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Abstract
Differential analysis of whole cell proteomes by mass spectrometry has largely been applied using
various forms of stable isotope labeling. While metabolic stable isotope labeling has been the method
of choice, it is often not possible to apply such an approach. Four different label free ways of
calculating expression ratios in a classic “two-state” experiment are compared: signal intensity at the
peptide level, signal intensity at the protein level, spectral counting at the peptide level, and spectral
counting at the protein level. The quantitative data were mined from a dataset of 1245 qualitatively
identified proteins, about 56% of the protein encoding open reading frames from Porphyromonas
gingivalis, a Gram-negative intracellular pathogen being studied under extracellular and intracellular
conditions. Two different control populations were compared against P. gingivalis internalized
within a model human target cell line. The q-value statistic, a measure of false discovery rate
previously applied to transcription microarrays, was applied to proteomics data. For spectral
counting, the most logically consistent estimate of random error came from applying the locally
weighted scatter plot smoothing procedure (LOWESS) to the most extreme ratios generated from a
control technical replicate, thus setting upper and lower bounds for the region of experimentally
observed random error.
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1. Introduction
Tandem mass spectrometry coupled with multiple dimensions of HPLC has evolved in recent
years to become a standard approach to genome-wide analysis of whole cell protein mixtures.
Differential protein expression analysis of whole cell proteomes by mass spectrometry has
largely been accomplished using stable isotope labeling methods [1]. However, isotope
labeling inevitably increases sample complexity and decreases qualitative proteome coverage,
partly due to the duty cycle limits of current mass spectrometry technology and the need to
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collect data simultaneously for both the labeled and unlabeled peptides sharing the same amino
acid sequence.

In this paper, we examine four different ways of calculating relative protein expression ratios,
derived from linear ion trap data, in the absence of stable isotope labeling. Two of the
approaches involve a continuous variable, signal intensity, and two involve a discrete
(discontinuous) variable, the number of peptide mass spectra observed, referred to here as
spectral counts. These two types of data can both potentially address the primary question of
interest in such studies: does a given protein change expression level between two biologically
distinct states, or does it stay the same?

Spectral counting has been proposed as a method for quantitative proteomics by mass
spectrometry [2-6]. Liu, Sadygov and Yates [3] demonstrated a linear relationship between
sampling level, that is the number of peptide mass spectra observed, and the relative abundance
of a protein in a complex. Old and coworkers [4] have recently performed comparative studies
of non-label quantitative methods using well-characterized reference proteins and human
erythroleukemia K562 cells. Here we apply two variations on the theme of spectral counting
to large-scale proteomic datasets from studies of the interaction of a well-known oral pathogen
with a model human host cell system. One approach is the way common to the references cited
above, that is to count the observed mass spectra for each proteolytic fragment from a given
protein and use that number as a measure of protein relative abundance and as one input into
a relative expression calculation. This will be referred to as the protein level spectral counting
method. The other approach is to treat each unique peptide as a group instead of each protein.
A unique peptide is defined here as a proteolytic fragment that maps to only one expressed
protein for the organism under investigation. All unique peptides for each protein are then
grouped and the expression ratio is calculated by averaging the ratios from the peptides. This
will be referred to as the peptide level spectral counting method. The peptide level spectral
counting method was felt to have potential advantages, such as more data points collected for
each protein. The signal intensity methods use the sum of MS1 signal intensity as an indicator
for relative abundance. By analogy with the definitions given above, the signal intensity
approach can be applied at the level of unique peptides or at the reconstructed protein level.
These methods will be referred to as peptide level signal intensity and protein level signal
intensity, respectively. It was our initial hypothesis that for high signal-to-noise data indicative
of a biologically significant change in protein expression for a given ORF, all four methods
would agree in terms of the direction of change, but not in the magnitude of change. Initially,
we did not expect any single approach to be greatly superior to the others. All were expected
to be inferior to metabolic labeling in terms of quantitative coverage of the proteome, based
on studies of another prokaryote with a similar number of protein encoding ORFs. For
Methanococcus maripaludis, a methanogenic Archaeon, quantitative proteome coverage was
approximately 50% better using 15N/14N ratios when compared to processing the same raw
data using protein level spectral counting as defined above [7].

P. gingivalis is a highly invasive intracellular oral pathogenic bacteria involved in adult
periodontitis [8]. The W83 strain genome has been sequenced and the completed genome
sequence information was added to the Comprehensive Microbial Resource of TIGR on June
8, 2001 [9]. In previous studies, we used conditioned keratinocyte growth medium (cKGM)
to simulate the early stages of P. gingivalis invasion of human gingival epithelial cells [10];
cKGM is KGM enriched with the supernatant materials left after human gingival epithelial
cell culturing. Recently, human immortalized gingival keratinocytes (HIGK) [11] have
replaced primary human gingival epithelial cells for these studies. Differential protein
expression analyses were performed to investigate the effects of internalization within HIGK
on P. gingivalis protein expression. Because of technical problems encountered while
growing 15N labeled P. gingivalis on minimal media with 15N ammonium sulfate as the only
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nitrogen source, we have studied alternative non-label approaches to generating protein
expression ratios in which two control populations of P. gingivalis are compared to a population
of bacteria that has been internalized within HIGK. The experimental design thus consisted of
three populations of P. gingivalis cells analyzed using four quantitative methods, as shown in
Table 1. The focus in this report is analytical and methodological. A biologically based
discussion of the quantitative changes observed in the P. gingivalis proteome will appear in a
future publication.

2. Materials and methods
2.1. Sample preparation, HPLC fractionation and tandem mass spectrometry

There were three samples of P. gingivalis strain 33277: P. gingivalis cells cultivated to mid-
log phase in trypticase soy broth supplemented with yeast extract (1 mg ml-1), menadione (1
μg ml-1) and hemin (5 μg ml-1), at 37°C under anaerobic conditions of 85% N2, 10% H2 and
5% CO2, referred to as PG_nm or PG normal; P. gingivalis cells incubated in fresh HIGK cell
culture medium (Keratinocyte-SFM from GIBCO, Invitrogen Corporation, catalogue number
17005) for 18 h anaerobically at 37°C, referred to as PG_PPC; and P. gingivalis cells recovered
after an 18 hour period of internalization within HIGK cells and lysis of the HIGK cells with
distilled water, referred to as PG_PP. P. gingivalis cells were washed once with distilled water
and recovered by centrifugation. Cell pellets containing approximately 109 cells were
resuspended with 100 μl 0.1 M Tris buffer (pH 8.0), 50 μl RapiGest (1mg/100 μl) in a 1.5 ml
microcentrifuge tube. Four μl of 1M DTT and 30 μl DNAse/RNAse solution (1 mg/ml DNAse
I, 500 μg/ml RNAse A, 50 mM MgCl2, 50 mM Tris-HCl at pH 7.0) was added into the
suspension. The samples were immediately placed in 100 μl of boiling 0.1 M Tris buffer (pH
8.0) for 5 min until the solution ceased to show obvious viscosity due to residual DNA. Each
sample was then transferred onto ice. The proteins were further reduced by the addition of 5
mM DTT at 37°C for 30 min and then alkylated with 30 mM iodoacetamide at 30°C for 30
min in the dark. Each sample was then adjusted to give a solution containing 50 mM Tris, pH
8.0 and 5 mM CaCl2. Trypsin, 10 μg of sequencing grade (Promega, Madison, WI), was added,
and the mixture was incubated at 37°C for 4 hours. The samples were centrifuged at 14,000
rpm for 7 min. The supernatant was transferred to another 1.5 ml microcentrifuge tube. The
insoluble fraction was kept at −80°C for further analysis. The samples were acidified with TFA
to quench the digestion and concentrated to 200 μl using a vacuum centrifuge (RC10-22, Jouan
Inc. Winchester, VA). The supernatant from the digestion step described above was thawed
and centrifuged at 14,000 rpm for 6 min. The solution was loaded onto a 2.0 × 150 mm YMC
polymer C18 S-6 reversed-phase HPLC column (Waters Corp., Milford, MA, USA). The
mobile phases were H2O and acetonitrile with 0.1% TFA. Peptides were eluted with increasing
acetonitrile percentage (2%-50% for 50 min, 50% - 2% in 5 min.) at 0.3 ml/min. Eluent was
collected into five fractions according to UV absorption at 214 nm. Each fraction was
concentrated to 50 μl using the vacuum microcentrifuge. Acetic acid and acetonitrile were
added to a final concentration of 0.5% and 5% (v/v), respectively.

The insoluble fraction was dissolved in 50 μl of 8M urea and 0.125% (w/v) RapiGest. The
proteins were reduced with 5 mM DTT at 37°C for 30 min and then alkylated with 10 mM
iodoacetamide at 30°C for 30 min in the dark. After addition of 100 μl of 0.1M Tris (pH 8.0),
CaCl2 and acetonitrile were added, 5mM and 5% respectively. 10 μg of trypsin (sequencing
grade, Promega, Madison, WI, USA) was added and the mixture was incubated at 37°C for 4
hr. Five μl of TFA was added to the mixture to stop the digestion. RapiGest was degraded and
precipitated by incubating at 37°C for 30 min. The solution was centrifuged at 14,000 rpm for
6 min. The precipitate was washed twice with 40 ul of 50 mM Tris pH 8.0. The soluble fraction
and combined washes were desalted and fractionated as described above except that peptides
were eluted with a gradient of 2%-70% acetonitrile for 50 min. Eluent was collected into one
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fraction for PG_nm (P. gingivalis in normal growth medium) and PG_PPC (P. gingivalis in
control epithelial cell culture medium), and two fractions for PG_PP (P. gingivalis recovered
from inside epithelial cells), based on the more intense UV absorbance (214 nm) observed for
PG_PP. Fractions of PG_nm and PG_PPC were concentrated to 25 μl using the vacuum
microcentrifuge. Fractions of PG_PP were concentrated to 50 μl. Acetic acid and acetonitrile
were added to a final concentration of 0.5% and 5% (v/v) respectively. Approximately 2.5 μl
from each combined fraction was analyzed using a 2D microcapillary HPLC system [10,12]
combined with a Thermo-Finnigan LTQ mass spectrometer in a semi-automated, data-
dependent manner as previously described [13]. Peptides were first partially eluted from the
SCX (strong cation exchange) packing, and were retained on the reverse phase material by
ammonium acetate step gradients (0, 10, 25, 50, 100, 250, 500 mM). The peptides were eluted
from the reverse phase packing with an acetonitrile gradient with 0.5% v/v acetic acid, and
were electrosprayed into the LTQ for data-dependent acquisition. The gradients programmed
were: 5% B, hold 13 min, 5–16% B in 1 min, hold 6 min, 16–45% B in 45 min, 45-80% B in
1 min, hold 9 min, 80-5% in 5 min, hold 10 min. The flow rate in the capillary column was
150 nl/min during 16-45% B and 300 nl/min during all other gradient sections. The MS1 scan
range was 400–2000 m/z units acquired at a rate of 16,600 u/sec. After each main beam
(MS1) scan, the ten most intense m/z values above 20,000 counts were selected for collision-
induced dissociation (CID, MS2), each complete cycle of MS1 and MS2 taking between 3.0
and 3.6 sec. Default parameters under the Xcalibur 1.4 data acquisition software (Thermo
Finnigan, San Jose, CA, USA) were used, with the exception of an isolation width of 3.0 m/z
units. Automatic gain control and dynamic exclusion (30 sec window, 10 ions) were activated
during all acquisitions.

2.2 Database searching and DTASelect
MS/MS spectra were searched by SEQUEST [14] on a 16-CPU cluster computer (Denali
Advanced Integration, USA) against a combined fasta database which includes the temporary
bovine database from the University of California at Santa Cruz [15], bovine fasta database
from the nrdb of the National Center for Biotechnology Information [16], human fasta database
from the nrdb [16], NIH Mammalian Gene Collection [17,18] and the P. gingivalis database
from TIGR [9]. DTASelect [19] filtering was done by applying the following criteria: peptides
were fully tryptic (beginning and ending at adjacent predicted trypsin digestion sites); ΔCn/
Xcorr values for different peptide charge states were 0.08/1.9 for +1, 0.08/2.0 for + 2, and
0.08/3.3 for +3; all spectra detected for each sequence were retained (t = 0 in DTASelect).

2.3 Data processing for relative quantitation
The data processing steps for relative quantitation were as follows: first, the raw files were
converted to text files by the file converter in the Xcalibur 1.4 data system for the LTQ. Then,
a Visual Basic for Applications program was run in Microsoft Word to extract the full scan
number, ion m/z value and intensity from the text file. A relational database was constructed
in FileMaker Pro 8. The DTASelect-filter file and each intensity file was imported into
FileMaker Pro 8 as separate tables. Identical multiple criteria relationships between each
intensity table and the DTASelect-filter table were established by the following rules: the m/
z value in the DTASelect-filter file was kept within the m/z range of the intensity file plus or
minus the m/z tolerance (we use ± 0.2); and the full scan value in the DTASelect-filter file was
within the range of the full scan number in the intensity file plus or minus the full scan number
tolerance (± 30 scans). Then, a FileMaker script was used to update the intensity and full scan
fields in the DTASelect-filter table. Because the DTASelect-filter to intensity file relationships
were defined to always sort the intensity files in descending order of signal intensity, the
updated intensity field in the DTASelect-filter table was the value from the highest mass peak
for the corresponding CID parent ion among the ± 30 scans.
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2.4 Four relative quantitation methods for generating expression ratios
Calculating the protein level spectral count was straightforward. In the DTASelect-filter file,
the number of each SEQUEST identified spectra was listed with each ORF. That number was
used as the protein level spectral count. The ratio of each protein from two samples (PG_PP/
PG_nm or PG_PP/PG_PPC, see Table 1) was then calculated from the two spectral count
values after the normalization steps described below.

For the peptide level spectral counting method, the spectral count of each peptide was
calculated by averaging the spectral counts from two technical replicates. For those identified
in only one replicate, that number was used as the spectral count. Then, after normalization,
for each peptide the ratio of two samples (PG_PP/PG_nm or PG_PP/PG_PPC) was calculated.
In the case when the peptide was only detected in one sample, 1 was added to the peptide level
spectral count in order to avoid a count of zero. The protein level peptide intensity method used
all the intensity values from all peptides identified for one protein, including redundant
measurements. The sum of the intensity values in MS1 was used to represent the abundance
of each protein in the sample. For the peptide level peptide intensity method, the summed
intensity in MS1 for each unique peptide sequence was calculated by adding the signal intensity
within each technical replicate, then averaging the totals for the technical replicates. For those
peptides identified in only one replicate, the summed intensity was used. Then, for each unique
peptide, after normalization, the ratio of two samples (PG_PP/PG_nm or PG_PP/PG_PPC)
was calculated from the average summed intensity values. In the case when peptide was only
detected in one sample, 20,000 counts of processed signal intensity was added to the peptide
as its summed intensity in order to avoid generating missing ratios. This number of counts
corresponded to the average baseline threshold for selecting CID ions in MS1.

2.5 Normalization of spectral counts and peptide intensities prior to calculating ratios
PG_PP/PG_nm spectral count ratios (both peptide level and protein level) were normalized by
multiplying PG_PP spectral counts by a factor of 2.43 to make the sum of spectral counts in
PG_PP and PG_nm equal; PG_PP/PG_PPC spectral count ratios were normalized by
multiplying PG_PP spectral counts by 1.68; PG_PP/PG_nm peptide intensity ratios were
normalized by multiplying PG_PP peptide intensities by 3.31 to make the sum of peptide
intensities in PG_PP and PG_nm equal; PG_PP/PG_PPC peptide intensity ratios were
normalized by multiplying PG_PP peptide intensities by 1.75.

2.6 Outlier detection for expression ratios
Detection of outliers for normalized ratios generated for the peptide level spectral count and
peptide level peptide intensity methods was done in two steps for each list of ratios associated
with an ORF, as we have published for metabolic labeling data [13]. For the first stage, Dixon's
Q-test [20] was used, in the second stage, a MAD (median of the absolute deviation) modified
z-score test [21-23] with a cutoff value of 3.5 was used.

2.7 Statistical significance testing and curve fitting
The G statistic, two sample t-test, p-value, and q-value calculations were calculated using the
R language [24]. R code was modified in-house from source code kindly provided by the
Department of Statistics Consulting Service of the University of Washington. The relevant
theory is given in the following section. The LOWESS (locally weighted scatter plot
smoothing) curve fitting [25] shown in Fig. 1 was performed using R code developed in-house.
The R source code is provided in the Electronic Supplement.
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3. Theory and calculations
3.1 G test for protein level spectral counting

The G test of significance [26] we chose for protein level spectral counting is a likelihood ratio
test for discrete data, which was recently applied to human proteomics data by Old and
coworkers in their study of non-label quantitation [4]. For the PG_PP and PG_nm comparison,
we first normalized the PG_PP spectral counts with PG_nm by transforming the spectral counts
of each protein in PG_PP so that the sums of spectral counts in PG_PP and PG_nm were the
same, based on the assumption that the PG_PP and PG_nm frequency distributions were similar
and from samples of the same size. We then set the expected frequency, also known as the
expectation value, equal to the average frequency of the two samples. That is, set

(1)

where fPP and fNM are spectral counts for a given protein in PG_PP and PG_nm; f̂PP and f̂NM
are expected protein level spectral counts in PG_PP and PG_nm under the null hypothesis that
there is no difference in expression of the protein between PG_PP and PG_nm.

Our G-statistic then becomes

(2)

A G statistic used in this way is expected to approximate a χ2 distribution with 1 degree of
freedom [26]. In order to verify this assumption for a χ2 distribution with 1 degree of freedom,
G test simulations with frequencies from two binomial distributions with equal sample sizes
(n) and proportions (p) were carried out. Details are presented in the Appendix and the R code
contained in the Electronic Supplement. The simulated distribution did not match the χ2

distribution, except at the lowest proportion values, see Appendix Fig. A1. However, this
simulation did indicate that p-values calculated using this assumption should be conservative.
In other words, fewer proteins were likely to be judged significantly over- or under-expressed
in the internalized population relative to the controls and the false positive risk would be
reduced at the expense of increasing the risk of false negatives.

3.2 q-value calculations
Controlling for false positives has been proposed using a q-value rather than a p-value. The
q-value is closely related to the concept of false discovery rate, FDR, and has been defined as
a measure of the strength of an observed statistic, in this case a p-value, with respect to the
positive false discovery rate, pFDR [27]. In the context of this paper, it is the minimum pFDR
that can occur when rejecting the null hypothesis (no change in protein expression) at a certain
p-value. After generating a G-test statistic for each protein, a p-value was calculated as the
probability that a χ2 distribution with 1 degree of freedom was more extreme than our G
statistic. The R package QVALUE [27,28] was used to calculate q-values for each protein
based on the p-value.
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3.3 Two sample t-test
For the protein level peptide intensity method, a two-sample t-test was performed for each
protein. The two-sample t-statistic was

(3)

where X and Y are the sum of peptide signal intensities from the two conditions being compared;
sx and sy are the standard deviations, and n and m are the number of peptide spectra observed
for the protein under each condition. The p-values were then calculated as the probability that
a standard normal distribution was more extreme than our two-sample t-statistic. The R package
QVALUE [27,28] was used to calculate q-values for each protein based on the p-value.

4. Results and discussion
4.1 Proteome qualitative coverage

From this study, 1245 total P. gingivalis proteins were qualitatively identified in Pg_nm,
PG_PPC and PG_PP. 1137 proteins were identified in PG_nm, 987 proteins in PG_PP and
1068 proteins in PG_PPC. According to TIGR [9], the P. gingivalis W83 database contains
about 2,227 protein encoding ORFs, and the 33277 strain used here is believed to be very
similar. These facts suggest proteome coverage of ∼56% of the predicted ORFs.

4.2 Correlations among the four calculation methods
As can be seen from an inspection of the representative scatter plots and correlation coefficients
shown in Fig. 2, the four methods gave results that were strongly correlated, as expected. The
best correlations were observed between the two spectral counting methods, the worst between
the peptide intensity methods. This is consistent with the observation that spectral counting
data tends to be less noisy and more reproducible relative to intensity-based methods, although
such a statement must be subject to several caveats. Most important among these is the
generally poor performance of spectral counting approaches when peptide numbers are low,
as evidenced by the wide scatter for low peptide numbers shown in Fig. 1.

The Venn diagrams in Fig. 3 show the overlapping subsets of ratios calculated by the four
methods for the two controls that were each compared with internalized bacteria (see Table 1).
From the Venn diagrams, for PG_PP/PG_nm, 37 up-regulated and 18 down-regulated ORFs
were reported by all methods; 185 up-regulated and 137 down-regulated ORFs were reported
by at least three out of the four methods. Moreover, for PG_PP/PG_PPC, 35 were up-regulated
and eight down-regulated by all methods; 146 were up-regulated and 126 were down-regulated
by at least three out of the four methods. If we choose significant expression changes reported
by at least three out of the four methods as criteria, we have 322 ORFs in PG_PP/PG_nm and
272 ORFs in PG_PP/PG_PPC. These numbers are closer to estimates suggested by biological
arguments [10,29] and also the numbers suggested by the interpretation of Fig. 1 given in
Section 4.4 below. The similarities and differences among the different calculation methods
with respect to defining the expression status of each ORF can be inspected visually by viewing
the eight whole proteome false color ORF plots contained in the Electronic Supplement, Figs.
S1-S8.

There were 20 ORFs contained in the most restricted subset of significant expression changes,
defined by changes in the same direction in both comparisons and by all calculation methods.
A somewhat restricted overlap among all four methods and both controls was not unexpected,
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given the highly conservative selection criteria. The data for these 20 ORFs are given in the
Electronic Supplement, Tables S1 and S2.

4.3 Repeatability of spectral counting data
Fig. 4 shows the correlation of spectral counts for each protein identified from three replicate
runs of PG_PP. As shown in the three panels, the spectral counts for each of the 751 commonly
identified proteins in all three runs demonstrate a very consistent linear relationship. In other
words, the spectral count of one protein in a complex sample consisting of many tens of
thousands of proteolytic fragments is a surprisingly stable measurement under these
experimental conditions.

4.4 Visualizing random errors in spectral counting
When the sum of spectral counts of technical replicate runs is less than roughly 10, the ratios
calculated are too noisy and quantized to be of further use (Fig. 1A). For the peptide level
spectral count method, we did not use any peptide whose sum of spectral counts for any two
samples or replicates was less than 10. When the sum of spectral counts goes to large values,
the log2-transformed ratios tend towards zero except in the case of a real difference between
the two data sets being compared. Outliers due to experimental error are infrequent at high
counts. For purposes of comparison, Fig. 1B shows a much more scattered relationship between
the ratios of PG_PP/PG_nm and the sum of spectral counts, which supports an increasing body
of observations suggesting that there are hundreds of P. gingivalis genes showing altered
expression in PG_PP relative to controls [10,29-31]. The data shown in Fig. 1 suggests that it
should be possible to use the error distribution of the expression ratios observed for replicate
runs of the same sample (Fig. 1A) to distinguish true expression changes from random errors
when comparing two different samples (Fig. 1B). This concept could easily be extended to
biological replicates as well. The LOWESS smoothing curves [25] of the upper and lower
boundaries in Fig. 1A essentially demarcate the region of observed experimental error that can
be attributed to instrumental causes. It is reasonable to interpret expression ratios that fall within
this region as random error. Such curve fitting approaches have been successfully applied to
visualizing regions of random error in transcription microarray data [32,33]. Those same
boundaries are shown superimposed on a real experiment comparing internalized bacteria and
a control population in Fig. 1B. In Fig. 5, the overlap of the significant results falling outside
the boundary of the LOWESS lines is compared with a q-value cutoff of 0.05. All values judged
to be significant based on the LOWESS curve fit were contained in the set at q = 0.05, but an
additional 113 ratios gave q ≤ 0.05. Thus, the curve fit by itself yielded a numerically smaller
estimate of the number of proteins showing a significant change in expression. Whatever the
true nature of the ratios that fall outside the boundaries defined by the LOWESS curve, the
procedure allows the analyst to quickly visualize those ratios that are worth examining in
greater detail, and also the vast majority that fall within the region bounded by the curve where,
from an experimental perspective, true expression change cannot be distinguished from random
error.

4.5 Assumptions violated when many proteins change
The assumptions behind our G test statistic, Eq. (2), were almost certainly violated to such a
degree that the results, based purely on theoretical considerations, should have been biased in
a conservative direction, given that the expectation values were based on expression ratios
from a proteome believed to be highly regulated (see 4.4). If a large number of ratios are derived
from highly regulated proteins, the expectation values defined by Eq. (1) are going to be skewed
towards the direction of treating biologically significant changes as null. The normalization
methods commonly used for transcription microarrays [34] and for shotgun proteomics also
make assumptions that only a few genes or proteins among many are changing. These are
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reasons why the experimentally observed error distribution (Fig. 1) and the simple graphical
method discussed above in 4.4 are of practical interest as checks on both our multiple
hypothesis testing procedures and data normalization.

4.6 Setting the q-value threshold for ratios calculated by protein level spectral counting and
protein level signal intensity

Referring to Storey and Tibshirani [27], we generated a series of q-value frequency histograms
as shown in Fig. 6. The flat region is interpreted as one where there is no significant change in
expression. It was decided to take 0.05 as the q-value threshold. This value is represented by
the dotted lines in Fig. 6. According to Storey [27], “the p-value is a measure of significance
in terms of the false positive rate”, whereas “the q-value is a measure in terms of the false
discovery rate”. Therefore, when we take 0.05 as the q-value threshold, among all expression
ratios called significant, 5% of them are predicted to be null on average. Alternatively, the
LOWESS procedure described above in 4.4 can be used as an aid for establishing a reasonable
value for the q-value cutoff, analogously to the procedure shown in Fig. 6. Interestingly, in
spite of the problems noted above in 4.5 for the G test, the simple curve fit suggested an even
smaller subset of potentially regulated proteins when compared to the subset with q ≤ 0.05, see
Fig. 5. Further study will be required to fine tune our use of q-values to address concerns that
113 proteins deemed significant at q ≤ 0.05 fell within the bounds of random error determined
experimentally (Fig. 1).

4.7 Standard deviations are high for peptide level methods
Standard deviations for the peptide level methods were high because there are large variations
in molar response and recovery among different peptides, regardless of their origin as part of
a particular protein. As shown for a representative case in Fig. 7, the 26 peptides identified for
major fimbrillin A (P13793|FMA_PORGI) demonstrate how great the variation of spectral
counts and peptide signal intensity can be. Even for this very abundant protein, some peptides
are identified with one or two CID spectra, while other peptides are identified with several
thousand. Moreover, the range of peptide ion signal intensities can extend well beyond the
dynamic range of the measurement process.

5. Conclusions
The relationship of true protein abundance to spectral counting and peptide signal intensities
from mass spectrometry data remains a topic of active investigation with few definitive answers
and substantial disagreement as to how much coverage is required to generate biologically
useful protein expression ratios. For example, Silva and coworkers [35] observed “the average
MS signal response for the three most intense tryptic peptides per mol of protein is constant
within a coefficient of variation of less than ± 10%.” Our data tend to support this observation.
This trend can be seen for a representative protein in Fig. 7, where the top four peptides ranked
in number of identified spectra show a much narrower range of values compared to the other
22 peptides. The methods defined in the Introduction as peptide level spectral counting and
peptide level signal intensity both performed poorly (see 4.2) relative to the protein level
methods, in terms of quantitative proteome coverage. While matching “heavy” and “light”
peptides sharing the same sequence works well in a classic stable isotope quantitation scheme
[36], where the peptides are analyzed at the same time, the random scatter in the data inevitably
increases when an analogous approach is applied to unlabeled peptides sharing the same
sequence but analyzed separately at different times. Thus, the error bars associated with ratios
generated from our peptide level data were too large in many cases to distinguish the ratios
from 1 on a linear scale or 0 on a log2 scale, whether any expression change was occurring or
not (see 4.2 -4.4). This can be seen graphically in the Venn diagrams (Fig. 3) in which the
peptide level methods have significantly fewer ORFs in the up or down categories. Peptide
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level spectral counting yielded the fewest ORFs in the up or down category, the protein level
methods the most, and the peptide level signal intensity approach fell between these extremes
in terms of ability to detect expression change. The poor performance of the peptide level
spectral counting approach in particular can be easily grasped by examining whole proteome
color figures contained in the Electronic Supplement, that summarize the entire dataset for
each set of conditions (Figs S1-S8).

To answer the question posited in the Introduction, of the methods we have tested the best
approach to measuring protein expression changes in a bacterial cell, in the absence of stable
isotope metabolic labeling, appears to be protein level spectral counting because of its better
precision (see 4.2, 4.3, 4.7) relative to methods based on signal intensity or peptide level
spectral counting.

The LOWESS curve fit to the technical replicates (Fig. 1, Section 4.4) shows promise as an
easily implemented and logical way to visualize the random errors in determining expression
ratios based on protein level spectral counting. It is also worthy of further study as a method
for assessing the proper significance level of q-value that best fits the data in a more formal
assessment of ORFs that show significant changes in expression level. Those ratios that appear
to represent real, biologically significant expression can then be viewed as candidates for
further validation. Using mass spectrometry, this can take the form of more specific post-
acquisition data mining targeted at particular proteins of interest, or carrying out new
experiments targeted at particular proteins, protein complexes, or posttranslational
modifications, as discussed in a recent review of mass spectrometry applications in biomarker
and drug discovery [37]. The question of biologically significant expression level change
ultimately must be dealt with by using an approach in which other methods are brought to bare
on the problem, e.g. the use of transcription microarrays, quantitative RT-PCR, functional
assays and other means as required. A whole cell shotgun proteomics experiment, no matter
how well executed, requires validation by an orthogonal approach. An elegant example of
proteomics applied in such a systems biology context can be found in the recent study by Becker
et al. [38] of potential targets for antibacterial drugs in the Salmonella enterica proteome.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix 1
In order to compare the G statistic distribution [26] to the Chi-square distribution with 1 degree
of freedom [26], quantile-quantile (q-q) plots [39-44] were generated from 873 common
proteins detected in PG_nm and PG_PP. Usually, q-q plots are used to test if the populations
of two data sets follow the same distribution [45]. In this case, q-q plots are presented to show
the relationship of the simulated G statistic, Eq. (2) in Section 3.1 and a Chi-square distribution
with 1 degree of freedom. The solid line is where the two distributions are equivalent. Fig. A1
shows q-q plots with four different proportion values. With relatively small values (A, B), the
G statistic agrees with the Chi-square distribution; with larger values (C, D), this agreement
no longer exists. However, no matter how good or bad the agreement is, the quantiles from the
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Chi-square distribution with 1 degree of freedom are always larger than the simulated G
quantiles, which makes p-values based on the Chi-square assumption conservative. Note that
the proportion value, p, used in the binomial distribution used to simulate the G statistic is a
different concept from the p-value used to estimate the number of proteins for which the null
hypothesis fails.
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Abbreviations
FDR  

false discovery rate

HPLC  
high performance liquid chromatography

HIGK  
human immortalized gingival keratinocyte

KGM  
keratinocyte growth medium

LOWESS  
locally weighted scatter plot smoothing

LTQ  
Thermo-Finnigan linear ion trap mass spectrometer

MudPIT  
multidimentional protein identification technology

ORF  
open reading frame

PG  
Porphyromonas gingivalis
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Pi  
peptide signal intensity

PP cells  
synonym for HIGK, see definition above

PPC  
P. gingivalis grown in media optimized for HIGK

RT-PCR  
reverse transcription-polymerase chain reaction

Sc  
spectral counting

SD  
standard deviation

TIGR  
The Institute for Genomic Research

TFA  
trifluoroacetic acid
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Fig. 1.
A. Scatter plot of log2 of run1/run2 spectral count ratios versus log2 of protein level spectral
counts from run1 and run2 of PG_nm. B. Log2 of PG_PP/PG_nm spectral count ratios versus
log2 summed protein level spectral counts from PG_PP/PG_nm. The two solid curves shown
are the LOWESS smoothing curves [25] of the upper and lower boundary of the log2 ratios of
protein level spectral counts from the control replicates, PG_nm.
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Fig. 2.
Scatter plot matrix generated in S-PLUS 6.0 (www.insightful.com) showing correlation
coefficients for the four methods. The scatter plots were generated from 528 data points for
the PG_PP/PG_PPC expression ratios. See Table 1 and the Introduction for definitions of the
variables.
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Fig. 3.
Standard four-statement Venn diagrams showing the overlap of detected significant and non-
significant expression changes among the four different non-labeling quantitation methods (see
Table 1 for definitions). The criteria for determining significance was the following: for protein
level ratios, the q-value was less than 0.05; for peptide level ratios, the log2 ratio − SD was >
0 or the log2 ratio + SD was < 0.
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Fig. 4.
Scatter plots on a linear scale and correlation statistics for spectral counts from three technical
replicates of PG_PP, showing repeatability of the spectral count method. Each data point
represents the number of peptide MS1 spectra retained for each protein. These plots were
generated in S-PLUS 6.0 (www.insightful.com) for proteins commonly identified in all three
runs.
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Fig. 5.
Venn diagrams showing the comparison of the significant changes of PG_PP versus PG_nm
from the protein level spectral count (ScRatio1) method with q = 0.05 and the significant
proteins that are outside the LOWESS curves in Fig. 1B. For both up and down expression
changes, the proteins that were outside the LOWESS curves in Fig. 1B were all included in
the ScRatio1 results.
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Fig. 6.
Frequency histograms of the q-values from ScRatio1 (A), ScRatio2 (B), PiRatio1(C) and
PiRatio2 (D), see Table 1 for definitions. The dashed lines are at the height of our estimate of
the proportion of null q-values. The y-axis represents the number of ORFs in each bin. The x-
axis represents the q-values calculated as described in Sections 3.2 and 3.3.
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Fig. 7.
Frequency histograms of 26 identified peptides of P13793|FMA_PORGI, major fimbrillin A
observed in sample PG_nm. The large variations in spectral counts and intensity distributions
between different peptides can explain why the relative standard deviations of peptide level
methods are so high. The y-axis of each histogram represents the number of peptide spectra in
each bin. The x-axis represents signal intensity in units of log10 data system counts.

Xia et al. Page 20

Int J Mass Spectrom. Author manuscript; available in PMC 2009 March 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. A1.
Quantile-quantile (q-q) plots of Chi-square versus G statistic at four levels of proportion value.
The assumption of equivalence is violated to a greater degree as the proportion value increases.
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Table 1
Experimental design for two internalized bacteria/control comparisons and four methods for calculating protein
expression ratios. The variable ScRatio1 thus represents the ratio of internalized PG and PG controls grown under
normal culture conditions (see 2.1) calculated using the protein level spectral count method. The other seven conditions
are defined analogously according to their position in the table.

PG_PP/PG_nm PG_PP/PG_PPC

Protein level Peptide level Protein level Peptide level

Spectral count ScRatio1 ScRatio3 ScRatio2 ScRatio4

Signal intensity PiRatio1 PiRatio3 PiRatio2 PiRatio4
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