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Abstract
Ischemia/reperfusion (I/R) is inevitable in many vascular and musculoskeletal traumas, diseases,
free tissue transfers, and during time-consuming reconstructive surgeries in the extremities.
Salvage of a prolonged ischemic extremity or flap still remains a challenge for the microvascular
surgeon. One of the common complications after microsurgery is I/R-induced tissue death or I/R
injury. Twenty years after the discovery, ischemic preconditioning (IPC) has emerged as a
powerful method for attenuating I/R injury in a variety of organs or tissues. However, its
therapeutic expectations still need to be fulfilled. In this article, the author reviews some important
experimental evidences of I/R injury as well as preconditioning-induced protection in the fields
relevant to microsurgery.
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Introduction
Salvage of devascularized or amputated extremities is one of the most important surgical
achievements in the past 40 years. Before the historic accomplishments of Chung Wei Chen
and Ronald Malt in 1962, 1, 2 the amputated parts were merely discarded. Today
microsurgical replantation of amputations is technically feasible at almost any level of the
extremities. Free flap transfer for wound coverage or restoration of function has become a
routine surgical procedure.

However, salvage of a prolonged ischemic extremity or flap still remains a challenge for the
microvascular surgeon. 3 Sometimes, the replanted limb has to be reamputated in an effort
to overcome serious complications such as tissue necrosis. The problem may not necessarily
be due to anastomosis failure but rather, it could be due to ischemia/reperfusion (I/R) injury.

Pathophysiology of Ischemia and Reperfusion
During the prolonged ischemia, the elevated glycolysis causes lactic acid accumulation
associated with intracellular pH reduction. 4 The reduction of ATP concentration caused by
ischemia inhibits Na/K ATPase resulting in the increase of intracellular Na+ and Ca2+. 5 The
depletion of ATP combined with elevated Ca2+ could lead to a gradual decline in the cellular
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integrity. 5 If the duration of ischemia lengthens beyond a critical point of tolerance, the
extensive necrosis will be certain.6

Reperfusion is the definitive treatment to salvage ischemic tissues from necrosis. However,
reperfusion has led to a new pathophysiological condition called “reperfusion injury”, a
phenomenon which actually provokes a distinct degree of tissue injury directly related to the
process of abrupt reperfusion of the ischemic vascular bed. 7 Abrupt reperfusion causes a
burst of reactive oxygen species (ROS) production 8 in the post-ischemic tissues
(particularly in the vascular endothelial cells) resulting in an inflammatory-like response to
occur at the onset of reperfusion, such as, endothelial dysfunction (decreased endothelium-
dependent vasodilation), 9 decreased endogenous nitric oxide generation, 10 increased
superoxide anion generation, 11 and release of proinflammatory cytokines into the
interstitium and vascular space. 12 The main source of ROS in the cell is the mitochondria.
13 Under normal physiological conditions, the mitochondrial inner membrane is
impermeable to maintain the membrane potential and pH gradient that drive ATP synthesis
through oxidative phosphorylation. However, under conditions of high Ca2+ and ROS, a
non-specific pore opens in the inner mitochondrial membrane known as the mitochondrial
permeability transition pore (MPTP). 14 Halestrap et al. 15 reported MPTP is kept firmly
closed under normal physiological conditions and even under the ischemic period, but opens
upon reperfusion. Recent studies 16, 17 suggested that ROS burst during early reperfusion is
the trigger for MPTP opening which leads to immediate depolarization of mitochondrial
membrane potential, further reduction of intracellular ATP concentrations and cell necrosis.
Long-lasting MPTP opening results in matrix swelling, outer mitochondrial membrane
rupture, releasing of pro-apoptotic molecules such as cytochrome c into the cytosolic
compartment, and finally, cell apoptosis via caspase-dependent or - independent
mechanisms.18, 19

I/R-induced Microcirculatory Alterations in Microsurgery
When reperfusion occurs after prolonged ischemia in the replanted extremities, releasing the
clamps on the feeding artery after the anasomosis may not be sufficient to produce adequate
and uniform tissue perfusion because significant impairment to blood flow often occurs at
the level of the microcirculation. 20 This phenomenon has been termed as “arterial
insufficiency” 20 which actually is the clinical manifestation of vascular endothelial
dysfunction (decreased endothelium-dependent vasodilation and endogenous nitric oxide
generation). 21 The clinical appearances of arterial insufficiency or endothelial dysfunction
are sluggish venous flow, slowed capillary refill, decreased temperature, a bluish and
mottled pale color, an empty feeling in the revascularized part, gradual cessation of arterial
blood flow followed by thrombosis formation and anastomosis failure. 22 This phenomenon
has occurred in 58% of the failures in digital replantations reported by Macleod et al. 3 and
in 50% of failures after 4 hours of ischemia in a rat hindlimb experimental model. 22 Even
more disturbing is that many patients were experienced an explorative surgery during the
first postoperative day. 23, 24 The author has focused on this particular issue for more than
15 years. At the beginning, the author’s curiosity concentrated on specific events in the
microcirculation after reperfusion following prolonged warm ischemia. We have conducted
a series of studies 25–31 using a vascular pedicle isolated rat cremaster muscle model (a
microcirculation model) and rat gracilis muscle model (a skeletal muscle model) to
investigate I/R injury in the microcirculation of skeletal muscle. All studies were designed to
simulate the clinic situations, in which free flap and replantations of extremities are
denervated and poor reflow can become a critical issue.

We observed (1995) 25 that a short-lived “good perfusion” associated with vasodilatation in
the microcirculation of cremaster muscle occurred at the onset of reperfusion after 4h of
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warm ischemia. However, this “good perfusion” lasted for only a few seconds to minutes. A
significant vasoconstriction in the feeding arterioles (A1, 120 to 160 µm) associated with
segmental vasospasm in the branching arterioles (A2, 50 to 120 µm) then occurred. Distal to
the segmental vasospasm, the blood flow was sluggish despite systemic blood pressure
being within normal range. It was interesting to observe these heterogenic microcirculatory
responses. Some areas of muscle sustained an extended time of ischemia during the period
of reperfusion, while other areas in the same muscle possessed relatively good perfusion.
For example, in some terminal arterioles (A3 and A4; 7 to 49 µm), blood flow was almost
stopped or in a status of thrombosis, however, other arterioles were still flowing. It was
common to observe many scattered sites of no-reflow capillaries. The average capillary
perfusion in the muscle at 2h after reperfusion was only 55% of the pre-ischemic baseline
value. Thrombosis and capillary no-flow were definitely present during early reperfusion,
but sometimes, were reversible. As reperfusion time continued, some of the thrombosed
arterioles or no-flow capillaries gradually recovered to reestablish flow. However, on the
other hand, these microcirculatory alterations could last for many hours or could be ended
with completely no flow in the entire muscle at any time point during reperfusion. The
pathological changes in the capillaries of rat cremaster muscles after I/R have been
examined by electron microscopy by Fu-Chan Wei group. Lee et al. (1995) 32 reported that
there was endothelial distortion with large vesicles, pseudopod formation and large
intraluminal endothelial protrusions after I/R. Capillary lumen diameter was reduced
approximately twofold, which is sufficient enough to compromise blood flow because of the
resulting 16-fold increase in resistance to flow. We are convinced that the microcirculation
is the primary target of I/R injury. 10, 33 The microvasculature, particularly the endothelial
cells lining microscopic blood vessels, are especially vulnerable to the deleterious
consequences of reperfusion.34, 35, 36

Reperfusion-induced Endothelial Dysfunction
The endothelium is a confluent monolayer of thin, flattened cells lining the intimal surface
of all blood vessels. The concept that vascular endothelium is a mere barrier between
intravascular and vascular smooth muscle and/or interstitial compartments has been
completely revised during the last two decades to acknowledge the fact that the endothelium
executes important regulatory functions, such as, the regulation of hemodynamics, vascular
remodelling, immunoregulation, metabolic, synthetic, anti- and pro-thrombogenic processes.
10, 12 Intact endothelial cells secrete a variety of compounds that reach the bloodstram and/
or diffuse to nearby vascular smooth muscle cells to affect blood flow. 33 For example,
endothelial cells synthesize nitric oxide (NO) through the conversion of L-arginine to
citrulline by the action of nitric oxide synthetase (NOS). 37 NO diffuses from endothelial
cells to underlying smooth muscle cells in the vascular wall and stimulates soluble guanylate
cyclase to increase cyclic GMP and cause relaxation of the vascular smooth muscle cell.
Due to its abluminal release, the primary function of NO is vasodilatation.37

The questions were whether the vasoconstriction we observed during reperfusion in the
microcirculation of cremaster muscle is due to the lack of NO or endothelial dysfunction and
whether the supplement of exogenous NO during reperfusion can prevent vasoconstriction.
To answer these questions, a vascular isolated cremaster muscle in male Sprague-Dawley
rats was coupled with local intra-arterial drug infusion as a model to study microvascular
responses to IR injury. We reported (1997) 27 that local intra-arterial infusion of
acetylcholine chloride (Ach) completely reversed the vasoconstriction caused by topically
applied norepinephrine (NP) in non-ischemic cremaster muscle, but was unable to relax the
vasoconstriction caused by the reperfusion. Most strikingly, we found that local infusion of a
low concentration of sodium nitroprusside (SNP; a donor of NO, an endothelium-
independent vasodilator), but not Ach (an endothelium-dependent vasodilator) during
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reperfusion prevented reperfusion-induced microcirculatory alterations (including
vasoconstriction, thrombosis and capillary no-reflow) and thus improved microvascular
blood flow. Our results indicated that I/R-induced endothelial dysfunction is responsible to
the microcirculatory alterations we observed during reperfusion. The supplementation of
exogenous NO during the early period of reperfusion was definitely helpful for preventing
microcirculatory failure at the early stage of reperfusion. However, some concerns can not
be ignored since the exogenous NO could be combined with superoxide anions to form the
peroxynitrite (a potentially toxic molecule) during reperfusion.38

Therefore, it is important to clarify the levels or the concentration of NO as well as the
activity of NOSs in the skeletal muscle after ischemia and reperfusion. Electrochemical
detection of NO by using porphyrinic sensors was conducted by Hallstrom et al. (2002) 39
who reported that NO was rapidly increased after ischemia and dropped below basal levels
at the end of ischemia and then to undetectable levels during the reperfusion. NO was also
measured indirectly by using electron paramagnetic resonance (EPR). Lepore et al (1999) 40
found that significant levels of muscle nitroso-heme complexes were detected at 24 hr after
reperfusion, but not detected at 0.05, 3, and 8 hr after reperfusion. Nitrites and nitrates are
stable metabolites of NO that have been measured by using Greiss assay. Blebea et al.
(1996) 41 reported that NO2/ NO3 concentrations were decreased significantly after
ischemia and further decreased after 1 hr of reperfusion in a rabbit extremity I/R model.
Moreover, eNOS and iNOS expression were examined using immunohistochemical staining
in the post-ischemic muscle. Messina et al. (2000) 42 reported that eNOS, which was
localized to the endothelium of blood vessels, decreased progressively during ischemia and
reperfusion to reach undetectable levels after 16 hr of reperfusion. iNOS was not detectable
in the control muscle or during ischemia, however it was first detected after 2 hr of
reperfusion, increased further by 8 hr, and remained elevated at 24 hr.

In addition, It should be emphasized that IR-induced endothelial dysfunction could result
from the subtle interplay between superoxide and NO levels. Our study (2006) 43 has shown
that superoxide generation in the arterial wall (arterial pedicle of cremaster muscle) peaked
at first 5 min of reperfusion and declined to near baseline after 60min of reperfusion.
Melatonin (an endogenous ROS scavenger) significantly reduced superoxide generation in
arterial walls and improved microvascular endothelial dysfunction and increased cell
viability in the cremaster muscles. In the conditions of homeostasis, NO is produced at a
level far in excess of the superoxide anion, which allows NO to scavenge ROS, regulate
vascular tone, prevent platelet aggregation and thrombus formation. However, within
minutes of reperfusion, superoxide is produced at a level far beyond the level of NO, which
could cause superoxide to quench NO and compromise the endothelium-dependent
vasodilatation.10, 36

Current literature have clearly demonstrated that the production of NO is dramatically
reduced and associated with increased superoxide generation at the early period of
reperfusion following a prolonged ischemia in skeletal muscle.39–42 The supplementation
of exogenous NO or ROS scavenger during the early period of reperfusion could be one of
the best intervention approaches to interfere with or modulate the pathophysiological
processes that are set in motion during reperfusion. Surprisingly, the microcirculatory
protection provided by exogenous NO was very similar to the microcirculatory protection
induced by ischemic preconditioning in another study 26 conducted in our lab at that time.

Ischemic Preconditioning
Ischemic preconditioning (IPC) is the phenomenon whereby brief episode(s) of ischemia
and reperfusion trigger a protective and adaptive mechanism that protects tissues against
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injury from a subsequent sustained ischemia and reperfusion. 44 IPC was first described by
Murry et al. (1986) 44 who demonstrated that preconditioning of dog myocardium with four,
5 min periods of coronary occlusion interspersed with 5 min periods of reperfusion,
significantly reduced the infarct size when the myocardium was subsequently subjected to a
40 min ischemia and 4 days of reperfusion. Following this novel observation, the number of
IPC studies on the myocardium has escalated dramatically.45, 46, 47

In addition to protecting heart muscle, IPC also protects other organs 48, 49 and tissues
including skeletal muscle. 50, 51, 52 For example, Mounsey et al (1992) 50 reported that
preconditioning a pig island latissimus dorsi muscle flap with three cycles of a 10 min
ischemia and a 10 min reperfusion significantly reduced necrosis of these muscles when
subsequently subjected to 4 hr of warm global ischemia and 48 hr of reperfusion. By direct
microcirculatory observation in vivo in the rat cremaster muscle, we demonstrated (1996) 26
that vasoconstriction, thrombosis, and capillary no-reflow does not take place in the
cremaster muscle if 4 hr of warm ischemia is preceded by IPC. Moreover, IPC-induced
protection in skin and myocutaneous flaps has also been documented. 53–62 For example,
Zahir et al. (1998) 53 found that the survival areas were two to five times larger in the
preconditioned flaps than that of non-preconditioned flaps after ischemia reperfusion in free
skin and myocutaneous flaps of rat models. By using a random-pattern myocutaneous rat,
Harder et al. 55 found that heat preconditioning induced arteriolar dilation, which was
associated with a significant improvement of both arteriolar blood flow and capillary
perfusion in the distal part of the flap. Moreover, inhibition of HSP-32 by tin-
protoporphyrin-IX completely blunted the preconditioning-induced improvement of
microcirculation and resulted in manifestation of necrosis.

Two phases of IPC protection (early and late phases) have been introduced. 63, 64 Most of
studies in the literature have focused on the early phase of protection that can be observed
immediately after IPC. However, the early phase of protection (only last 2 hr) disappears
rapidly 63, 64 because it is developed by rapid posttranslational modification of preexisting
proteins through series of signaling cascades. 65 And then, there is a gradual appearance of
another phase of protection which is established around 12 to 24 hr after the initial IPC
stimuli and lasts for 2 or 3 days. 63 The late phase of protection is mediated by gene
expression and by the synthesis of new protective proteins (such as heat-shock proteins,
antioxidant enzymes, eNOS, iNOS, etc).65, 66, 67

We prefer the late-phase protection because it provides a prolonged period of protection
(first 3 days after surgery) when the most microsurgical problems usually arise. The
prolonged period of protection, as occurs during the late phase after IPC, could increase the
success rate of surgery and decrease the morbidity and mortality associated with I/R injury.
Several studies (1999, 2000, 2001, 2002, 2004) 29–31, 68–70 have been conducted in our
lab (supported by NIH RO1 research grant) to examine the mechanism of late-phase
protection of IPC in vivo. Our results can be summarized as follows: 1) IPC, which was
performed at 24 hr prior to 4 hr warm ischemia, largely prevented I/R-induced
microcirculatory alterations, 29 2) Microcirculatory protection induced by IPC is even more
effective in the late phase than in the early phase, 29 3) In the absence of IPC, local intra-
arterial infusion of adenosine or SNP created a similar microvascular protection to that
induced by IPC alone. However, on the other hand, intra-arterial infusion of an adenosine
receptor antagonist (8-sulfophenyl-theophylline) or a NOS antagonist (Nω-nitro-L-arginine)
eliminated IPC-induced microvascular protection. 30 4) Intra-arterial infusion of adenosine
combined with NOS antagonist (Nωnitro-L-arginine) diminished the microvascular
protection that was induced by adenosine alone. On the other hand, administration of SNP
combined with adenosine receptor antagonist (8-sulfophenyl-theophylline) did not diminish
the microvascular protection that was induced by SNP alone. 31 5) IPC on day 1
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significantly enhanced both eNOS and iNOS gene and protein expressions detected on day
2. 70 6) IPC or adenosine-induced late-phase microvascular protection can be blocked by
protein kinase c inhibitor (chelerythrine) and mimicked by protein kinase C activator (4-
phorbol 12-myristate 13-acetate). 68 Based on the results from our studies, we interpreted
that the molecular basis for late preconditioning might consist of an ordered series of events.
A brief period of ischemia/reperfusion or IPC rapidly generates vasoactive mediators (such
as adenosine and then NO) these may serve as initiators. These initiators then activate a
complex signal transduction cascade which may involve protein kinase C and others lead to
the activation of transcription factors, cause upregulation of genes, and initiate synthesis of
effector proteins (such as eNOS, iNOS, or others). These effector proteins then confer
cytoprotection during the second prolonged ischemic stress.

The concept of late preconditioning has relevance to the clinical situation. It could
potentially be beneficial in any situation where ischemia can be controlled by the surgeon.
For example, free flap transfer for wound coverage or restoration of function has become a
routine surgical procedure, IPC or pharmacological preconditioning given at 12 to 24 hr
prior to reconstructive microsurgery may help to increase the success rate of free tissue
transfer and decrease the complications associated with I/R injury. However, for the salvage
of devascularized or amputated extremities where a prolonged ischemia has already
occurred or the window of opportunity for preconditioning already closed. In that situation,
a maneuver named as the intermittent reperfusion 28 or postconditioning can be applied.71

Intermittent Reperfusion versus Postconditioning
Abrupt reperfusion causes a burst of ROS production in the post-ischemic tissues
(particularly in the vascular endothelial cells) resulted in an inflammatory-like response to
occur at the onset of reperfusion. 72, 73 This reperfusion-induced pathophysiological
condition is called reperfusion injury. If ischemia needs preconditioning, the question was
whether reperfusion also needs preconditioning. Therefore, we tested our hypothesis (1998)
28 that a maneuver (we named as intermittent reperfusion which consisted of three 5-min
alternate episodes of unocclusion/reocclusion) applied on the vascular pedicle of cremaster
muscle at the end of 4 hr of ischemia may produce a similar microcirculatory protection
induced by IPC. Four groups were examined: (1) untreated, (2) IPC, (3) intermittent
reperfusion, and, (4) IPC plus intermittent reperfusion. Our result showed (1998) 28 that
both IPC and intermittent reperfusion are useful techniques for attenuating I/R-induced
microcirculatory alterations. IPC seems more powerful than intermittent reperfusion.
However, intermittent reperfusion was still very effective (P < 0.05) on attenuating
reperfusion-induced vasoconstriction (endothelial dysfunction), particularly in the terminal
arterioles. Presumably, intermittent reperfusion might modulate the burst of ROS production
and oxygen delivery or spread the production of ROS over a longer period of time to allow
the clearance by the tissue’s own free radical scavenging mechanisms.

Five years after our publication, Zhao et al. applied a similar idea and method of intermittent
reperfusion to the heart I/R model, but named this maneuver as ischemic postconditioning.
Zhao et al (2003) 71 reported that a maneuver (which consisted of three 30-sec alternate
episodes of unocclusion/reocclusion) applied on the left anterior descending (LAD) at the
end of 60 min of sustained LAD occlusion significantly reduced myocardial infarction in the
canine heart. Since then, postconditioning has been documented (with more than 180 papers
searched by the PubMed at June, 2008) as an effective protective strategy in different
disciplines and animal models. 74–76 For example, McAllister et al (2008) 74 reported that
postconditioning was effective in the salvage of ischemic skeletal muscle from reperfusion
injury and the mechanism involves the inhibition of MPTP opening. Moreover,
Loukogeorgakis et al. (2006) 75 demonstrated that postconditioning can protect against
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endothelial IR injury in the human forearm by modifying the reperfusion phase of I/R. Moon
et al. (2008) 76 found that postconditioning attenuated I/R-induced inflammatory cell
infiltration and MPO activity in rat adipocutaneous flap.

In my opinion, postconditioning is not a logic term for this maneuver. If the maneuver
conduced prior to the sustained ischemia is called ischemic preconditioning, then the same
maneuver conduced prior to reperfusion should be called reperfusion preconditioning. This
is because the target of preconditioning is the phase of reperfusion or the upcoming event
rather than the phase of ischemia or the past event. A more objective term to describe the
nature of this maneuver should be named intermittent reperfusion because the real biological
effect of this maneuver, so far, is still uncertain and needs to be explored further.

Remote Ischemic Preconditioning
Since the discovery of IPC, the concept of IPC has been expanded to demonstrate that a
brief period of ischemia in an organ or tissue not only elicits a local preconditioning effect,
but also provides remote protection to other virgin tissues or organs at a distance from later
sustained ischemia. 77–83 This phenomenon is called remote ischemic preconditioning
(RIPC) which was first demonstrated by Przyklenk et al. (1993) 77 who found that brief
episodes of intermittent circumflex artery occlusion protects virgin myocardium, perfused
by the left anterior descending coronary artery, from a subsequent sustained ischemic
insults. Since then, the phenomenon of RIPC has been documented (with more than 138
papers searched by the PubMed at June, 2008) in different disciplines, protocols, and
animals. For example, Addison et al. (2003) 78 found that three cycles of 10-min occlusion
and reperfusion in a hindlimb by tourniquet application in the pig reduced the infarction of
latissimus dorsi muscle, gracilis muscle, and rectus abdominis muscle flaps by 55%, 60%,
and 55%, respectively, compared with their corresponding control when they were
subsequently subjected to 4 hr of ischemia and 48 hr of reperfusion. However, the
mechanism of RIPC is virtually unknown. Some investigators have hypothesized that RIPC
may act through a neuronal mechanism, 79 but others have suggested a humoral mechanism.
80

For examining IPC-induced microvascular protection at a distance and the possible
mechanism, we conducted a RIPC study (2004) 81 in an innervated vs. denervated rat
cremaster muscle models. RIPC was applied on rat left femoral vessels for a 45 min
ischemia followed by 2 hr of reperfusion. After 2 hr of reperfusion in the left lower
extremity, 4 hr of ischemia followed by 1 hr of reperfusion was applied in the right
cremaster muscle. Microcirculatory responses in right cremaster muscle including terminal
arteriole diameter, capillary perfusion, and endothelium function were evaluated. We found
that RIPC in the left lower extremity induced a significant microvascular protection in right
cremaster muscle against subsequent 4 hr ischemia in both innervated and denervated
models, which suggested remote protection is not attributable to the neuronal mechanism.
Most strikingly, we found this microvascular protection at a distance was lost not only in
sham RIPC group, but also in a fake RIPC group, in which 4 hr of ischemia of right
cremaster muscle was instituted before the reperfusion of left femoral artery was begun.
This suggested that some activated circulating substance(s) might be released from the left
lower extremity during reperfusion after RIPC could contribute to the remote protection in
the right cremaster muscle. We interpreted that remote protection induced by IPC is a
systemic phenomenon and may act through a humoral mechanism. Recently, Chen et al.
(2005) 82 found that brief episodes of ischemia in rat femoral artery significantly reduced
myocardial infarction induced by a sustained ischemia. This remote protection was
abolished by a free radical scavenger (mercaptopropionyl-glycine) and associated with
elevation of heat shock protein and antioxidant enzymes.
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The Limitations of Ischemic Preconditioning
Most of the investigations on IPC have been undertaken in the animal model in which
ischemia is imposed in the absence of other disease processes. However, it is unclear
whether IPC can provide a protection against I/R injury in the animals associated with
vascular diseases. For example, diabetes mellitus is often associated with vascular disease in
peripheral vessels and endothelial dysfunction in the microvasculature. 84–88 If a prolonged
ischemia and reperfusion put into effect on the unhealthy vasculature like in diabetic patient,
it could result in a disastrous consequence.89

Some investigators have examined the effect of early preconditioning in diabetic animal
models. 90–93 The results from these reports are conflicting. For example, Bouchard JF and
Lamontagne D 90 found IPC affords protection to endothelial function in resistance
coronary arteries of diabetic hearts. Tatsumi et al. 91 reported that diabetic myocardium
benefits more from preconditioning than normal myocardium. However, others studies 92,
93 indicate that early preconditioning did not provide protection in the heart of diabetic
animal.

Since early preconditioning only provides a short period (2 hr) of protection that could be
the reason that early preconditioning fails to provide enough protection in diabetic animal.
Therefore, we carried out another experiment (2002) 69 to examine the late phase protection
in a microcirculatory model of streptozotocin (STZ)-induced diabetic rats. Our results can be
summarized as follows: 1) Four hours warm ischemia followed by reperfusion creates a
significant endothelial dysfunction in the cremaster muscle of STZ-induced acute diabetic
rats. 2) IPC provides a significant microvascular protection 24 hr later against sustained
warm ischemia in the cremaster muscle of normal rats. 3) However, IPC-induced late phase
of microvascular protection was completely abolished in the cremaster muscle of STZ-
induced acute diabetic rats. Our result suggested that IPC is unable to provide significant
microvascular protection in diabetic rats. More recently, more and more studies have
reported the negative effect of IPC on the diabetic animals.94–96

Another important question on IPC is whether IPC can provide protection in humans.
Currently, the clinical trials of IPC in the fields of cardiac, hepatic, and pulmonary surgery
have been successfully carried out and demonstrated the existence of IPC-induced protection
in humans though more studies with greater numbers of patient are needed. 97–99 However,
so far, there is no report to show the result of clinical trials of IPC in human skeletal muscle,
periphery vessels and skin in plastic, reconstructive, orthopedic, vascular, and
transplantation surgeries. IPC-induced favorable effects are less evident in diabetic and
elderly patients. 100, 101 The effect of postconditioning as well as RIPC on clinical
outcomes remains to be determined.

Conclusions
Twenty years after the discovery of ischemic preconditioning, there is little doubt that the
phenomenon of preconditioning has been recognized as one of the most potent mechanisms
to reduce I/R-induced cell necrosis and apoptosis, though its therapeutic expectations still
need to be fulfilled. Recently, the research interest in the field of ischemic biology has
focused on the mitochondria and the phase of reperfusion protection. As our acquired
experience and the increased knowledge of the underlying mechanisms of preconditioning,
we expect that the pharmacological preconditioning, by the using of pharmacologic agents
that produced by the signal-transduction pathway activated by the preconditioning, should
be a more effective interventional strategy to against I/R injury.
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