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Abstract
Gaussian geostatistical models (GGMs) and Gaussian Markov random fields (GM-RFs) are two
distinct approaches commonly used in spatial models for modeling point referenced and areal data,
respectively. In this paper, the relations between GGMs and GMRFs are explored based on
approximations of GMRFs by GGMs, and approximations of GGMs by GMRFs. Two new metrics
of approximation are proposed: (i) the Kullback-Leibler discrepancy of spectral densities and (ii) the
chi-squared distance between spectral densities. The distances between the spectral density functions
of GGMs and GMRFs measured by these metrics are minimized to obtain the approximations of
GGMs and GMRFs. The proposed methodologies are validated through several empirical studies.
We compare the performance of our approach to other methods based on covariance functions, in
terms of the average mean squared prediction error and also the computational time. A spatial analysis
of a dataset on PM2.5 collected in California is presented to illustrate the proposed method.

1 Introduction
In many applications in spatial and environmental epidemiology, data concerning a spatial
process of interest are often observed at different spatial resolutions, and the overall problem
of incompatible spatial data has been encountered very commonly when relating two spatial
variables with different supports. For example, in studies of the association between air
pollution exposure and adverse health effects, relevant health outcomes are usually available
as areal data due to confidentiality while the pollution data are available as a point level (Best
et al. 2000; Tolbert et al. 2000). To investigate the relationships between two variables with
different spatial resolutions, the mismatch problem in the support of the two variables need to
be resolved. One common solution to this spatial misaligment problem is to aggregate the
point-referenced data to the area level, and create a common support for both variables. Once
the point-referenced data are aggregated to the relevant level, the process representing the
aggregated data is modeled using integrals of spatial continuous process (Journel & Huijbregts,
1978; Martin and Dwyer, 1994). Consider a continuous Gaussian process Y (s) with mean
function µ(s) and covariance function c(si, sj) for si, sj ⊂ D∈Rd, where si is a location in a fixed
domain D. The aggregated process over a region B, Y (B) = ∫B Y (s)ds has a multivariate normal
distribution with mean function µ(B) and covariance function Σ(B1,B2),
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where |Bi| denotes the area of a region Bi for i=1,2. Modeling aggregated data using these spatial
integrals requires lots of computation. Hence, instead of using the aggregated models directly
in modeling aggregated point-referenced data, it is becoming very common to use Gaussian
Markov random fields.

The modeling of aggregated point-referenced data using GMRFs serves as one of our
motivations to investigate the relations between GMRFs and GGMs. GGMs are used in
modeling a process over a domain based upon a set of measurements taken at a finite number
of sites in the domain. On the other hand, GMRFs are widely used for modeling areal data
measured as averages of a quantity over subregions of a larger study region. There have been
several attempts in the literature to explore the relationship between GGMs and GMRFs. Besag
(1981) showed that covariance function of GMRFs could be approximately represented in
terms of a modified Bessel function that decreases monotonically with distance, which
suggested the possibility of approximations of GMRFs by GGMs. Griffith and Csillag
(1993) investigated the approximation of GMRFs using several geostatistical models by
minimizing the squared differences between the covariances of GMRFs and GGMs.
Hrafnkelsson and Cressie (2003) explored a relationship between a specific class of GMRFs
and a Matérn covariance model through an empirical parametrization of the relations between
parameters of two models. On the other hand, Rue and Tjelmeland (2002) investigated
approximations of GGMs by GMRFs using two approximation methods of GGMs by GMRFs,
one using the Kulback-Leibler (KL) discrepancy between probability densities and the other
one by matching the correlation functions of the models, showing that the matching correlation
approach performed better than the KL method.

From these earlier studies, it appears that one of the key elements of this comparative study is
the choice of the metric to measure the discrepancy between GGMs and GMRFs. Although
various metrics are suggested in previous research, they are mainly based on covariance
functions of models and, no evaluations have been conducted on suggested metrics. In this
paper, we introduce two new metrics using spectral density functions to explore the relations
between GGMs and GMRFs, and compare our metrics and covariance metrics based on the
average mean squared prediction error and computation time. The aim of this study is to explore
the relations betwen GGMs and GMRFs through a variety of empirical studies based on our
suggested metrics. In Section 2, we present general overviews of GGMs and GMRFs. In
Section 3, we propose new approximation metrics using spectral density functions. In Section
4, we compare the performance of our spectral method to the other covariance-based type of
approaches, using as criteria the averaged mean squared prediction error and also taking into
account the computational time. Section 5 presents an illustration of our methods using
PM2.5 data. Section 6 summarizes our findings and suggests possible extensions of this
research.

2 Spatial models
In this section, we briefly review two general classes of spatial models, GGMs and GMRFs.
The choice of models usually depends on the data types whether the data are collected as points
in space or are observed as averages over regions. GGMs (e.g. Cressie, 1993) are usually used
in modeling geostatistical data such as measurements on several attributes at point referenced
spatial locations, s1,…,sn in a fixed region D where the measurement points vary continuously,
while GMRFs (e.g. Besag, 1974) are used for modeling areal data which are collected over a
certain region. These models specify the process in a different way. GGMs model spatial
associations directly through the parametric covariance models while GMRFs specify spatial
associations through the conditional specification of the precision matrix.
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2.1 Gaussian geostatistical models (GGMs)
GGMs are used to model continous spatial Gaussian processes using a spatial covariance that
is often just a function of distance and direction between locations. GGMs are generally based
on two common assumptions which are second order stationarity and isotropy. Second order
stationarity implies that the mean of a process is constant and the covariance function depends
on the spatial vector distance between two locations. When the covariance function only
depends on the Euclidean distance (no direction) between two locations, the process is called
isotropic. The spatial covariance of a stationary and isotropic spatial process could be modeled
using parametric functions of Euclidean distances. The Matérn covariance is one of the
commonly used parametric covariance functions, which is defined as,

where h denotes the Euclidean distance between two points, Kv is a modified Bessel function
of the third kind (Arfken and Weber, 1995) of order v, τ2, σ2 and ϕ represent the nugget effect,
partial sill and effective range of the covariance, respectively. The nugget effect is a
discontinuity at the origin due to microscale variations and measurement errors. The sill
parameter is the variance of the process, and the partial sill is the sill minus the nugget effect.
The effective range is the distance where the correlation drops below 0.05. The order v > 0 of
the Kv function controls the smoothness of the function. In particular, when v = 1/2, the Matérn
covariance reduces to an exponential model and when v → ∞, it approaches to a Gaussian
covariance model (e.g. Stein, 1999). Due to its flexibility, the Matérn covariance is widely used
in a variety of spatial applications.

2.2 Gaussian Markov random models (GMRFs)
A GMRF is specified through full conditional based on the Markov property in space where
the conditional distribution of data at a certain location given all of the other data depends only
on the values in the neighborhood. Let Zi denote a random variable observed at the site i. A
GMRF is characterized by the following conditional distribution

where µi is the mean of Zi, and τi is the conditional variance of Zi given {Zj : j ≠ i}. By Brook’s
Lemma and Hammersley-Clifford Theorem (Besag 1974), the joint distribution of a GMRF
Z = (Z1,…,Zn)T is uniquely determined as,

where µ is an n×1 vector of means with elements µi, and M is an n×n diagonal matrix with
elements τi. The matrix B is an n×n neighborhood matrix with elements bij , which satisfy
bii = 0, Σj bij = 1, bijτj = bjiτi and bij = 0, unless i and j are neighbors. The parameter α is known
as the spatial dependency parameter which somehow controls spatial dependence in the
covariance. Specific choices of α lead to the covariance matrix being nonsingular. When α =
0, the model becomes independent, and when α = 1, the covariance matrix becomes singular
and the joint distribution is improper. In particular, the model with α = 1 is called an intrinsic
GMRF, (Besag et al. 1991; Besag and Kooperberg, 1995) which has been extensively used in
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spatial statistics as a prior for random effects in Bayesian hierarchical models (Sun et al. 1999;
Carlin and Banerjee, 2003).

A GMRF introduces spatial associations in the model through the specification of
neighborhoods based on the arrangement of the regions in the map. We impose a neighborhood
structure on a site i, and assign weights to the neighboring values, which are prespecified
according to some criterion. In the case of a regular lattice, some popular neighborhoods
structures are defined as orders depending on the touching borders between grid cells. Some
examples of neighborhoods with different orders are illustrated by Figure 2. For irregular
lattices, two sites can be considered a neighbor if they are within some specified distance of
one another or they share a common boundary. The weights assigned to each neighborhood
are determined in several ways. Common weight functions are binary functions with value 1
if two sites are neighbors and 0 otherwise, and scaled weights which are standardized by the
row sum.

3 Spectral methods to measure discrepancy
Spectral densities and covariance functions are related through Fourier transforms, both of
which are used to explore the second order properties of a spatial process. Although analyzing
the variability of a process via the covariance function and the spectral density can be regarded
as equivalent, they provide different ways of analyzing the process, and spectral analysis might
offer some advantages compared to analysis based on the covariance function. For instance,
since spectral densities of stationary processes evaluated at different frequencies are
approximately independent, the inference made based on the spectral density is usually easier
to derive than using the covariance function. In addition, the spectral density function can
highlight subtle differences in the second order structure more easily than the covariance
function (Stein, 1999). Considering these advantages of the spectral approaches, we introduce
approximation methods using spectral densities. One limitation of this method is that spectral
analysis generally requires gridded data.

3.1 Spectral densities of spatial processes
Consider Z(s) a stationary spatial process at location s, defined on D where D ⊂ R2. The process
Z(s) can be represented in terms of a spectral process X using a Fourier-Stieltjes integral,

where {X(w),w = (w1,w2) ∈ R2} is a process with zero mean and orthogonal increments, i.e.

for disjoint rectangles (w3,w2) and (w1,w0). The process X(·) is called the spectral process
associated to the stationary process Z(·).

Using the spectral process X, we define a monotonically increasing function F(w) as
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where . The function F
(w) represents the contribution to the total variance of the process by frequencies in the range
(0,w). The derivative of F(w) denoted by f(w) (if it exists) is called the spectral density function
of Z.

The covariance function C(h) of a weakly stationary process and the spectral density function
f(w) form a Fourier transform pair,

where {h = ∥s1 − s2∥, s1, s2 ∈ D ⊂ R2} (Brillinger, 1981; Cramer and Leadbetter, 1967;
Yaglom, 1962). If a stochastic process is defined on a lattice Λ, the integral in the expression
of f(w) is replaced by a sum, and the frequency domain is restricted to the open square A =
(−π,π]2,

When the underlying process is continuous, but observed only on a integer lattice Λ with an
interval between neighboring observations δ, we can not distinguish between the frequency

components w and . This phenomenon is known as

the aliasing effect, and the frequencies  are called the aliases of w for any w in

 Due to the aliaing effects, the power in the sampled process from the set of frequencies

 is the accumulation of power in the original process from all the sets of frequencies

. The spectral density of the sampled process is defined as follows,

where w ∈ (−π, π]2 and δ > 0.

While the spectral density of a stationary process is represented by orthognal increments, the
corresponding spectral process of a nonstationary process is no longer orthogonal, but
correlated. The Fourier transform pairs of a process defined on a lattice Λ are,
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where z1, z22 ∈ Λ and w1,w2 ∈ (−π, π]2. The nonstationary spectral density can be represented
as the stationary spectral density for the special case in which the spectral density is zero for
all the elements except for the ones along the diagonal (w1 = w2),

3.2 Approximation methods using spectral densities
We consider a continuous stationary and isotropic Gaussian spatial process on a r × c finite
lattice Λ, with an interval δ between neighboring points, and define a GGM and a GMRF on
this lattice. The GGM represents a weakly stationary and isotropic process, and the
corresponding GMRF would be a nonstationary process due to the finiteness of the lattice and
the edge effect. Since we define a GGM on a discrete lattice Λ, we observe only a sampled
GGM on a lattice Λ. The spectral density of the sampled GGM gl is defined as,

for w ∈ (−π, π]2 and Z={0,±1,±2,… }. Nonstationary processes corresponding to GMRFs
defined on a lattice can not be represented as a function with orthogonal increments but require
correlated increments. The spectral density of a nonstationary process is

where w1,w2 ∈ (π, π]2.

Using spectral densities, we suggest two approximation criteria; the KL discrepancy between
two spectral densities and the chi-squared distance (CSD) between two spectral densities. We
use these criteria to approximate the spectral density of a geostatistical process with the spectral
density of a GMRF or vice versa by minimizing the differences of the spectral densities of two
processes. The KL discrepancy between two spectral densities is defined as,

where f(w) and f˜ (w;θ) are the spectral densities of the true and approximated model,
respectively. Through the numerical minimization of the criterion, we estimate the parameters
of the approximated model,

The CSD between two spectral densities is expressed as,

Song et al. Page 6

J Multivar Anal. Author manuscript; available in PMC 2009 March 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where f(w) and f˜ (w;θ) are the spectral densities of the true and approximated model,
respectively. The best fitting model is obtained using the optimal parameters estimated by
minimizing the CSD between the two spectral densities,

3.3 Comparisons of spectral density approximation methods with covariance function
approximation methods

We compare our approximation approaches using spectral densities in the frequency domain
to the squared relative differences (SRD) between covariance functions in the spatial domain.
The SRD approach in the spatial domain is to minimize the squared relative differences between
the covariance functions of the two models,

where C(s1, s2) and C˜ (s1, s2;θ) are the true and approximated covariances at s1,s2 ∈ R2. We
compare the three approximation methods based on the mean squared prediction error (MSPE).
The MSPE is the average squared difference between the actual and predicted values at
different locations, defined as,

where Z(si) and Z^ (si) are the observed and predicted values at site i, and N is the number of
sites.

Instead of conducting simulations by generating data from a spatial process with known
covariance models to calculate MSPE, we obtain the averaged mean squared prediction error
(AMSPE), which can be expressed as a function of the known covariances of GGMs or GMRFs
to compare various metrics. We consider a spatial process with mean zero and a known
covariance which follows either a GGM or a GMRF. In the approximations of GGMs by
GMRFs, the predicted value at site si given other values ẐGGM(si) is expressed as

where Qij is the (i, j)th element of the precision matrix of the approximated GMRF. Then the
AMSPE of a GGM is represented as
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where C is an N × 1 vector with ci = 1 and  and
ΣGGM is the covariance matrix of a GGM. The expectation in the AMSPE of a GGM is taken
with respect to the true underlying GGM. In the approximation of GMRFs by GGMs, the
predicted value Z^GMRF (si) is expressed as

where σiJ is an 1 × (N − 1) matrix with the j th element,, σiJ(j) = cov(Z(si), Z(sj)), σJJ is a (N
− 1) × (N −1) matrix with the (j, k)th element, σJJ(jk) = cov(Z (sj), Z(sk)) where j, k = 1,… , i
−1, i + 1,… ,N, and Z−i = (Z(s1),…,Z(si−1), Z(si+1),… , Z(sN))′.The AMSPE of a GMRF is

where D is an N × 1 vector with with di = 1,

 for j > i and ΣGMRF is the
covariance matrix of a GMRF. The expectation in the AMSPE of a GMRF is taken with respect
to the true underlying GMRF. We also compare the AMSPE of the approximated model with
the AMSPE of the original model (AOM) to check the performance of the criteria. The AMSPE
of the original GGM is defined as,

and the AMSPE of the original GMRF is,

 are the predicted values of the GGM and the GMRF at si,
respectively.

4 An empirical study
In this Section, an empirical study is conducted to compare the spectral density approximation
methods to the covariance approximation method in the approximations of GGMs and GMRFs.
Let us define a Gaussian Geostatistical process (GGP) and a GMRF on a 30×30 lattice. To
reduce the nonstationarity problem of the GMRF which arises due to the edge effect, we
consider a buffer zone by extending the lattice to a 32×32 grid to cover a larger domain, and
we use only the covariance of the original lattice within the covariance of the extended lattice
for approximations. We consider a Matérn model with various smoothness parameters for the
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GGP and different neighborhood structures that are shown in Figure 2 with scaled weights for
the GMRF.

The empirical study is composed of two steps, estimating parameters using each metric, and
compare them in terms of the AMSPE. In the estimation step, we estimate the parameters of
the approximated models by minimizing the criteria suggested in the previous section: CSDS
(chi-squared differences between spectral densities), KLS (Kullback-Leibler discrepancy
between spectral densities) and SRDC (squared relative differences between covariance
functions). In the approximations of GMRFs by GGMs, we estimate the range (ϕ) and sill
(σ2) parameters of the Matérn model,

where h denotes the Euclidean distance and v is a smoothness parameter. For the
approximations of GGMs by GMRFs, we estimate the spatial dependency (α), scale (τ)
parameters in the GMRF covariance function,

where B is the neighborhood matrix and M(τ) is the diagonal matrix with elements τ. These
parameters are estimated using the nlm function in the R software
(http://www.rproject. org/). We perform various empirical studies to explore the relation
between GGMs and GMRFs. Table 1 shows the estimated parameters of GGMs when
approximating GMRFs with different values for α and the neighborhood III using GGMs. We
obtain different estimated parameters depending on the matching criteria. When we use the
covariance as an approximation criterion, the estimated sill and range vary severely over
different values of α, while the estimated parameters are stable over different values of α is the
case of using spectral density criteria. We compare our methods by the average mean squared
prediction error (AMSPE). Table 2 shows that the AMSPEs obtained using the CSDS and the
KLS criteria are smaller than those obtained using the SRDC, and they are close to the AOM.
This suggest that the CSDS and KLS are good criteria for the approximations of GMRFs by
GGMs.

In Table 3, we present the estimation results for GGMs in the approximation of GMRFs with
α=0.95 and various neighborhood structures using GGMs. For the CSDS and the KLS, the
estimated sill and range parameters tend to decrease as the neighborhood increases. However,
the SRDC gives increasing estimated range parameters along with the increasing
neighborhood. Table 4 shows the prediction results using the estimated parameters. As the
neighborhood increases, the AMSPE decreases, and the SRDC gives the largest AMSPE for
the II and III neighborhoods. Comparing with the AOM, the CSDS and KLS yield closer values
of the AMSPE than the SRDC.

We approximate GMRFs using Matérn models with different smoothness parameters (v) to
study the effect of the smoothness parameter on the approximations of GMRFs by Matérn
models. Table 5 presents the estimated parameters of GGMs in the approximations of GMRFs
with α=0.95 and neighborhood III using Matérn models with various values of v. The
parameters estimated by the SRDC vary over the various values of v while those estimated by
the CSDS and the KLS show a little change by the different values of v. Table 6 displays the
AMSPE results, which show that AMSPEs obtained by the SRDC are larger than the other
methods.

Song et al. Page 9

J Multivar Anal. Author manuscript; available in PMC 2009 March 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.rproject.%20org/


Table 7 shows the parameter estimates of GMRFs corresponding to GGMs with σ2=1 and
various values ofϕ. We consider the three different cases, 1) when ϕ is smaller than the
maximum distance within the neighborhood (MDN), 2) when ϕ is the same to the MDN and
3) when ϕ is larger than the MDN, and assign different values of ϕ for each case. The estimated
α is close to one when ϕ is larger than the MDN. The AMSPE becomes smaller as ϕ increases,
and we obtain values closer to the AOM by using the CSDS and the KLS criteria (Table 8).

To study the effects of σ2 values on the approximations of GGMs by GMRFs, we fit GGMs
with various values of σ2 to GMRFs. Table 9 presents the estimated parameters of GMRFs
which approximate GGMs with ϕ=3 and various values of σ2. As σ2 increases, the estimated
conditional variance increases for all criteria, which suggest a positive relation between the sill
parameter in the GGM and the conditional variance in the GMRF. Table 10 presents the
AMSPE results, showing that the CSDS and the KLS gives closer values of the AMSPE to the
AOM than the SRDC.

We investigate the effects of the Matern smoothness parameter (v) on approximations of
Matern models by GMRFs. In the CSDS and the KLS, α is constant and τ decreases, while in
the SRDC, α decreases and τ increases as v increases (Table 11). Comparing our methods using
the AMSPE, the AMSPE decreases as v increases, and the CSDS and the KLS yield smaller
AMSPEs than the SRDC (Table 12). Comparing our methods using the AOM, AMSPEs
obtained using the CSDS and the KLS are closer to the AOM than those obtained using the
SRDC criterion.

To study the potential impact of the weight function of GMRFs on the approximations of GGMs
by GMRFs, we use a distance-based weight parameterized by γ, and estimate γ in addition to
the α and τ,

where bij is the weight for sites i and j,γ is a scale parameter, and dij is a distance between sites
i and j. We performed this study on 16 by 16 lattices. The estimated parameters are slightly
different from those based on the scaled binary weights in GMRFs. However, we still obtain
smaller AMSPEs using the CSDS and the KLS (Table 14).

We also compare the suggested metrics taking into account the computational time. Table 15
and Table 16 display the computational time in approximations of GGMs by GMRFs, and
approximations of GMRFs by GGMs. The unit of time is seconds, and these results are obtained
using a Pentium PC with a 3.20 GHz CPU, showing that the approximation methods based on
the spectral density faster than those based on covariance functions.

5 Applications
GGMs and GMRFs are two different models commonly used in modeling spatial data, and
they have different characteristics in terms of modeling the spatial structure of an underlying
process. GGMs are usually used for modeling point level data, and explain the spatial relation
based on the distance between two points, while GMRFs have been developed for modeling
areal level data, and the spatial structure is considered in the model based on the conditional
location between two areas which is specified in the neighborhood structure. GMRFs have
some advantages over GGMs in that they are more convenient to use in Bayesian hierarchical
models to capture the spatial structure in the data due to the conditional form of GMRFs, and
the computational benefits. Because of this, point level data are often aggregated to a certain
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areal level, and GMRFs are used to model aggregated point level data. The main objective of
this paper is to investigate the possibility of the interchangeable use of GGMs and GMRFs by
suggesting approximations of GGMs by GMRFs, and approximations of GMRFs by GGMs.
For the approximations, we use the theoretical covariance of each model and approximate the
models based on the different proposed criteria. One widely used criterion to approximate one
covariance model with another model is to minimize the squared differences between the two
covariance models. We suggest some new criteria based on the spectral density and our
simulation study shows that our suggested criteria are more accurate in terms of the AMSPE
and easier to compute than the previously suggested criterion.

Particulate Matter (PM) is the general term used for a complex mixture of solid particles and
liquid droplets suspended in the air, which incudes a broad class of chemically diverse particles
whose range in size is from 0.005 µm to 100 µm in diameter. PM is usually sorted by its size
because size is an important factor that determines the health effects of PM. In particular,
PM2.5, also known as fine PM, which includes the fine particles that are less than or equal to
2.5 µm in diameter, causes a variety of serious health disease such as respiratory and
cardiovascular problems. PM2.5 observations are typical point-referenced data collected at
point monitoring stations. This type of data can be aggregated to a level of interest to associate
spatial variables with different spatial resolutions. For example, in the study of associations
between PM2.5 and adverse health effects, since health outcomes are generally collected over
geographic regions, point-referenced PM2.5 values are commonly aggregated to the level of
the health outcomes to solve the mismatch support problem. (Fuentes et al., 2005). In this
application, we apply the approximation methods described in the previous sections to
approximate the aggregated PM2.5 data at the county level in California by GMRFs. The
aggregated point data at each county are obtained by averaging the predicted values of
PM2.5 at 20 locations within each county based on the PM2.5 observations. Since the underlying
process is a point process, the aggregated PM2.5 process is also based on a point process.
However, we can also consider the aggregated PM2.5 as areal level data and model them using
a GMRF. To approximate the aggregated PM process by a GMRF, we obtain the empirical
covariance of GGMs based on the aggregated PM process and approximate the empirical
covariance of the aggregated PM process by a GMRF using the several criteria we suggested
in the previous section. We also investigate the effects of the neighborhood of GMRFs in the
approximations by considering the first and second order neighborhoods in GMRFs. After
estimating the parameters of the GMRF, the performance of the different methods are evaluated
through the MSPE. Figure 3 display the point and aggregated county level PM2.5 values and
the GMRF with the first order neighborhood estimated by the CSDS with the first order
neighborhood. In the point level map, we see that the Southern California areas are highly
polluted with PM2.5, these patterns are also observed in the county level map and the predictied
map using approximated GGMs. We can also notice that the high magnitude of PM2.5 found
in the Southern California areas is reduced after the aggregation.

Table 17 is the MSPE obtained from approximations of the aggregated PM2.5 county values
using a GMRF. In our example, the MSPE values are the same for the all methods with the
first order neighborhood and the SRDC gives a little larger MSPE than the other methods for
the second order neighborhood. Also we notice that the GMRF with the first order
neighborhood performs better than the GMRF with the second order neighrborhood in that the
first order neighborhood yields smaller MSPE than the second order neighborhood.

6 Conclusions
The major objective of this paper is to study relations between GMRFs and GGMs through
approximations of GMRFs by GGMs, and vice versa. We approximate GMRFs by GGMs and
GGMs by GMRFs using three approximation methods based on spectral density functions and
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covariance functions, which are evaluated in terms of the AMSPE and computation times. The
approach presented here using spectral densities is easy and fast to compute compare to
covariance-based criteria. Our approach reduces considerable the total computation time by
the use of Fast Fourier transform algorithm and also yields smaller AMSPEs than the
covariance criterion. One noticeable result is that there is positive relationships between range
parameter and spatial dependancy parameter, and sill and conditional variance which might be
expected since these parameters control the strength of the correlation of the data and variance
in GMRFs and GGMs. Since we use different criteria in approximations of GGMs and GMRFs,
the parameter estimates are different depending on the criteria used. However, the results in
terms of prediction were not very different, and show some patterns as we change parameters
of GGMs and GMRFs. In the approximations of GMRFs by GGMs, as the neighborhood order
increases, the AMSPE becomes smaller, while the AMSPE decreases as the range increases
and the conditional variance decreases in the approximations of GGMs by GMRFs. In our
application, we approximated county-level averaged PM2.5 using GMRFs. The smallest MSPE
was obtained using the CSDS and the KLS criteria.

Further investigation is being conducted to study the effect of the level of aggregation on the
approximations of averaged process using GMRFs. Also we plan to study the bias that might
occur in estimated parameters when GMRFs are used in modeling aggregated data instead of
averaged continuous spatial process.
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Figure 1.
(a) First order neighbors (b) Second order neighbors (c) Third order neighbors
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Figure 2.
(a) neighborhood I, (b) neighborhood II, (c) neighborhood III
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Figure 3.
a) point level PM2.5 values, b) county level averaged PM2.5 values and c) predicted values
using GMRFs estimated by the CSDS
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Table 2
AMSPE in approximations of GMRFs with the neighborhood III and various values of α by GGMs with v=0.5

AMSPE

method α=0.9 α=0.95 α=0.98

CSDS 0.019 0.019 0.020

KLS 0.019 0.019 0.020

SRDC 0.024 0.023 0.023

AOM 0.018 0.018 0.018
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Table 4
AMSPE in approximations of GMRFs with α=0.95 and various neighborhood structures by GGMs with v=0.5

AMSPE

method I II III

CSDS 0.103 0.043 0.019

KLS 0.109 0.043 0.019

SRDC 0.101 0.046 0.023

AOM 0.08 0.037 0.018
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Table 6
AMSPE in approximations of GMRFs with α=0.95 and neighborhood III using Matérn models with various values of
v

AMSPE

method v=0.1 v=0.5 v=1

CSDS 0.019 0.019 0.019

KLS 0.020 0.019 0.019

SRDC 0.020 0.023 0.023

AOM 0.018 0.018 0.018
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Table 8
AMSPE in approximations of GGMs with σ2=1, v=0.5, and various values of ϕ by GMRFs with neighborhood II

AMSPE

method ϕ=2 ϕ=3 ϕ=5

CSDS 0.70 0.54 0.36

KLS 0.70 0.54 0.36

SRDC 0.76 0.58 0.38

AOM 0.51 0.36 0.21
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Table 10
AMSPE in approximations of GGMs with ϕ=3, v=0.5 and various values of σ2 by GMRFs with the neighborhood II

AMSPE

method σ2=0.5 σ2=1 σ2=2

CSDS 0.27 0.54 1.09

KLS 0.27 0.54 1.09

SRDC 0.29 0.58 1.17

AOM 0.17 0.36 0.71
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Table 12
AMSPE in approximations of GGMs with ϕ=3, σ2=1 and various values of v by GMRFs with the neighborhood II

AMSPE

method v=0.1 v=0.5 v=1

CSDS 0.80 0.49 0.44

KLS 0.80 0.49 0.44

SRDC 0.80 0.52 0.54

AOM 0.77 0.36 0.16
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Table 14
AMSPE in approximations of GGMs with ϕ=3, σ2=1and various values of v by GMRFs with parameterized weights
and the neighborhood II

AMSPE

method v=0.1 v=0.5 v=1

CSDS 0.79 0.38 0.19

KLS 0.77 0.37 0.19

SRDC 0.81 0.37 0.21

AOM 0.77 0.36 0.16
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Table 15
computation times in approximations of GGMs with σ2=1, ϕ=3 and v=0.5 by GMRFs with the neighborhood II

methods computation times

CSDS 26698

KLS 226585

SRDC 347815

J Multivar Anal. Author manuscript; available in PMC 2009 March 30.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Song et al. Page 32

Table 16
computational times in seconds in approximations of GMRFs with α = 0.95 and neighborhood III by GGMs with
v=0.5

methods computation times

CSDS 25238

KLS 31111

SRDC 54991
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Table 17
MSPE in the approximations of aggregated PM2.5 using GMRFs with a first and second order neighborhood structures.

MSPE

method first order neighborhood second order neighborhood

CSDS 0.68 1.12

KLS 0.68 1.12

SRDC 0.68 1.19
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