
Clostridium difficile is an important cause of disease in
Canada; it is responsible for both large outbreaks and

endemic disease (1-3). Because of the significance of this
pathogen and the apparent change in epidemiology noted in
various countries (4,5), the need for microbiological surveil-
lance is becoming clear. Recently, large studies of isolates from
across Canada (6) and Ontario (7) were performed, and they
described the types of C difficile that predominate in different
regions. Studies, such as the present one, are important for the
evaluation of the molecular epidemiology of C difficile infec-
tion (CDI) and to provide important microbiological data for
comparison with epidemiological data. They also provide base-
line information so that future changes in clinical aspects of
CDI can be related to changes in predominant strains. The
emergence and dissemination of a purportedly hypervirulent
strain, designated ribotype 027 or North American pulsotype 1
(NAP1), has been associated with outbreaks and severe disease
in various regions (2,8,9); however, little information about
the disease is available in the Maritime provinces, including

Prince Edward Island (PEI). The objective of the present study
was to characterize C difficile isolates obtained from people hos-
pitalized with CDI in PEI. 

METHODS
Stool samples were submitted from 126 consecutive individuals
diagnosed with CDI at Queen Elizabeth Hospital,
Charlottetown, PEI, between October 31, 2005, and January 8,
2007, through a positive ELISA for C difficile toxins A and/or B
(C difficile Tox A/B II, TechLab Inc, USA). Samples were
stored aerobically at 4°C before processing. Enrichment culture
was performed using an adaptation of the protocol described by
Arroyo et al (10), with a seven-day enrichment in C difficile
moxalactam norfloxacin with 0.1% sodium taurocholate broth
before inoculation onto C difficile moxalactam norfloxacin agar.
Plates were incubated for 48 h to 120 h at 37°C in an anaerobic
chamber. Colonies with the characteristic morphology, odour
and Gram stain appearance were subcultured onto Columbia
blood agar and confirmed as C difficile by colony and Gram
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Clostridium difficile is an important cause of disease in Canada; however,
little information is available about the disease in the Maritime
provinces. The objective of the present study was to characterize C dif-

ficile isolates obtained from people hospitalized with C difficile infection
in Prince Edward Island. One hundred twenty-six C difficile ELISA
toxin-positive stool samples were obtained and cultured using an
enrichment protocol. C difficile was isolated from 105 of 126 (83%)
samples. Twenty-two different ribotypes were identified. The most com-
mon ribotype, ribotype W, was a North American pulsotype 2 (NAP2),
toxinotype 0 strain, which represented 18% of isolates. The next most
common ribotype was a NAP1, toxinotype III strain, which accounted
for 11% of isolates. Ribotype 027/NAP1 only accounted for five (4.7%)
isolates. Forty-five per cent of isolates possessed genes encoding produc-
tion of binary toxin. Three different ribotypes, all NAP1, toxinotype III
strains, had a frameshift mutation in the tcdC gene (Δ117), while
one isolate (ribotype 078, NAP4, toxinotype V) had a truncating muta-
tion (C184T) in the tcdC gene.
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L’exploration génotypique du Clostridium

difficile à l’Île-du-Prince-Édouard

Le Clostridium difficile est une cause importante de maladie au Canada.
Cependant, on possède peu d’information sur la maladie dans les provinces
maritimes. La présente étude visait à caractériser des isolats de C difficile

prélevés sur des personnes hospitalisées en raison d’une infection à
C difficile à l’Île-du-Prince-Édouard. Les auteurs ont obtenu
126 échantillons de selle positifs à la toxine ELISA mis en culture au
moyen d’un protocole d’enrichissement. Ils ont isolé le C difficile dans
105 des 126 (83 %) des échantillons et repéré 22 ribotypes différents. Le
ribotype le plus courant, le ribotype W, était un pulsotype 2 nord-
américain (NAP2), de souche toxinotype 0, qui représentait 18 % des
isolats. Le deuxième ribotype le plus courant, le NAP1, de souche
toxinotype III, représentait 11 % des isolats. Le ribotype 027/NAP1 ne
représentait que cinq (4,7 %) isolats. Quarante-cinq pour cent des isolats
comportaient des gènes codant la production de toxine binaire. Trois
ribotypes différents, tous NAP1 de toxinotype III, présentaient une
mutation du cadre de lecture du gène tcdC (Δ117), tandis qu’un isolat
(ribotype 078, NAP4, toxinotype V) présentait une mutation tronquée
(C184T) du gène tcdC.
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stain morphology and production of l-proline-aminopeptidase
(Pro Disc, Remel, USA).

Ribotyping was performed according to the methods
described by Bidet et al (11). In situations in which the ribo-
type was known to be a recognized international ribotype from
the Public Health Laboratory Service – Anaerobe Reference
Unit (University Hospital of Wales, Cardiff, United Kingdom)
by previous typing of reference strains, the appropriate numer-
ical designation (ie, 027) was used. Otherwise, a letter that
corresponded to an internal nomenclature for types not vali-
dated with the Public Health Laboratory Service reference
strains was used. Detection of genes encoding toxin A (tcdA)
and toxin B (tcdB) was performed by polymerase chain reac-
tion (PCR) as previously described (12,13). CDT (cdtB) detec-
tion was performed using real-time PCR based on the
conventional PCR method of Stubbs et al (14). The presence
of a deletion in the tcdC gene was investigated on a represen-
tative isolate from each PCR ribotype by PCR amplification of
the tcdC gene following the methods outlined by Spigaglia and
Mastrantonio (15). The PCR product was purified and
sequenced. A representative isolate from each PCR ribotype
was also typed by toxinotyping (16). Ribotypes accounting for
three or more isolates were also typed using pulsed-field gel
electrophoresis (PFGE) (17) and classified as a NAP type or, in
situations in which the PFGE pattern was not consistent with
any of the NAP groups, the individual PFGE pattern number
was reported. 

RESULTS
C difficile was isolated from 105 of 126 (83%) samples. Twenty-
two different ribotypes were identified. Details regarding
strains represented by two or more isolates are presented in
Table 1. Overall, toxinotype 0 strains were most common,
accounting for 13 ribotypes and 54 (51%) isolates. Three dis-
tinct ribotypes were classified as NAP2. Toxinotype III strains
accounted for four ribotypes and a total of 30 (30%) isolates.
Ribotype 027/NAP1 accounted for five of these isolates, for an
overall prevalence of 4.7%. The most common toxinotype III

strain was a NAP1 strain classified as ribotype N. One toxino-
type III strain was not associated with any of the NAP types;
however, it had the same toxin gene profile as NAP1 and pos-
sessed the same tcdC gene alteration. 

Overall, the toxin profile A+B+CDT– was the most common
accounting for 52% of isolates, while toxin profiles A+B+CDT+
and A–B+CDT– accounted for 45% and 3%, respectively.
Five different ribotypes, accounting for 33 (31%) isolates,
possessed a deletion in the tcdC. Four types, all toxinotype III,
had an 18 base pair deletion plus a single nucleotide deletion at
position 117 that introduced a frameshift mutation (Δ117). A
different tcdC alteration was present in one strain – a toxinotype
V strain with a 39 base pair tcdC gene deletion known interna-
tionally as ribotype 078 and with a PFGE fingerprint that corre-
sponded to NAP8. It contained a nonsense mutation at position
184 (C184T) of the tcdC gene. These mutations were not iden-
tified in isolates with an intact tcdC gene. 

DISCUSSION
This is the first genotypic evaluation of C difficile in PEI. The
predominance of ribotype W/NAP2 was not surprising because
this ribotype is also the most common strain in Ontario (7);
NAP2 was the most common clone in the Canadian
Nosocomial Infection Surveillance Program (6). While the
predominance of W/NAP2 was consistent with other
Canadian studies, there were also significant differences in the
strain distribution. Ribotype 027 only accounted for 4.7% of
isolates, compared with 19.4% in Ontario (7). However, two
other ribotypes were classified as NAP1, for a total prevalence
of 18%, which is similar to the prevalence of NAP1 isolates in
the Canadian Nosocomial Infection Surveillance Program
study (27%) (6) and in Ontario (31%) (7). The most common
NAP1 ribotype, ribotype N, only accounted for 6.6% of
isolates in Ontario, but was the second most common strain in
the present study. NAP1/ribotype 027 strains may be of
particular concern because of reports of severe disease and
outbreaks attributed to this strain (18,19); although some con-
flicting data are present (20). The mechanism of hypervirulence
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TABLE 1
Characteristics of the most common Clostridium difficile isolates (n=99) recovered from people with C difficile infection in
Prince Edward Island (n=105)

Ribotype Toxin A Toxin B CDT tcdC deletion tcdC mutation PFGE Toxinotype Isolates (n) Isolates (%)

W + + – – – NAP2 0 19 18.0

N + + + 18 bp Δ117 NAP1 III 12 11.4

C + + + – – 0012 IX 12 11.4

AN + + – – – NAP2 0 12 11.4

Y + + + 18 bp Δ117 0098 III 11 10.5

027 + + + 18 bp Δ117 NAP1 III 5 4.7

L + + – – – 0042 0 5 4.7

017 – + – – – 0117 VIII 3 2.9

AK + + – – – NAP6 0 3 2.9

078 + + + 39 bp C184T NAP8 V 3 2.9

AA + + – – – NAP2 0 3 2.9

M + + – – – NAP2 0 3 2.9

A + + + – – 0012 IX 2 1.9

AD + + + 18 bp Δ117 NAP1 III 2 1.9

AI + + – – – ND 0 2 1.9

0 + + – – – ND 0 2 1.9

bp Base pair; NAP North American pulsotype; ND Not determined; PFGE Pulsed-field gel electrophoresis
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associated with these strains was originally thought to be a
deletion in the tcdC gene, a negative regulator of toxin A and
B production, because strains possessing this deletion produced
much higher levels of toxins in vitro (19). However, it has
been subsequently demonstrated that strains with this deletion
can produce a functional tcdC protein (21), and an upstream
deletion (Δ117) in tcdC is more likely the cause of increased
toxin production by NAP1/ribotype 027 because it encodes a
stop codon (22,23). All NAP1 ribotypes possessed this tcdC
mutation. 

Ribotype 078/NAP8, a toxinotype V strain possessed a
39 base pair tcdC deletion and had a different tcdC mutation.
This mutation, C184T, is a nonsense mutation that should
result in severe truncation of the tcdC protein (23). The
effect of this mutation on toxin production has not been
clearly demonstrated, but toxinotype V strains have been
reported to produce more toxins in vitro than toxinotype 0
strains, but less than toxinotype III strains (24). While
uncommon, toxinotype V strains may be of concern because
recent reports (24,25) have described an increase in CDI
caused by the most common toxinotype strain – ribotype 078.
Ongoing monitoring of the role of this strain in disease is
indicated. The high prevalence of the toxinotype IX strain,
ribotype C, was unexpected because this toxinotype is
uncommon (26); toxinotype IX strains accounted for less
than 1% of strains in Ontario (7). While it possessed a
normal tcdC gene, this strain contained genes encoding pro-
duction of binary toxin, which may be an important viru-
lence factor (27). Overall, the prevalence of strains
possessing binary toxin genes (45%) was higher than has his-
torically been reported (28,29), but is consistent with recent
reports describing dramatic increases in the prevalence of
these strains internationally (6,7,30). The toxin A–B+ ribo-
type 017 was present, but uncommon, as is typically reported.

Despite its inability to produce toxin A, this strain is
clinically relevant and has been associated with outbreaks of
CDI (31).

Consensus has not been achieved regarding optimal typing
methodologies or combinations of methodologies. While PFGE
is regarded as more discriminatory than ribotyping (32,33), this
may not be the case when PFGE results are interpreted in the
context of epidemic clones (NAP types). Multiple different
ribotypes were identified within individual NAP clones, indi-
cating that, as applied, ribotyping is more discriminatory.
However, when individual PFGE patterns are evaluated in
addition to NAP type designation, the discriminatory power of
PFGE increases. PFGE has some clear advantages over ribotyp-
ing, including standardized methods and interpretation, and
excellent interlaboratory reproducibility. However, because
ribotyping is much easier and more amenable to rapid typing of
large numbers of isolates, it is widely used. Toxinotyping is a less
discriminatory technique that is useful as a secondary test and
for broader comparison of isolates. It is not useful at the hospi-
tal level because of poor discriminatory power, but does provide
useful information in larger epidemiological studies.
Combinations of methods may be ideal for broad epidemiologi-
cal studies and for evaluation of new strains. 

The present study has provided the first evaluation of C dif-
ficile isolates in PEI, and has demonstrated both similarities
and differences in the isolate types found in PEI versus other
areas of Canada. Studies, such as the present one, provide
important baseline information for future clinical and microbi-
ological surveillance, which may be an important factor for
elucidation of the pathogenesis and evaluation of infection
prevention and control measures for this important pathogen. 
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