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Abstract

Computational studies provide support for the involvement of intermolecular π–interactions in the
chiral recognition of secondary benzylic alcohols by the enantioselective acyl transfer catalyst CF3-
PIP.

Nonenzymatic enantioselective acyl transfer catalysis has been an active area of research for
over a decade.1 Many of the catalysts developed to date have demonstrated varying degrees
of enantioselectivity in kinetic resolution2 of secondary alcohols. Secondary benzylic alcohols
have enjoyed particular popularity as substrates in this reaction.3,4a–c However, the origin of
enantioselectivity in this process has not been elucidated. In this Communication, we present
the results of our computational studies, which support the involvement of π–interactions in
the chiral recognition of this class of substrates.5

In 2004, we introduced a new class of enantioselective acyl transfer catalysts. Among the first-
generation catalysts, CF3-PIP 1 proved to be particularly effective in kinetic resolution of
secondary benzylic alcohols (2). Structure-selectivity trends observed in this initial study led
us to hypothesize that the chiral recognition depends on π–π and cation-π interactions between
the pyridinium ring of the N-acylated catalyst and the benzene ring of the substrate, as shown
in the proposed transition state model 4 (Scheme 1).4a Later, this hypothesis proved to be
valuable as a guide in the development of subsequent generations of related catalysts.4b,c,f
Their application to benzylic,4a–c,f allylic4b and propargylic4d alcohols, 4-aryl-
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oxazolidinones4e and 2-aryl-cycloalkanols4f produced results that were also consistent with
the π–stacking mechanism.

Recently, we were able to obtain an X-ray structure of the N-acetylated CF3-PIP in the form
of hexafluoroantimonate 5a, which was in accord with the expected conformation. However,
the involvement of π–interactions in the transition state is inherently difficult to verify by direct
experimental observation. Therefore, we initiated a computational study aimed at elucidating
the origin of the enantioselectivity. To the best of our knowledge, the role of intermolecular
π–interactions in chiral recognition has not been previously investigated by computational
methods. 6, 7

The energy-minimized geometry of N-acetyl-(R)-CF3-PIP+ (5, X omitted) obtained at the
B3LYP/6-31G* level of theory8,9 was consistent with the X-ray structure of 5a, the acyl
carbonyl being nearly coplanar with the pyridine ring. Transition state geometries for reactions
of 5b and the R- and S-enantiomers of 1-phenylethanol (2, R1 = Me) were investigated next.
The acetate anion hydrogen-bound to the hydroxyl group of the substrate was included in the
calculations, as suggested by the recent computational studies on achiral acyl transfer catalysis.
10 Each enantiomer of 1-phenylethanol was attached to the unencumbered β–face of 5b and
all accessible conformations were explored.

(R)-1-phenylethanol, which is the fast-reacting enantiomer in kinetic resolutions with (R)-1,
preferred the slipped-stacked geometry, with the phenyl of the substrate centered
approximately over the pyridinium N. In conformer 7a, representing the global energy
minimum, the distance between the center of the phenyl ring and the pyridinium N is 3.74 A,
and the planes of the pyridinium and the benzene rings are at an 8.5° dihedral angle.11 The
lowest-energy splayed conformer 7b was 7.6 kcal/mol less stable than 7a. For the
diastereomeric transition states with the slow-reacting (S)-1-phenylethanol, the situation was
reversed. The stacked conformer 8a was less energetically favorable than the splayed
conformer 8b, presumably due to the A1,3-strain introduced by the methyl group virtually
coplanar with the benzene ring in the former.

Finally, we confirmed that the approach of either the R- or the S-enantiomer of the substrate
to the α-face of the N-acylated catalyst encumbered by the phenyl substituent at C2, is
disfavored relative to the aforementioned β–face conformers 7a and 8b (by 6.6 kcal/mol and
10.1 kcal/mol, respectively).

The energy difference between the lowest-energy conformers for the R- and S-enantiomers of
the substrate (7a and 8b) is 1.9 kcal/mol. This value was adjusted to 1.6 kcal/mol by introducing
solvent correction (CHCl3, CPCM model (UFF radii)), which is in excellent agreement with
the experimental data (selectivity factor s = 12 obtained in chloroform at room temperature
corresponds to ΔGrel = 1.5 kcal/mol) (Table 1, column 1, entries 1 and 5). Encouraged by these
findings, we examined the transition states of the R- and S-enantiomers of 1-phenylethanol
with N-propionyl-(R)-CF3-PIP propionate 6 (R2=Et), operating in kinetic resolutions with
propionic anhydride (Figure 2). The computed increase in the free energy difference between
the energy minimized diastereomeric transition states 9a and 10b (ΔGrel = 3.5 kcal/mol in gas
phase, or 2.8 kcal/mol in chloroform) is qualitatively consistent with the experimentally
observed enhanced enantioselectivity (s = 26, ΔGrel = 1.9 kcal/mol) (column 2, entries 1 and
5). Apparently, it reflects the greater steric repulsion between the ethyl group of the acyl
substituent and the phenyl of the substrate in the splayed conformer 10b.

Since B3LYP may underestimate the dispersion interactions that would stabilize 7a, 8a, and
9a,10 we also calculated these energy differences with methods that are expected to treat such
interactions more accurately.12 Single point calculations by MP2,13a SCS-MP2,13b and
M05-2X13c performed on the real system using B3LYP-optimized geometries overestimated
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the energy differences by 1~3 kcal/mol compared to the experiment and the B3LYP results
(Table 1).

In summary, our computational study lends theoretical support to the π–interaction hypothesis
of chiral recognition in the KR of secondary benzylic alcohols catalyzed by CF3-PIP and
provides a more accurate and detailed description of the transition state. The enantioselectivity
depends upon two factors: steric repulsion between the methyl and the ortho-hydrogen
(7a≪7b; 8b≪8a)), and the electrostatic attraction between the phenyl and pyridinium in the
slipped-parallel geometry (7a<8a). The results of this investigation are expected to be
applicable to our more advanced catalysts and may also shed light on the mechanism of chiral
recognition achieved by enantioselective acylation catalysts developed by other groups.
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Figure 1.
Transition states for reactions of (R)- and (S)-phenylethanol with 5b.
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Figure 2.
Transition states for reactions of (R)- and (S)-phenylethanol with 6
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Scheme 1.
CF3-PIP-catalyzed kinetic resolution
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Table 1
Comparison of calculation methods

Entry method ΔGrel(8b - 7a)b kcal/mol ΔGrel (10b - 9a)b kcal/mol

1 B3LYP/6-31G* 1.9 (1.6) 3.5 (2.8)

2 MP2/6-31G*// 4.5 (5.3) 6.0 (6.3)

B3LYP/6-31G*

SCS-MP2/6-

3 31G*// 3.7 (4.5) 5.4 (5.7)

B3LYP/6-31G*

4 M05-2X/6-31G*// 2.9 (2.7) 4.9 (4.2)

B3LYP/6-31G*

5 Experimental dataa 1.5 1.9

a
Conditions: 0.25 M 1-phenylethanol, 0.19 M (MeCO)2O or (EtCO)2O, 0.19 M i-Pr2Net, CDCl3, 23 °C.

b
Data given in paretheses have been computed using CPCM solvent model (UFF radii, CHCl3).
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