L-Serine as N source	100	100	43	91	100	100	100	20	100	0	0	
Acetamide as N source	100	100	100	100	100	100	100	60	100	0	0	
Benzamide as N source	0	0	0	18	67	0	0	0	0	0	0	
Urea as N source	91	100	86	100	100	100	100	20	100	0	0	
Pyrazinamide as N source	91	100	71	73	100	100	100	0	100	0	0	
Nicotinamide as N source	82	100	100	91	100	100	100	0	100	0	0	
Succinamide as N source	91	100	57	100	100	11	40	0	67	0	0	
Nitrate as N source	91	100	100	100	100	100	100	20	100	0	0	
Nitrite as N source	0	18	0	0	0	0	0	0	0	0	0	
Resistance to 5% NaCl	100	100	71	100	100	100	100	80	22	0	88	
Resistance to isoniazid (10 µg/ml)	82	100	100	100	100	100	100	100	100	100	100	
Resistance to ofloxacin (1 µg/ml)	82	82	57	36	89	100	20	100	78	0	88	
Resistance to ofloxacin (5 µg/ml)	27	0	0	0	0	11	0	40	0	0	0	
Resistance to 5-fluoro- uracil (20 µg/ml)	100	100	0	0	22	11	0	0	11	0	50	
Resistance to mitomycin C (5 µg/ml)	100	100	100	0	100	33	0	20	0	0	0	

TABLE 1—Continued

^{*a*} Unless specially noted, the utilization of carbohydrates as sole carbon sources was tested in the presence of ammoniacal nitrogen, and the utilization of nitrogen compounds as sole nitrogen sources was tested in the presence of glycerol as a carbon source. Resistances were tested in Ogawa egg medium, and tolerances were tested in a modified Sauton agar medium. The composition of the modified Sauton agar medium is as follows: glycerol, 30 ml; KH₂PO₄, 0.5 g; MgSO₄ · 7H₂O, 0.5 g; citric acid, 2.0 g; ferric ammonium citrate, 0.05 g; agar, 20.0 g; distilled water, 970 ml. The pH was adjusted to 7.0 by adding a 10% NaOH Solution.

^b The number of strains tested is shown in parentheses.

agreement of the tests with those for the prototype of the species.

RESULTS

The isolates appeared to be slightly acid-fast short rods and did not form mycelium, suggesting that the isolates belonged to the genus *Rhodococcus* (3, 7). On subculture, they grew on Ogawa egg medium after 3 days of incubation and formed rough, slightly brownish or orange-pigmented colonies, forming no spore and growing only under aerobic conditions. The isolates were identified as *R. aurantiacus*, showing 90 to 96% agreement with the reactions of the type strain. Reaction concordance with other rhodococci was at most 82%. Comparison of the characters of the isolates with the control *R. aurantiacus* strains and with other rhodococci is shown in Table 1. The susceptibilities to various antituberculosis drugs were determined in Ogawa egg medium, inoculating 0.1 mg (wet weight) of an isolate and incubating the inoculated slants at 37° C for 3 days. The isolates were resistant to streptomycin (200 µg/ml), isoniazid (200 µg/ml), ethionamide (200 µg/ml), and ethambutol (50 µg/ml). They showed the following MICs: rifampin, 100 µg/ml; kanamycin, 400 µg/ml; enviomycin (tuberactinomycin N; Toyo Jozo Co., Shizuoka, Japan), 400 µg/ml; kitasamycin (leucomycin; Toyo Jozo Co., Shizuoka, Japan), 25 µg/ml; sulfadimethoxine, 12.5 µg/ml; and minocycline, 3.13 µg/ml.

DISCUSSION

The pus of the patient yielded only *R. aurantiacus* consistently. All other bacteria were isolated sporadically and were considered contaminants. *R. aurantiacus* strains are resistant to most antibiotics and antibacterial substances, as demonstrated by the clinical failure of most drug regimens in this patient. The persistence of R. aurantiacus and its drug resistance suggest that it is the etiological agent in this patient. Two cases of infections caused by this organism have been reported (1, 5). The first involved a lung infection that was not cured but had a remission (5). The second was a fatal meningitis (1). The present case is a very severe, gangrenous tenosynovitis with multiple subcutaneous abscesses. In our case, various drug regimens have been used, but until now the chemotherapeutic treatment seems to have been unsuccessful.

We reported that β -galactosidase activity is important in identifying this organism (5). However, the present isolates did not show this activity. Even without β-galactosidase activity, identification is based on the following characteristics: (i) growth of subculture after 3 days, forming rough, brownish (or orange-pigmented) colonies; (ii) the bacteria are slightly acid-fast rods (at most 5 µm in length) and do not form mycelium (some strains occur as strongly acid-fast short rods); (iii) they tolerate 0.2% picric acid and 0.2% sodium nitrite in a modified Sauton agar medium, in which sodium glutamate has been substituted for asparagine; (iv) they do not show arylsulfatase activity after 14 days; (v) they do not reduce nitrate to nitrite; (vi) they utilize sucrose as a sole carbon source in the presence of ammoniacal nitrogen; (vii) they utilize galactose as a sole carbon source in the presence of ammoniacal nitrogen; and (viii) they are resistant to 5-fluorouracil (20 μ g/ml) and to mitomycin C (5 μ g/ml) in Ogawa egg medium (or Lowenstein-Jensen medium).

LITERATURE CITED

- 1. Prinz, G., E. Bán, S. Fekete, and Z. Szabó. 1985. Meningitis caused by *Gordona aurantiaca* (*Rhodococcus aurantiacus*). J. Clin. Microbiol. 22:472-474.
- Tsukamura, M. 1981. Numerical analysis of rapidly growing, nonphotochromogenic mycobacteria, including *Mycobacterium* agri (Tsukamura 1972) Tsukamura sp. nov., nom. rev. Int. J. Syst. Bacteriol. 31:247-258.
- Tsukamura, M. 1982. Numerical analysis of the taxonomy of nocardiae and rhodococci. Division of Nocardia asteroides sensu stricto into two species and descriptions of Nocardia paratuberculosis sp. nov. Tsukamura (formerly the Kyoto-I group of Tsukamura), Nocardia nova sp. nov. Tsukamura, Rhodococcus aichiensis sp. nov. Tsukamura, Rhodococcus chubuensis sp. nov. Tsukamura, and Rhodococcus obuensis sp. nov. Tsukamura. Microbiol. Immunol. 26:1101-1119.
- Tsukamura, M. 1967. Identification of mycobacteria. Tubercle 48:311-338.
- Tsukamura, M., and K. Kawakami. 1982. Lung infection caused by Gordona aurantiaca (Rhodococcus aurantiacus). J. Clin. Microbiol. 16:604–607.
- Tsukamura, M., and S. Mizuno. 1971. A new species Gordona aurantiaca occurring in sputa of patients with pulmonary disease. Kekkaku 46:93-98.
- Tsukamura, M., and I. Yano. 1985. Rhodococcus sputi sp. nov., nom. rev., and Rhodococcus aurantiacus sp. nov., nom. rev. Int. J. Syst. Bacteriol. 35:364–368.