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The related lipo(depsi)peptide antibiotics daptomycin and friulimicin B show great potential in the treat-
ment of multiply resistant gram-positive pathogens. Applying genome-wide in-depth expression profiling, we
compared the respective stress responses of Bacillus subtilis. Both antibiotics target envelope integrity, based
on the strong induction of extracytoplasmic function � factor-dependent gene expression. The cell envelope
stress-sensing two-component system LiaRS is exclusively and strongly induced by daptomycin, indicative of
different mechanisms of action in the two compounds.

Staphylococcus aureus is a leading cause of nosocomial in-
fections, especially in mechanically ventilated patients. Its re-
markable potential to acquire and accumulate high-level resis-
tance against most of the classical antibiotics (including
vancomycin) used for the treatment of gram-positive infections
is one of the reasons for the ongoing mortality caused by
hospital-acquired S. aureus infections (7, 17).

Daptomycin is the first of a new class of cyclic lipodepsipep-
tide antibiotics (Fig. 1A) with strong bactericidal activities
against gram-positive pathogens (2). It interferes with cell en-
velope integrity, and cell death occurs presumably by either
membrane depolarization or membrane perforation (19, 20).
Friulimicin B, an acidic, cyclic lipopeptide produced by Acti-
noplanes friuliensis, shows structural similarities to daptomycin
(Fig. 1B) and is also active against multidrug-resistant gram-
positive bacteria (1, 22).

As part of a coordinated effort to study and characterize its
mode of action, we have performed comparative in-depth ex-
pression profiling for both antibiotics. This technique is a pow-
erful approach to elucidate the inhibitory mechanisms of novel
antimicrobial compounds (4, 9) and has been successfully ap-
plied to characterize and differentiate antimicrobial actions,
often using Bacillus subtilis as a model organism (3, 10). B.
subtilis is particularly well suited for studying cell wall antibi-

otics, since the regulatory network orchestrating its cell enve-
lope stress response (CESR) is well characterized. It consists of
four two-component systems and at least four extracytoplasmic
function (ECF) � factors (11).

Here, we present results from an in-depth analysis of the
expression signature provoked by the treatment of B. subtilis
with sublethal amounts of daptomycin and friulimicin B. Our
data show that both antibiotics specifically target cell envelope
integrity. But significant differences in the corresponding
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FIG. 1. Chemical structures of the lipodepsipeptide antibiotic dap-
tomycin (A) and the lipopeptide antibiotic friulimicin B (B).
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CESRs, as clearly documented by transcriptomics, proteomics,
and detailed gene expression profiling, strongly suggest differ-
ent modes of action of the two structurally related antibiotics.

(This study was presented in part at the 47th International
Conference on Antimicrobial Agents and Chemotherapy, Chi-
cago, IL, 17 to 20 September 2007 [25]).

Transcriptomics and proteomics. For microarray experi-
ments, midlogarithmic cultures of B. subtilis were challenged
with 1 �g/ml (sublethal amounts) of either daptomycin or
friulimicin B. The cells were harvested 10 min postinduction,
and cell pellets were directly snap-frozen in liquid nitrogen.
RNA preparation and microarray experiments were per-
formed essentially as described previously (13, 23). To validate
the gene expression profiles, we also performed two-dimen-
sional gel electrophoresis of the cytoplasmic proteome of B.
subtilis cells, quantifying de novo protein synthesis after the
addition of daptomycin or friulimicin B by incubating the cul-
tures in the presence of L-[35S]methionine, as described previ-
ously (3). The results are summarized in Table 1 and Fig. 2.
The complete microarray data sets can be found in the sup-

plemental material and, together with additional supporting
information, at http://microbial-stress.iab.kit.edu/87.php.

Both antibiotics induced a limited number of genes, most of
which could be assigned to known CESR regulons. Daptomy-
cin specifically and strongly activated the LiaRS two-compo-
nent system, with more than 200-fold induction of its primary
target genes, liaIH. This induction has also been observed
recently in an independent study (9a) and is in good agreement
with data from the orthologous VraSR system of S. aureus
which was also induced by daptomycin (16). Moreover, a
strong LiaH induction was also observed with proteomics anal-
ysis, where it was identified in three strong neighboring spots
(differing in their isoelectric points), indicative of posttransla-
tional modifications (Fig. 2).

Both compounds induced numerous genes known to be reg-
ulated by ECF � factors. This ECF-dependent response was
much stronger for friulimicin B (Table 1). In addition, only
seven genes/proteins of unknown regulation were differentially
expressed (Table 1 and Fig. 2), including the actin homolog
mreBH, which was induced about three- to fourfold by both

TABLE 1. Marker genes induced by daptomycin and/or friulimicin B

Gene(s)a
Induction by:b

Regulator(s)c Localization
(putative)d Homology, function, remarkse

DAP FRI

ywaC 4.5 � 4.3 8.7 � 3.8 �V, �M, �W C Putative GTP-pyrophosphokinase
mreBH 3.9 � 1.9 3.1 � 1.2 C Control of cell shape; membrane-associated
ydaH 3.3 � 0.3 9.1 � 2.4 �M M Conserved membrane protein
yqjL 3.3 � 0.3 8.9 � 1.6 �V, �M C Putative hydrolase
bcrC 3.3 � 1.0 8.2 � 2.8 �V, �M, �W, �X M Undecaprenyl pyrophosphate phosphatase
yrhH 3.1 � 1.3 8.5 � 3.4 �V, �M, �W C Putative methyltransferase
liaIH(GFSR) 429 � 53 � LiaRS M, S Conserved membrane protein; phage-shock protein A

homolog (three-component regulatory system)
gerAAABAC 15 � 2.9 � (LiaRS) M, S Downstream lia operon, known polar effect from PliaI
ybeF 4.6 � 0.9 � M Conserved membrane protein
sigM-yhdLK � 7.4 � 4.0 �M C, M ECF � factor
yjbC-spx � 7.2 � 1.7 �V, �M, �W C Glutaredoxin family; transcriptional regulator Spx
sms-yacKL � 7.1 � 0.5 �M C, C, M DNA repair/binding proteins; membrane protein
radC � 6.9 � 2.1 �M C DNA repair protein
ypuA � 6.5 � 2.3 �M S Conserved hypothetical
ypbG � 6.4 � 1.0 �M S Putative phosphoesterase
ypuD � 6.2 � 0.7 �M S Unknown
ycgRQ � 5.9 � 0.6 �V, �M M Conserved membrane protein; permease
yrhIJ � 5.7 � 0.8 �M C, Cytochrome P450; transcriptional repressor BscR
sigV-yrhM � 5.1 � 2.0 �V C, M ECF � factor
yfnI � 4.7 � 2.0 �M M (S)f Similar to phosphoglycerol transferases
yebC � 4.1 � 0.6 �M M Unknown
yppC � 4.1 � 0.4 C Conserved hypothetical
ywnJ � 4.1 � 0.1 �M, �X M Unknown
ywtF � 3.9 � 0.6 �M C (S)f Putative transcriptional regulator
pbpI � 3.8 � 1.3 M Class B penicillin-binding protein
rodA � 3.8 � 0.9 �M M Control of cell shape and elongation
ylxW � 3.5 � 0.3 �M M Unknown
yoxD � 3.7 � 0.2 C Putative 3-oxoacyl-acyl-carrier protein
yqiG � 3.4 � 0.4 C Putative NADH-dependent flavin oxidoreductase
yjbQ � 3.4 � 0.2 M Putative Na�/H� antiporter

a Only genes that were induced �threefold in three independent experiments by daptomycin and/or friulimicin B are shown. The proteins corresponding to the
underlined genes were also significantly upregulated in the cytoplasmic proteome (Fig. 2).

b Average induction ratio of the highest value for each locus (usually the first gene in an operon) and the corresponding standard deviation are given. DAP,
daptomycin; FRI, friulimicin B; �, no significant induction.

c Assignment of regulators is based on the corresponding regulon papers: LiaRS (12), �M (8), �V (24), �W (6), and �X (5).
d Localization of the corresponding proteins is based on the presence of transmembrane regions (membrane proteins) and signal peptides (secreted proteins)

detected with SMART. C, cytoplasmic proteins; M, membrane proteins; S, secreted proteins.
e Putative function is derived from BSORF/Subtilist entries (at http://bacillus.genome.ad.jp/ and http://genolist.pasteur.fr/SubtiList/genome.cgi, respectively), NCBI

blast (http://blast.ncbi.nlm.nih.gov/Blast.cgi), or SMART (http://smart.embl-heidelberg.de/) analysis.
f YfnI and YwtF are assigned to secreted proteins based on experimental evidence (21).
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FIG. 2. Synthesis patterns of marker proteins after induction with
daptomycin (DAP) or friulimicin B (FRI) compared to patterns of
untreated control cells. Details from the two-dimensional gels of the
cytoplasmic proteome (“spot albums” of marker proteins) are shown
for two time points postinduction with each of two compounds.
(A) Proteins induced by both antibiotics. (B) Daptomycin-specific
spots. (C) Friulimicin B-specific spots. See text for details.
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compounds. Five more genes without known regulator, some
of which are potentially involved in cell envelope biogenesis,
specifically responded to friulimicin B (Table 1). All genes
identified in our analysis have been linked to CESR of B.
subtilis previously (data not shown). While no expression sig-
nature available so far resembles that of friulimicin B, both the
transcriptome and the proteome profile for daptomycin closely
resemble those of bacitracin (3, 14).

In-depth gene expression profiling. The results of our mi-
croarray study led to three follow-up analyses on the specificity
of the corresponding CESR. (i) We analyzed the induction of
all seven ECF � factors by quantitative real-time reverse trans-
criptase PCR (RT-PCR), based on the known and highly ECF-
specific autoregulation of their own genes, to determine the
respective inducer spectrum and strength. The primers used
for amplification are listed in Table 2. Both antibiotics activate
�M and �V, with friulimicin B provoking a significantly stron-
ger response. In addition, friulimicin B also induced the un-
characterized ECF � factor �YlaC (Table 3).

(ii) The much stronger activation of ECF target genes by
friulimicin B was not due to the corresponding lack of liaIH
induction, as demonstrated by the induction values of ECF
genes in the liaIH mutant strain TMB0389, which were iden-
tical to those in the wild type (data not shown). The stronger
ECF response to friulimicin B is therefore LiaIH independent
and a true antibiotic-specific difference in the corresponding
gene induction profiles.

(iii) We also quantified the activity of the LiaR target pro-
moter PliaI as a function of the daptomycin/friulimicin B con-
centrations over a range of 4 orders of magnitude by perform-
ing a �-galactosidase assay (using strain BFS2470 as described
previously) (15). PliaI induction was indeed only observed in
the presence of daptomycin and in a very narrow window of
antibiotic concentrations (between 0.5 and 2 �g/ml) (data not
shown). These results strongly suggest different modes of ac-
tion for daptomycin and friulimicin B.

Conclusions. Our data clearly allowed the identification of
cell envelope integrity as the site of daptomycin and friulimicin
B action, but the results strongly suggest mechanistic differ-
ences between the two compounds. This assumption is primar-
ily based on the dramatic differences in the LiaRS response.
Moreover, friulimicin B activates both �M and �V more
strongly than daptomycin and, additionally, induces �YlaC ex-
pression (summarized in Fig. 3). The strong similarities of
CESR between daptomycin and bacitracin were initially
viewed as an indication that daptomycin might interfere with
the lipid II cycle of cell wall biosynthesis. But a detailed bio-
chemical mechanism of action study revealed that friulimicin
B, like amphomycin but in contrast to the membrane-interfering
daptomycin, inhibits cell wall biosynthesis by binding bactopre-
nol phosphate (18).
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