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 Epidemiology 

 Pancreatic cancer is a disease with a dismal outlook. 
In the United States approximately 33,000 patients are 
diagnosed with pancreatic cancer annually, and nearly an 
equal number will die from the disease, representing
the fourth most common cause of cancer-related mortal-
ity. Men and women have an approximately equal risk
 [1]  .  Worldwide, pancreatic cancer causes an estimated 
213,000 deaths each year  [2]  .  For all stages combined, the 
1-year survival rate is around 20%, and the overall 5-year 
survival rate is less than 5%, despite even the most aggres-
sive therapies currently available  [1]  . 

  A number of risk factors have been identified  [3] . Pan-
creatic cancer is predominantly a disease of the elderly. 
Pancreatic cancer is rare before the age of 40, and the 
median age at diagnosis is 73 years. Cigarette smoking is 
by far the leading preventable cause of pancreatic cancer 
 [4] . Cigarette smoking doubles the risk of pancreatic can-
cer (relative risk = 2)  [3] . Other risk factors include diets 
high in meats and fat, low serum folate levels, obesity, 
long-standing diabetes mellitus, and chronic pancreati-
tis  [3, 5–7] . Approximately 10% of patients demonstrate 
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 Abstract 

 Pancreatic cancer is an almost universally lethal disease. Re-
search over the last two decades has shown that pancreatic 
cancer is fundamentally a genetic disease, caused by inher-
ited germline and acquired somatic mutations in cancer-as-
sociated genes. Multiple alterations in genes that are impor-
tant in pancreatic cancer progression have been identified, 
including tumor suppressor genes, oncogenes, and genome 
maintenance genes. Furthermore, the identification of non-
invasive precursor lesions of pancreatic adenocarcinoma 
has led to the formulation of a multi-step progression mod-
el of pancreatic cancer and the subsequent identification of 
early and late genetic alterations culminating in invasive 
cancer. In addition, an increased understanding of the mo-
lecular basis of the disease has facilitated the identification 
of new drug targets enabling rational drug design. The elu-
cidation of genetic alterations in combination with the de-
velopment of high-throughput sensitive techniques should 
lead to the discovery of effective biomarkers for early detec-
tion of this malignancy. This review focuses mainly on the 
current knowledge about the molecular insights of the 
pathogenesis of pancreatic ductal adenocarcinoma. 
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a familial predisposition for pancreatic cancer, and a 
subset of these patients harbor germline mutations in 
 BRCA2, p16/CDKN2A, PRSS1, STK11/LKB1 , or the DNA 
mismatch repair genes (see further discussion below). In 
the vast majority of patients with familial risk, however, 
the underlying genetic predisposition remains un-
known. 

  Complete surgical resection remains the only curative 
treatment. Studies from high-volume centers with opti-
mal staging report up to a 15–20% 5-year survival rate in 
patients undergoing surgical resection  [8, 9] . The mortal-
ity rate is so high because pancreatic cancer usually only 
produces symptoms when it has already metastasized, 
and because there are no sensitive and specific tools to 
detect the disease at an earlier stage. Although multiple 
histological subtypes of pancreatic cancer have been de-
scribed, the most common and deadliest form is pancre-
atic ductal adenocarcinoma  [10] . Novel approaches to the 
management of patients with this aggressive disease are 
urgently needed.

  Research over the last two decades has shown that 
pancreatic cancer is fundamentally a genetic disease, 
caused by inherited germline and acquired somatic mu-
tations in cancer-associated genes. A compendium of al-
terations in tumor suppressor genes, oncogenes, and ge-
nome-maintenance genes that are important in pancre-
atic cancer progression have now been identified  (fig. 1) . 
This review focuses mainly on the molecular insights on 
pancreatic ductal adenocarcinoma and its precursor le-
sions, including insights gained through experimental 
models of pancreatic carcinogenesis.

  Precursor Lesions of Pancreatic Cancer 

 Prior to a discussion on molecular genetics of pancre-
atic cancer, we will briefly discuss the current state of 
knowledge on precursor lesions of the pancreas. This is 
essential from the context of separating ‘early’ genetic 
changes (i.e. those associated with tumor initiation) from 
‘late’ abnormalities (i.e. those associated with tumor pro-
gression). A recent review in  Pancreatology  has extensive-
ly discussed the histology and genetics of pancreatic can-
cer precursors  [11] ; therefore, we will only discuss these 
in fleeting detail. Briefly, pancreatic intraepithelial neo-
plasias (PanINs) are classified into a four tier classifica-
tion, including PanIN-1A, -1B, -2, -3, reflecting a pro-
gressive increase in histologic grade culminating in inva-
sive neoplasia (fig. 2). The lowest grade PanIN lesions can 
be flat (1A) or papillary (1B), but are characterized by ab-

sence of nuclear atypia and retained nuclear polarity. 
PanIN-2 lesions have micropapillary features with evi-
dence of nuclear atypia and infrequent mitoses, while 
PanIN-3 lesions (a.k.a. carcinoma in situ) demonstrate 
widespread loss of polarity, nuclear atypia, and frequent 
mitoses. In addition to microscopic PanIN lesions, there 
are now recognized macroscopic (cystic) precursor le-
sions of pancreatic adenocarcinoma – including intra-
ductal papillary mucinous neoplasms (IPMNs) and mu-
cinous cystic neoplasms. Akin to PanINs, the cystic pre-
cursor lesions also demonstrate a multistep histological 
and genetic progression to invasive neoplasia. Since 
IPMNs and mucinous cystic neoplasms can be detected 
by radiologic scans, they represent an opportunity to di-
agnose invasive pancreatic cancer before it can develop 
 [11] .

  Tumor Suppressor Genes 

 Tumor suppressor genes are genes that promote tu-
mor growth when inactivated. Tumor suppressor genes 
are recessive, i.e. the two copies need to be mutated for 
loss of function, and they can be inactivated by a variety 
of mechanisms. First, by an intragenic mutation in one 
allele (copy of a gene) coupled with loss of the second al-
lele; second, through a deletion of both alleles (homozy-
gous deletion), and third, by hypermethylation of the 
promoter of the gene-silencing gene expression. In spo-
radic cancers these alterations are both somatic muta-
tions acquired during life, while patients with inherited 
forms of cancer inherit one mutant allele in the germline 
while the second allele is somatically mutated in the can-
cer cells.

  The  p16INK4A/CDKN2A  gene, located on the short 
arm of chromosome 9 (9p), is one of the most frequently 
inactivated tumor suppressor genes in pancreatic cancer 
 [12]   (table 1) . Remarkably, virtually all pancreatic carci-
nomas have loss of  p16INK4A/CDKN2A  function, in 
40% of pancreatic cancer through homozygous deletion, 
in 40% by an intragenic mutation coupled with loss of 
the second allele, and in 15% by hypermethylation of the  
p16INK4A/CDKN2A  gene promoter  [12, 13] . The protein 
p16 belongs to the cyclin-dependent kinase (CDK) in-
hibitor family and functions to prevent the phosphoryla-
tion of Rb-1 by CDKs, and cyclin D-Cdk4 and cyclin
D-Cdk6 complexes, which act as cell-cycle regulators 
 [14, 15] . Loss of  p16INK4A/CDKN2A  results in inappro-
priate phosphorylation of Rb-1, thereby facilitating pro-
gression of the cell cycle through the G1/S transition  [16] . 
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Thus, the p16/Rb pathway is inactivated in virtually all 
pancreatic cancers, leading to an inappropriate progres-
sion through the G1 phase of the cell cycle. Of note, in a 
small group of patients, inherited mutations of the 
 p16INK4A/CDKN2A  gene cause the familial atypical 
multiple mole melanoma (FAMM) syndrome, which is 
associated with an increased risk of developing melano-
ma and an increased risk of developing pancreatic cancer 
 [17, 18] . Particularly, the  p16  Leiden deletion, a 19-bp de-
letion, is associated with an increased pancreatic cancer 
risk  [19] .

  In addition, the homozygous deletions, which inacti-
vate  p16 , can encompass adjacent genes, including the 
 MTAP, IFNA1  and  IFNB1  genes  [20, 21] . The  MTAP  gene 
is located approximately 100 kilobases telomeric to the 
 p16INK4A/CDKN2A  gene on chromosome 9p21, and is 
frequently contained in the  p16INK4A/CDKN2A  homo-
zygous deletions. As a result,  MTAP  function is com-
pletely lost in approximately 30% of pancreatic adenocar-
cinomas. This is a potentially promising finding, because 
it may have therapeutic implications  [22] . The product of 
the  MTAP  gene, the enzyme methylthioadenosine phos-
phorylase plays an important role in the synthesis of ad-
enosine  [23] . Chemotherapeutic agents, such as  L -alano-
sine, a purine biosynthesis inhibitor, have been devel-
oped, to specifically target the selective loss of  MTAP  
function in cancers, implicating that it might be effective 
against one third of the adenocarcinomas of the pancreas 
 [22, 23] .

  Mutation of th e p53 g ene on chromosome 17p is the 
most common somatic alteration in human cancer. The 
 p53  protein plays a central role in modulating cellular re-
sponses to cytotoxic stress by contributing to both cell-
cycle arrest and programmed cell death. Loss of  p53  func-
tion during carcinogenesis can lead to inappropriate cell 
growth, increased cell survival, and genetic instability 
 [24] . In pancreatic cancer, the  p53  tumor suppressor gene 
is inactivated in 50–75% of the cases and occurs predom-
inantly through single allelic loss coupled with an intra-
genic mutation of the second allele  [25] . The loss of  p53  
means that two critical controls of cell number (cell divi-
sion and cell death) are deregulated in the majority of 
pancreatic cancers. Of interest,  14–3-3  � , a  p53 -regulated 
gene, plays a role in signal transduction, apoptosis, stress 
response and cytoskeletal organization  [26] .  14–3-3  �    is 
transcribed in response to DNA damage and in a number 
of cancers it is an important mediator of  p53 -induced G2 
arrest  [27] .

  In addition, p53-induced growth arrest is also 
achieved by transactivation of  p21 . p53 binding to DNA 

stimulates production of the protein  p21 , which nega-
tively regulates the complex consisting of cyclin D and 
the cell division-stimulating protein cyclin-dependent-
kinase-2  [28] ,  there by preventing the cell from progress-
ing from G1-S phase. This mechanism allows time for 
repair to damaged DNA. If  p53  mutated, it is not able to 
bind DNA, so  p21  is not made available and abnormal 
growth can occur. Cell lines which lack wild-type  p53  
show a reduced or complete absence of  p21   [29] . Loss of 
 p21  activity has been observed in approximately 30–60% 
of pancreatic tumor specimens  [30–32] . Pancreatic cell 
lines and pancreatic tumors show a correlation between 
active  p53  and  p21   [33] .

  As stated,  p53  loss is a ‘double threat’, because it results 
in both loss of cell cycle checkpoints, as well as deregula-
tion of programmed cell death (i.e. apoptosis). It is now 
known that p53-induced apoptosis is mediated by activa-
tion of genes involved in the apoptotic pathway, for ex-
ample genes such as  PUMA  ( p53 -upregulated modulator 
of apoptosis) and  Noxa .  PUMA  and  Noxa  are activated in 
a  p53 -dependent manner following DNA damage. Once 
activated, they bind to Bcl-2, localize to the mitochondria 
to induce cytochrome c release, and activate the induc-
tion of programmed cell death  [34–36] .

  Finally, the micro-RNA miR-34a deserves mention 
(miRNAs in general are discussed later): miR-34a is a 
direct transcriptional target of  p53 . MiR-34a activation 
can recapitulate elements of  p53  activity, including in-
duction of cell-cycle arrest and promotion of apoptosis, 
and loss of miR-34a can impair  p53 -mediated cell death 
 [37, 38] . Chang et al.  [39]  showed that reduced expression 
of miR-34a is a very frequent feature of pancreatic can-
cer cells.

   DPC4 (Smad4)  is a tumor suppressor gene on chromo-
some 18q and is one of the most commonly inactivated 
genes in pancreatic ductal adenocarcinoma, detected in 
approximately 55% of the cases. Inactivation occurs ei-
ther through homozygous deletion, in approximately 
30%, or loss of one allele coupled with an intragenic mu-
tation in the second allele in approximately 25%  [40–42] . 
The transcription factor SMAD4 is an important regula-
tor of the transforming growth factor- �  (TGF- � ) signal-
ing pathway  [43] . Upon receptor activation, SMAD pro-
teins become phosphorylated and heterodimerize with 
Smad4 to transmit upstream signals to the nucleus and 
transactivate transcription of specific target genes  [44] . 
Loss of  SMAD4/DPC4  interferes with the intracellular 
signaling cascades downstream from TGF- �  and activin, 
resulting in decreased growth inhibition via loss of pro-
apoptotic signaling or inappropriate G1/S transition  [43, 
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45] . The  SMAD4  gene is remarkable for two reasons. 
First, inactivation of the  DPC4  gene is relatively specific 
to pancreatic cancer, although it occurs with low inci-
dence in other cancers, such as colon, breast, and ovarian 
or biliary tract carcinomas  [46, 47] . Secondly, immuno-
histochemical labeling for Smad4 protein expression 
mirrors  DPC4/SMAD4  gene status in pancreatic cancers 
with rare exceptions  [42] . Inactivation of  DPC4/SMAD4  
is uncommon in nonductal neoplasms of the pancreas 
 [10] , and is rare in most extrapancreatic malignancies  [10, 
46] . Therefore, immunolabeling for loss of Smad4 is a 
convenient ancillary diagnostic marker in clinical speci-
mens, including suspected metastases from an occult 
pancreatic primary. 

  Many other tumor suppressor genes that are targeted 
at low frequency in pancreatic cancer ( ! 10%) deserve 
mentioning. Mutations in the  LKB1/STK11  gene are the 
cause of the autosomal-dominant inherited Peutz-Je-
ghers syndrome. Patients with Peutz-Jeghers syndrome 
have an increased risk of pancreatic cancer and it is con-
ceivable that  LKB1  acts as tumor suppressor gene in pan-
creatic cancer as well  [48, 49] . Intragenic mutations and 
homozygous deletions of the  MKK4  gene occur in a small 
percentage of pancreatic cancers  [50] . The  MKK4  gene 
encodes for a component of a stress-activated protein ki-
nase cascade and has a function in apoptosis and growth 
control. Furthermore,  MKK4  is preferentially inactivated 
in subsets of pancreatic cancer metastases, suggesting 
that the protein product may function as a metastasis 
suppressor  [51] . Other less frequently affected tumor sup-
pressor genes include the  TGF-  �  /activin  signaling path-
way receptors such as the TGF- �  type I receptor ( TGF-
  �  R1; ALK5;  chromosome 9q),  TGF  �  R2  (chromosome 
3p),  ACVR1  �  ( ALK4;  chromosome 12q)  [52]  and  ACVR2 
 (chromosome 2q)  [53, 54] . The TGF�R1 ALK5 forms a 
heterodimer with the TGF- �  type II receptor (TGF � R2) 
to mediate signaling of  TGF-  �  ligands. A downstream 
component of this pathway includes  DPC4 (SMAD4). 
 Signaling initiated   after binding of  TGF-  � -related ligands 
to their cognate receptors leads to heteromerization and 
nuclear translocation of the Smad proteins and the tran-
scriptional activation of target genes  [55, 56] . TGF- �  is a 
pleiotropic factor that regulates cell proliferation, angio-
genesis, metastasis, and immune suppression. The in-
volvement of the TGF- �    pathway has been established in 
cancers of many organs including the breast, lung, colon 
and pancreas. TGF- �    signaling is frequently attenuated 
in pancreatic cancer because of alterations in the compo-
nents of the pathway  [57, 58] .

  Oncogenes 

 Oncogenes are genes that contribute to oncogenesis 
when mutationally activated. In contrast to tumor sup-
pressor genes they act in a dominant fashion, i.e. muta-
tion of one copy of the gene suffices for activation. Onco-
genes can be activated through a variety of mechanisms, 
including point mutations within the gene and amplifica-
tion of the gene itself. A growing number of oncogenes 
have been identified that are targeted in pancreatic can-
cer.

  The most common activating point mutation involves 
the  KRAS2  oncogene, on chromosome  12p , in over 90% 
of pancreatic ductal adenocarcinomas  [59, 60]   (table 1) . 
This is the highest fraction of K-ras alteration found in 
any human tumor type. Frequent mutation sites involve 
codons 12, 13 and 61, but in pancreatic ductal cancers the 
majority occur in codon 12. The  KRAS  gene product me-
diates signals from growth factor receptors and other sig-
nal inputs. Mutation of  KRAS  results in a constitutive 
gain of function, because the RAS protein remains 
trapped in the activated state even in the absence of 
growth factor signals, which leads to proliferation, sup-
pressed apoptosis and cell survival. 

  The RAS family proteins encode small GTP-binding 
cytoplasmic proteins  [44] . The constitutively active RAS 
intrinsically binds to GTP and confers uncontrolled 
stimulatory signals to downstream cascades including 
Ras effectors. Activated  KRAS  engages multiple effector 
pathways, notably the RAF-mitogen-activated protein 
kinase, phosphoinositide-3-kinase (PI3K) and RalGDS 
pathways. 

  Mutant  KRAS  has been extensively investigated as a 
marker of pancreatic cancer because mutations are basi-
cally entirely limited to one codon, can be readily detect-
ed using molecular assays and are present in approxi-
mately 90% of pancreatic ductal adenocarcinomas. Un-
fortunately,  KRAS  mutations are not specific for invasive 
pancreatic cancer and they occur in patients with chron-
ic pancreatitis, in individuals who smoke, and in situ neo-
plasias from patients without pancreatic cancer  [61, 62] .

  The  BRAF  gene on chromosome 7q is a member of the 
RAS-RAF-MEK-ERK-MAP kinase pathway, and is mu-
tated in one-third of the pancreatic cancers with wild-
type (normal)  KRAS   [63] .  BRAF,  a serine/threonine ki-
nase located immediately downstream in RAS signaling, 
is a frequent mutational target in several cell lines and 
nonpancreatic primary cancers including 66% of mela-
nomas and 10% of colorectal carcinomas  [64, 65] . Inter-
estingly,  KRAS  and  BRAF  mutations are mutually exclu-
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sive and tumors with mutant forms of one of these 2 genes 
invariably retain wild-type copies of the other. The re-
quirement of oncogenic  KRAS  or  BRAF  pathway-related 
signal transduction appears to be critically important for 
most instances of pancreatic ductal carcinogenesis.

  The PI3K-kinase-AKT pathway is a key effector of 
 RAS -dependent transformation of many cell types and 
plays a role in cell survival, cell proliferation and other 
growth-related processes  [66] . Activated PI3K results in 
phosphorylated phosphatidylinositides (PIP3), a step in-
hibited by product of the tumor suppressor gene,  PTEN . 
PIP3 in turn phosphorylates and activates AKT    [29] . Re-
cently activating mutations of  PIK3CA , the gene encod-
ing PI3K, have been reported in a subset of pancreatic 
cancer precursors, specifically in IPMNs  [67] . Even in the 
absence of mutations, the PI3K/AKT pathway is consti-
tutively active in the majority of pancreatic cancers  [68] . 
This might be due to the aberrant expression of their nat-
ural antagonist  PTEN   [69] . Although  PTEN  is not mu-
tated in pancreatic cancers, the reduction of its expres-
sion may give pancreatic cancer cells an additional
growth advantage  [70] . Furthermore, amplification or 
activation of  AKT2  kinase, a major target of the PI3K 
complex, occurs in up to 60% of pancreatic cancers  [71–
74] , supporting the participation of an activated PI3K-
AKT axis in this disease. 

  A third downstream pathway activated trough  RAS  is 
the RalGDS pathway. RalGDS is one of several known 
Ras-regulated guanine-nucleotide exchange factors,
or  GEFs , that function by activating Ral A and Ral B
GTPases  [75] . Recently, RAL A was shown to be activated 
in a variety of pancreatic cancers, and knockdown of 
 RAL A  suppressed tumorigenicity of RAS-transformed 
human cells  [76] . In the same studies, knockdown of  RAL 
B  had no effect on tumor initiation, but suppressed tumor 
progression (i.e. metastases), suggesting divergent roles 
for the two RAL proteins in the context of pancreatic 
 neoplasia. Whether or not these signaling moieties can
be utilized as therapeutic targets remains to be deter-
mined.

  The mammalian Hedgehog family of secreted signal-
ing proteins – comprised of Sonic, Indian, and Desert 
Hedgehog (Shh, Ihh, and Dhh) – regulates the growth 
and patterning of many organs, including the pancreas, 
during embryogenesis  [77] . The Hedgehog pathway is 
under negative regulation by the Patched (PTC) tumor 
suppressor protein that inactivates the Smoothed (SMO) 
protein. The Hedgehog ligands engage the PTC trans-
membrane protein, disrupting the inhibition of SMO and 
thereby enabling signaling transduction to the  GLI  fam-

ily of transcriptional regulators  [78] . Loss of  PTC,  activat-
ing mutations in  SMO  and overexpression of GLI and 
Hedgehog proteins are associated with a variety of can-
cers  [79] . Activation of the Hedgehog pathway has been 
implicated in both the initiation of pancreatic ductal neo-
plasia and in the maintenance of advanced cancers  [80] . 
The expression of the Hedgehog ligands, the transcrip-
tional target gene  PTC , and the essential pathway compo-
nent  SMO  is undetectable in normal human pancreatic 
ducts. In contrast, a relative increase in the expression of 
these proteins is observed during pancreatic ductal tu-
morigenesis  [78, 81, 82] . Moreover, it has been confirmed 
that the Hedgehog pathway plays a role in metastases. In-
hibition of Hedgehog signaling has been shown to reduce 
the incidence of systemic metastasis in pancreatic adeno-
carcinoma xenografts  [83] . Recently, Ji et al.  [84]  showed 
that there is a cross-talk between oncogenic  KRAS  and 
the Hedgehog signaling pathway in pancreatic cancer 
cell lines. Their studies suggest that oncogenic  KRAS  
through the  RAF/MEK/MAPK  pathway suppresses GLI1 
protein degradation and consequently plays an impor-
tant role in activating Hedgehog signaling pathway in the 
absence of additional Hedgehog ligand during pancre-
atic tumorigenesis.

  The Notch signaling pathway is another pathway which 
is important in directing cell fate and cell proliferation 
during embryonic development. Later in life, the Notch 
signaling pathway plays a critical role in maintaining the 
balance among cell proliferation, differentiation, and 
apoptosis  [85] . In mammals, this signaling pathway in-
volves interaction of the membrane-bound Notch recep-
tors (Notch 1–4) and Notch ligands (Delta-like, and
Jagged) on adjacent cells  [85, 86] . The function of Notch  
signaling in tumorigenesis can be either oncogenic or an-
tiproliferative, and the function is context dependent. In 
a limited number of tumor types, including human hepa-
tocellular carcinoma and small cell lung cancer, Notch 
signaling is antiproliferative rather than oncogenic. How-
ever, most of the studies show an opposite effect of Notch 
in many human cancers including pancreatic cancer  [87] . 
In the normal adult pancreas, Notch and its ligands are 
expressed at low levels. Interestingly, aberrant expression 
of its ligands, expression of mutant Notch1 oncoprotein, 
and abnormal expression of transcription targets of Notch 
signaling can be observed in early stages of pancreatic tu-
morigenesis as well as in invasive pancreatic cancer  [88] .

  Several other oncogenes that are targeted in pancre-
atic cancer by amplifications deserve mentioning. First, 
the  AKT2  gene on chromosome 19q is a downstream ef-
fector of the PI3K/AKT pathway, and is amplified in 10–
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15% of pancreatic cancers  [73, 89] .  AKT2  can be activated 
by stimuli such as platelet-derived growth factor, basic 
fibroblast growth factor, and insulin through the  PI3K/
 AKT pathway, suggesting this pathway’s importance in 
this tumor type  [72] . Secondly, the AIB1 gene on chromo-
some  20q  is amplified in approximately 60% of pancre-
atic cancers  [90] . The nuclear receptor coactivator ampli-
fied in breast cancer 1  (AIB1/SRC-3)  belongs to the p160/
steroid receptor coactivator family  (SRC)   [91] .  AIB1  am-
plification and/or overexpression is not only detected in 
hormone-sensitive tumors, such as breast, prostate and 
ovarian, but it is also found in nonsteroid-targeted tu-
mors such as pancreatic cancer, colorectal carcinoma and 
hepatocellular carcinoma  [92] . Thirdly, the  MYB  gene on 
chromosome  6q  is amplified in 10% of pancreatic carci-
nomas  [93] . Abnormalities in the locus of the human 
 MYB  gene have been observed in several human cancers. 
In a majority of these tumors, these abnormalities seem 
to be accompanied by an amplification of the  MYB  gene 
followed by enhanced transcription  [94] . 

 Genome Maintenance Genes 

 Genome maintenance genes are those that function to 
identify and repair damage to DNA. When a genome 
maintenance gene is inactivated, DNA damage is not re-
paired efficiently and DNA mutations accumulate. If 
these mutations occur in cancer-associated genes they 
can contribute to tumorigenesis  [90] . Although gross 
chromosomal abnormalities are frequent in pancreatic 
ductal adenocarcinomas, genetic instability also occurs 
through DNA mismatch repair defects  [95] . The DNA 
mismatch repair genes  hMLH1  and  hMSH2  are examples 
of genome maintenance genes targeted in pancreatic can-
cer  [96] . When one of these genes is inactivated, DNA 

changes occur leading to ‘microsatellite instability’ (MSI). 
MSI is associated with poor differentiation, lack of  KRAS2  
and  p53  mutations, and germline mutations of this gene 
are associated with the human nonpolyposis colorectal 
cancer syndrome (HNPCC)  [96–98] . Approximately 4% 
of pancreatic cancers have MSI and these cancers have a 
specific microscopic appearance called ‘medullary type’, 
which includes a syncytial growth pattern, pushing bor-
ders and lymphocytic infiltrate  [96] .

  The causative genes of Fanconi anemia,  FANCC  and 
 FANCG,  also   play a role in pancreatic tumorigenesis  [99] . 
Fanconi anemia is a hereditary cancer susceptibility dis-
order, with the occurrence of hematologic abnormalities 
or acute myelogenous leukemia at an early stage, usually 
leading to death before the age of 20. Patients who survive 
into adulthood often develop solid tumors  [99] . The 
 BRCA2  gene represents Fanconi complementation group 
D1 and is thought to aid DNA strand and interstrand 
crosslinking repair.  BRCA2  has therefore been catego-
rized as genome maintenance gene rather than a stan-
dard tumor suppressor. In ductal pancreatic cancers 7–
10% harbor an inactivating intragenic inherited muta-
tion of one copy of the  BRCA2  gene, accompanied by loss 
of heterozygosity  [100, 101] . Of interest, it has been shown 
that the presence of  BRCA2 /Fanconi anemia gene muta-
tions in pancreatic cancer may make them particularly 
sensitive to chemotherapeutic agents that cause DNA 
crosslinks such as Mitomycin C, because these cancers 
are unable to repair DNA interstrand crosslinks  [102] .

  Growth Factors 

 Several of the genes known to be overexpressed in 
pancreatic cancer include growth factors and their recep-
tors. Growth factors are the proteins that control cell dif-
ferentiation and proliferation. Disturbances in growth 
inhibition and an abundance of growth-promoting fac-
tors give cancer cells a distinct growth advantage, which 
clinically results in rapid tumor progression. The epider-
mal growth factor receptor (EGFR) is overexpressed and 
plays a distinct role in pancreatic cancer. The four recep-
tors of the EGF family are membrane-spanning glyco-
proteins composed of an amino terminal extracellular 
ligand-binding domain, a hydrophobic transmembrane 
region and a cytoplasmic domain that contains both the 
tyrosine kinase domain as well as the receptor  [103] . The 
classical EGF receptor is also known as HER1 or ErbB-1. 
The remaining three receptors are designated HER-2/
Neu (ErbB-2), HER-3 (ErbB-3), and HER-4 (ErbB-4). 

Table 1. Frequency of selected tumor suppressor genes, oncogenes 
and genome maintenance genes

Gene mutations Incidence in pancreatic adenocarcinoma, %

p16 80–95
p53 50–75
DPC4 45–55
K-RAS 75–90
BRAF 5–10 (estimated)
hMLH1, hMSH2 4
BRCA2 7–10
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HER-2/neu overexpression is most prominent in well-
differentiated ductal adenocarcinoma, as well as in the 
early-stage precursor lesions, and appears to correlate 
with the grade of dysplasia in the precursor lesions  [104, 
105] . In pancreatic cancer,  HER-2/neu  amplification has 
been observed with a variable incidence of 10–60%  [106, 
107] . In addition, increased levels of fibroblast growth 
factor (FGF), FGF-receptor, insulin-like growth factor I 
(IGF-I), IGF-I receptor, nerve growth factor, and vascular 
endothelial growth factor (VEGF) are also reported in 
pancreatic cancer  [108, 109] .

  Tumor growth requires accompanying expansion of 
the host vasculature with tumor progression, which is 
 often correlated with vascular density. VEGF is the
best-characterized inducer of tumor angiogenesis. Inter-
estingly, Delta-like ligand 4 (Dll4), a Notch ligand, is dy-
namically regulated by VEGF  [110] . Several studies dem-
onstrated that Dll4 may act downstream of VEGF as a 
‘brake’ on VEGF-mediated angiogenic sprouting  [111] . 
Dll4, a transmembrane ligand for the Notch family of
receptors, is induced by VEGF as a negative feedback 
 regulator and acts to prevent overexuberant angiogenic 
sprouting  [112] .

  Telomere Shortening 

 Defective telomeres may be the major cause of the 
chromosomal instability observed in many cancers and 
in the vast majority of pancreatic cancers  [113] . Telo-
meres are structures at the end of linear chromosomes 
that normally function to protect the terminal sequenc-
es and prevent the ends of chromosomes from joining 
aberrantly  [114, 115] . Telomeres serve as protective ‘caps’ 
and are composed of short repeated DNA sequences and 
associated proteins. It appears that telomeres become ab-
normally short very early in the development of pancre-
atic neoplasia  [114] . These shortened telomeres can pre-
sumably lead to the abnormal fusion of chromosome 
ends and in this fashion to chromosome instability, pro-
moting further neoplastic progression in these cells  [90] . 
Such a chromosome fusion leads to so-called anaphase 
bridges during mitosis  [116] . These anaphase bridges fre-
quently break during cellular replication, generating un-
stable chromosome ends that are subject to abnormal fu-
sion events and subsequent chromosomal rearrange-
ments  [117] . This process, called breakage-fusion-bridge 
cycles, has been observed in pancreatic cancers and is 

  Fig. 1.  Progression model of pancreatic ductal adenocarcinoma from normal (left) to carcinoma (right). The 
histological progression is associated with the accumulation of specific genetic alterations. Reprinted with per-
mission from Maitra et al.  [164] . 
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believed to be one of the major causes underlying loss of 
function of tumor suppressor genes and the gain of func-
tion of oncogenes as described earlier  [90] . In most in-
stances, cells harboring this degree of genomic instabil-
ity are eliminated through activation of  p53 . However, 
chromosomal rearrangements likely persist in cells with 
 p53  mutations, and these cells will then quickly accrue 
further genomic alterations  [118] . Thus telomere dys-
function and  p53  loss cooperate to promote the develop-
ment of carcinomas in multiple tissues  [79] . Chromo-
somal instability provides a tumor with the genetic di-
versity to overcome certain barriers in carcinogenesis. 
However, ultimately, chromosomal instability might 
prove counterproductive to tumor growth, which may 
explain why neoplasms seem to acquire mechanisms to 
elongate their telomeres at later stages in the develop-
ment of a malignancy, often through the reactivation of 
the enzyme telomerase, or through alternate lengthen-
ing of telomeres  [119] .

  Familial Pancreatic Cancer 

 In the majority of cases, cancer is a multifactorial dis-
order in which genetic and environmental factors inter-
act to initiate carcinogenesis. However, in a minority, the 
disease follows a familial pattern of transmission, sug-
gesting a hereditary cancer syndrome. Characterization 
of the genetic mutations segregating in such families has 
helped to elucidate the molecular events that underlie tu-
morigenesis in the more common multifactorial form of 
the disease. Elucidation of the mechanisms of hereditary 
colorectal cancer and breast/ovarian cancer syndromes 
represents some of the greatest triumphs of the last cen-
tury in the field of cancer genetics. 

  It has been estimated that 10% of pancreatic cancers 
have a familial basis  [120, 121] . Having a first-degree rel-
ative with pancreatic cancer doubles the risk of develop-
ing pancreatic cancer  [122] , and the risk increases with 
increasing numbers of affected relatives  [123] . Segrega-
tion analyses have suggested that an autosomal dominant 
pattern of inheritance is the most parsimonious genetic 
model for this increased risk  [124] , but the gene respon-
sible for the familial aggregation of pancreatic cancer in 
the majority of cases has not yet been identified  [125] . In 
different countries familial pancreatic cancer registries 
have been established to investigate the epidemiology 
and genetic background of these families, and to organize 
the screening programs for high-risk relatives and for fol-
low-up. The largest such registry, the National Familial 
Pancreas Tumor Registry, is located at the Johns Hop-
kins Medical Institutions, Baltimore, Md., USA   (http://
pathology2.jhu.edu/pancreas/nfptr.cfm)    [125] .

  To date, at least five hereditary disorders that signifi-
cantly increase the risk of pancreatic cancer have been 
described. These include familial breast/ovarian cancer 
syndrome (caused by inherited mutations in the  BRCA2  
gene), the FAMM syndrome (caused by germline muta-
tions in the  p16  gene), the Peutz-Jeghers syndrome (caused 
by inherited mutations in the  STK11/LKB1  gene), heredi-
tary pancreatitis (caused by germline mutations in the 
 PRSS1  gene), and hereditary HNPCC caused by muta-
tions in  hMLH1  or  hMSH2 .

  Familial breast/ovarian cancer syndrome is associated 
with an increased risk of breast cancer in men and wom-
en, and a subset of these families also harbor an increased 
risk for pancreatic cancer  [126] . Germline mutations of 
the  BRCA2  gene, residing on 13q12–13, are identified in 
4–17% of familial pancreatic cancer, with a particular 
propensity for occurring in families of Ashkenazi Jewish 

Normal PanIN-1A PanIN-1B PanIN-2 PanIN-3

  Fig. 2.  Consecutive PanIN lesions with progressive histological changes from normal to PanIN-3. Reproduced 
with permission from http://pathology.jhu.edu/pancreas_panin. 
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heritage  [100, 127] . As mentioned earlier, the protein 
product of the  BRCA2  gene has been shown to interact 
with protein products of several of the Fanconi anemia 
genes and to function in the repair of double-strand DNA 
breaks  [99] .

  The FAMM syndrome is an autosomal dominant dis-
order characterized by the familial occurrence of multi-
ple melanocytic naevi, atypical naevi, and an increased 
risk of both melanoma and pancreatic cancer  [128, 129] . 
FAMM can be caused by germline mutations in the  p16/
CDKN2A  gene on chromosome 9p. The carriers of the 
germline  p16 -Leiden mutation have an estimated risk of 
17% to develop pancreatic cancer by the age of 75 years 
 [19, 130] .

  The Peutz-Jeghers syndrome is a rare, autosomal dom-
inant condition characterized by the development of 
hamartomatous gastrointestinal polyps, mucocutaneous 
pigmentation and high lifetime risk of developing cancer, 
affecting both gastrointestinal and extragastrointestinal 
sites. The lifetime risk of developing pancreatic cancer is 
approximately 36%  [131] . In 50% of families the patho-
genesis is caused by germline mutations occurring in the 
 STK11/LKB1  gene  [48, 132] .

  Hereditary pancreatitis is characterized by the famil-
ial occurrence of pancreatitis with an early age of onset 
 [133] . Germline mutations in the  PRSS1  gene cause an 
autosomal dominant form of the disease, whereas germ-
line mutations in  SPINK1  lead to an autosomal recessive 
pattern of inheritance. An estimated 40% of patients with 
familial pancreatitis will develop pancreatic cancer by 
the age of 70 years  [134] .

  HNPCC has an autosomal dominant pattern of inher-
itance, it affects approximately 1 in 200 persons and is 
associated with multiple forms of cancer, most impor-
tantly colorectal, but also gastric, endometrial, and pan-
creatic cancer  [135] . As discussed before, HNPCC is 
caused by mutations in one of the DNA mismatch repair 
genes. The group of individuals with a known predispos-
ing familial syndrome, and with a history of familial pan-
creatic cancer would be among the first to benefit from 
screening tests for early detection of pancreatic cancer.

  Mouse Models of Pancreatic Cancer 

 Although the pancreas was the first organ where trans-
genesis was attempted over two decades ago  [136] , the 
development of a mouse model that faithfully recapitu-
lates the multistep progression of human pancreatic ad-
enocarcinoma has been elusive. In 2003, Hingorani et al.  

[137]  developed a mouse model of pancreatic neoplasia by 
conditional mis-expression of mutant  KRAS  in the pan-
creas from its endogenous promoter. The bitransgenic 
mice express a ‘knock-in’  Kras  G12D  upon Cre-mediated 
recombination and removal of a lox-STOP-lox allele 
within the  Pdx1  expression domain.  Pdx1  is a transcrip-
tion factor that is expressed in the developing pancreas 
and foregut, restricting mutant  KRAS  expression to these 
organs. The Pdx1-Cre, lox-STOP-lox- Kras  G12D  mice de-
velop the entire histologic compendium of murine PanIN 
(mPanIN) lesions observed in the cognate human dis-
ease, and a subset of mice develop invasive pancreatic 
carcinomas as well. Subsequent models have utilized ad-
ditional cooperating mutations with  Kras  (for example, 
an oncogenic Trp53 R172H  allele or biallelic deletions of 
INK4a/Arf) – these compound transgenic mice develop 
metastatic pancreatic cancers with near-universal pene-
trance, and represent biologically relevant models of ad-
vanced pancreatic cancer in humans  [138–140] .

Several important lessons have been learnt from these 
newly developed mouse models of pancreatic cancer. 
First, these studies indicate the likely absolute require-
ment of mutant  Kras  in order to initiate pancreatic neo-
plasia along the mPanIN pathway, which might also ex-
plain the extremely high frequency of  KRAS  abnormali-
ties in human PanIN lesions and pancreatic cancer  [141] . 
Thus, misexpression of other oncogenes by themselves re-
sults in pancreatic ‘cancer’ in mice (for example, aberrant 
expression of the Hedgehog transcription factor GLI2) 
 [82] , but it is only upon coexpression with mutant  Kras 
 that these mice develop cancers preceded by mPanINs. 
Second, the expression of mutant  Kras  from its endoge-
nous promoter appears to be a prerequisite as well, since 
earlier models of transgenic  Kras  expression have resulted 
in cancers of acinar histogenesis without mPanIN forma-
tion  [142] . Third, these mouse models have helped eluci-
date some insights into the putative cell-of-origin of pan-
creatic cancer. For example, recent studies by Guerra and 
colleagues have demonstrated that mPanINs and adeno-
carcinomas can be reproduced in the pancreas of adult 
mice by conditional misexpression of mutant  Kras  to
the elastase-expressing acinar/centroacinar compartment 
 [143] ; the one caveat is that the mature acinar/centroaci-
nar compartment appears to be resistant to the oncogenic 
transformation unless accompanied by an ongoing injuri-
ous stimulus (i.e. chronic pancreatitis). These studies pro-
vide remarkable experimental reiteration to the long-
standing epidemiological associations between chronic 
pancreatitis and an increased incidence of pancreatic can-
cer  [3] . They also underscore the possibility that the mon-
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iker of ‘ductal’ adenocarcinoma might not reflect the true 
histogenesis of these cancers, at least in the context of mu-
rine pancreatic neoplasia. Fourth, and not the least, the 
development of these models have provided an unprece-
dented opportunity to explore preclinical diagnostic and 
therapeutic strategies in autochthonous models not af-
forded by short-term xenograft studies. For example, the 
cancers developing in these mice recapitulate not only the 
morphology of the cognate human disease, but also many 
of the oncogenic signaling pathways like  EGFR ,  Notch  and 
 Hedgehog   [137, 140] . Small molecule inhibitors targeted 
against these pathways can now be tested in the trans-
genic models prior to clinical trials. There is little doubt 
that the development of these models has fulfilled a criti-
cal lacuna on the field of pancreatic cancer research.

  Molecular Biomarkers and Therapy 

 The gene expression patterns in pancreatic cancer 
have been studied using multiple platforms. A decade 
ago, gene expression was studied through analysis of the 
product of one gene at a time. Currently, gene expression 
patterns can be studied using technologies that assay 
nearly the entire genome   simultaneously. Examples of 
such technologies that have been applied to pancreatic 
cancer include serial analysis of gene expression, cDNA 
arrays and oligonucleotide arrays  [144–147] . The protein 
products of differentially expressed genes have proven 
useful as diagnostic markers in tissue biopsies, as serum 
markers, and as therapeutic targets. For example, pros-
tate stem cell antigen and mesothelin were identified to 
be overexpressed in the majority of pancreatic cancers by 
serial analysis of gene expression, and immunolabeling 
for these two proteins can be used to aid in the interpre-
tation of challenging pancreatic biopsies  [148, 149] . Sim-
ilarly, osteopontin was identified as overexpressed in 
pancreatic carcinoma using oligonucleotide microarrays, 
and serum osteopontin levels have a sensitivity of 80% 
and a specificity of 97% for pancreatic cancer  [150] .

  Recently, micro-RNAs (miRNAs), a novel class of 18–
23 nucleotide noncoding RNAs, have gained attention as 
another family of molecules involved in cancer develop-
ment. Current evidence has illustrated that miRNAs are 
misexpressed in various human cancers, and further in-
dicates that miRNAs can function as tumor suppressors 
(‘TSGmiRs’) or oncogenes (‘oncomiRs’)  [151, 152] . Upon 
binding to their target RNAs, miRNAs cause posttran-
scriptional gene silencing by either cleaving the target 
mRNA or by inhibiting the translation process  [153] .

  As several studies have highlighted, miRNA expres-
sion is deregulated in pancreatic cancer. A miRNA signa-
ture of pancreatic cancer has been elucidated, and it in-
cludes the upregulation of miR-21, miR-155, miR-221 and 
miR-222  [154, 155] . Moreover, Chang et al.  [39]  found that 
miR-34a is frequently lost in pancreatic cancer cell lines. 
These studies demonstrate that miRNAs may become 
useful biomarkers for pancreatic cancer diagnostics. In 
addition, these aberrantly expressed miRNAs might be 
useful as potential therapeutic targets, with the recent 
availability of in vivo   miRNA knockdown strategies (‘an-
tagomirs’)  [156] .

  The revolution in our understanding of the genetics of 
cancer and the exploration of gene expression on a large 
scale has brought with it the hope that novel therapies can 
be developed specifically exploiting the genetic deletions 
and resultant absolute biochemical deficiencies present 
in pancreatic cancer. Two promising examples of thera-
pies using a specific biochemical difference, including 
mitomycin C for pancreatic cancers harboring  BRCA2  
gene mutations and  L -alanosine, a purine biosynthesis 
inhibitor, for pancreatic cancers with loss of  MTAP  func-
tion were already mentioned above. 

  The downregulation of Notch signaling could also be 
a novel therapeutic approach for pancreatic cancer. Nu-
merous studies have proposed inhibition of Notch signal-
ing as a strategy for cancer treatment, such as with the 
pharmacological block of  � -secretase enzyme with small 
molecule inhibitors, which has a striking antineoplastic 
effect in Notch expressing transformed cells in vitro and 
in xenograft models  [157] . Inhibitors of  � -secretase pre-
vent the second ligand-induced proteolytic cleavage of 
the Notch receptor, thereby blocking the Notch signaling 
pathway. Importantly, in pancreatic cancer cells it has 
been shown that downregulation of Notch1 inhibits cell 
growth and induces apoptosis  [87] . In other compart-
ments of the gastrointestinal tract, notably the colorec-
tum and the esophagus, regression of tumorigenesis is 
observed after chemical inhibition of Notch  [158, 159] . 

  Furthermore, developmental signaling pathways, like 
the Hedgehog signaling pathway, have emerged as thera-
peutic targets in pancreatic cancers  [160] . This pathway 
is aberrantly activated in the majority of pancreatic duc-
tal adenocarcinomas  [78] . Drugs such as cyclopamine 
which specifically inhibit the Hedgehog pathway have 
been shown to be effective in xenograft models of human 
pancreatic cancer in treated mice  [81] . Interestingly, the 
realization of cross-talk between  RAS/MAPK  and Hedge-
hog signaling pathways in pancreatic carcinomas also 
suggest that targeting the  RAS  and Hedgehog pathways 
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synergistically may represent a new therapeutic strategy 
 [84] . Additionally, there are a few promising agents on the 
therapeutic horizon, being tested in clinical trials, like 
bevacizumab, the monoclonal antibody against VEGF, 
which targets tumor vascularization and   cetuximab ,  the 
monoclonal antibody against the EGFR  [161] . Of note, 
trastuzumab (Herceptin � ) is a humanized monoclonal 
antibody that acts on the HER2/neu (erbB2) receptor, a 
member of the EGFR family, and shows profound benefi-
cial results with breast cancer patients whose tumors 
overexpress this receptor  [103] . Whether trastuzumab 
will be as effective a form of treatment in pancreatic can-
cer as it appears to be in breast cancer, is currently the 
focus of several studies  [162, 163] .

  Future Perspectives 

 Intensive research over the last two decades has shown 
that pancreatic cancer is fundamentally a genetic disease, 
caused by inherited germline and/or acquired somatic 
mutations in cancer-associated genes. It has uncovered 
multiple alterations in many genes that are important in 

pancreatic cancer progression. In addition, an increased 
understanding of the molecular basis of the disease has 
provided the identification of new drug targets enabling 
rational drug design, and facilitated the production of 
animal models of the disease on which such therapies can 
be tested. 

  Pancreatic ductal adenocarcinoma is nevertheless 
still one of the most lethal cancers of all human malig-
nancies. The poor prognosis and late presentation of 
pancreatic cancer patients emphasize the importance of 
early detection, which is the sine qua non for the fight 
against pancreatic cancer. It is hoped for the future that 
the understanding of genetic alterations in combination 
with the development of high-throughput sensitive tech-
niques will lead to the rapid discovery of an effective bio-
marker.
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