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ABSTRACT: It was previously believed that obesity and osteoporosis were two unrelated diseases, but recent
studies have shown that both diseases share several common genetic and environmental factors. Body fat
mass, a component of body weight, is one of the most important indices of obesity, and a substantial body of
evidence indicates that fat mass may have beneficial effects on bone. Contrasting studies, however, suggest
that excessive fat mass may not protect against osteoporosis or osteoporotic fracture. Differences in experi-
mental design, sample structure, and even the selection of covariates may account for some of these incon-
sistent or contradictory results. Despite the lack of a clear consensus regarding the impact of effects of fat on
bone, a number of mechanistic explanations have been proposed to support the observed epidemiologic and
physiologic associations between fat and bone. The common precursor stem cell that leads to the differen-
tiation of both adipocytes and osteoblasts, as well the secretion of adipocyte-derived hormones that affect
bone development, may partially explain these associations. Based on our current state of knowledge, it is
unclear whether fat has beneficial effects on bone. We anticipate that this will be an active and fruitful focus
of research in the coming years.
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INTRODUCTION

OBESITY IS A state of excess storage of body fat result-
ing from a chronic imbalance between energy intake

and energy expenditure.(1) About 250 million adults world-
wide are considered obese (body mass index [BMI] � 30
kg/m2],(2,3) and recent data from the 1999–2000 National
Health and Nutrition Examination Survey (NHANES)(4)

showed that almost 65% of the adult population in the
United States is overweight. This represents a substantial
increase compared with 56% seen in NHANES III, con-
ducted between 1988 and 1994.(4) The direct cost associated
with obesity in the United States is ∼$100 billion per year,
representing 5.7% of the national health expenditure in
1995,(5) and obesity is associated with many other diseases,
such as type 2 diabetes mellitus, hypertension, coronary
heart disease, and some cancers.(6,7) Thus, obesity has be-
come a serious national public health problem.

Osteoporosis is another major public health problem,
characterized by excessive skeletal fragility and susceptibil-
ity to low-trauma fracture among the elderly.(8,9) This ex-

cessive skeletal fragility is attributable to intrinsic skeletal
factors such as low bone mass, unfavorable geometry at
cortical bone sites,(10) poor bone structure at cancellous
bone sites,(11) and sluggish or ineffective repair of mi-
crodamage.(12) In the United States, ∼10 million women
and men already have osteoporosis and another 34 million
people are at high risk for developing osteoporosis.(8) Os-
teoporosis results in >1.5 million osteoporotic fractures
(OFs) each year in the United States,(8) including ∼300,000
hip fractures and ∼700,000 vertebral fractures.(13) More
than 40% of postmenopausal women, on average, will suf-
fer at least one OF.(14) OF can lead to permanent disabili-
ties, nursing home placement, and even death. The direct
cost for osteoporosis has risen rapidly and reached ∼17.5
billion dollars in the United States in 2002.(13)

Similarities between obesity and osteoporosis have been
identified for these two complex diseases, suggesting some
type of pathophysiologic linkage.(15) Similarities suggesting
linkage between obesity and osteoporosis include the fol-
lowing:

● Both diseases are affected by genetic and environmen-
tal factors, or the interaction between them, and thereThe authors state that they have no conflicts of interest.
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is some overlap between the genetic and environmen-
tal factors influencing both diseases.

● Normal aging is associated with both a high incidence
of osteoporosis and bone marrow adiposity.(15)

● Bone remodeling and adiposity are both regulated
through the hypothalamus and sympathetic nervous
system.(15)

● Adipocytes (the cell for storing energy) and osteo-
blasts (the bone formation cells) derive from a com-
mon progenitor—the mesenchymal stem cell.

An extensive literature has been developed exploring the
clinical, epidemiologic, and pathophysiologic linkage be-
tween obesity and osteoporosis. The purpose of this article
is to review our current understanding of this relatively new
area of investigative research.

RELATIONSHIP BETWEEN FAT AND BONE:
EPIDEMIOLOGIC AND

CLINICAL OBSERVATIONS

It has been well accepted that the most powerful, mea-
surable determinant of fracture risk is the amount of bone
in the skeleton, as measured by either BMD or BMC.(16,17)

Extensive data have shown that high body weight or BMI is
correlated with high BMD or BMC and that a decrease in
body weight leads to bone loss.(18–22) These correlations are
seen in both men and women, across the entire adult age
range, and throughout the skeleton.(18,22–24) This relation-
ship is also found in children and adolescence, although its
significance is less clear because of the intensive bone ac-
quisition in this period.(25,26)

Ample evidence supports the view that fat mass, a com-
ponent of total body weight and one of the most important
indices of obesity, has a similar beneficial effect on increas-
ing bone mass, thereby reducing the risk of osteoporosis. In
normal pre- and postmenopausal women, total body fat was
positively related to BMD throughout the skeleton, and this
effect was found in both white(22,23,27) and Japanese sub-
jects.(28,29) Furthermore, a longitudinal study showed that
changes in BMD at most sites was positively related to the
rate of change in fat mass,(30,31) and the EPIC study also
showed that “rapid” bone losers had significantly lower fat
mass than the “slow” bone losers.(32) Finally, Lau et al.(33)

showed that men with severe vertebral deformity had much
lower fat mass and BMD than controls.

In contrast to the findings above, other independent
groups have suggested that excessive fat mass may not pro-
tect against decreases in bone mass.(34–39) In a large-scale
sample of Chinese and white subjects, our group found that
there is a positive correlation between fat mass and bone
mass, consistent with the aforementioned studies, when re-
sults are not corrected for the mechanical loading effect
caused by total body weight. When the mechanical loading
effect of total body weight is statistically removed, however,
fat mass is negatively correlated with bone mass, suggesting
that fat mass actually has a detrimental effect on bone.(40)

We further studied the relationship of fat mass to bone
mass in subjects matched by BMI. According to the pro-
posed cut-off points by a World Health Organization

(WHO) expert committee,(41) we divided 4489 white sub-
jects into normal weight (18.5 < BMI � 25.0 kg/m2), over-
weight (25.0 < BMI � 30.0 kg/m2), and obese (BMI > 30.0
kg/m2) groups. Figure 1 plots the least-squares means and
SEs of total body (TB) BMC for the quartiles of percentage
fat mass subgroups from each of the different BMI strata.
Significant negative associations (p < 0.001) between per-
centage fat mass and TB BMC were found in all BMI strata,
for both men and women.(40) Consistent with this finding, in
a study of a large cohort of Chinese subjects by Hsu et
al.,(37) across 5-kg strata of body weight, a negative rela-
tionship between fat mass and bone mass was found, and
the risks of osteoporosis, osteopenia, and non-spine frac-
tures were significantly higher for subjects with a higher
percentage body fat, independent of body weight.(37) Other
studies provide further evidence that fat mass may have no
beneficial effect on bone. In a cohort of 153 premenopausal
women, a higher proportion of fat mass was negatively as-
sociated with bone mass.(38) Moreover, high adiposity has

FIG. 1. Least-squares mean (±SE) of the TB BMC stratified by
percentage fat mass in normal weight (18.5 < BMI � 25.0 kg/m2),
overweight (25.0 < BMI � 30.0 kg/m2), and obese (BMI > 30.0
kg/m2) white men and women. Each bar in each BMI stratum
represents quartiles (Q) 1, 2, 3, and 4 (from left to right) of per-
centage fat mass. A linear mixed model was used with age, weight,
exercise, and menopause status as covariates to adjust TB BMC.
Familial relationships were treated as random effects in the
model. *p < 0.0001.
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been associated with increased risk of bone fragility frac-
ture in children,(35,36) and recent studies with adolescents
and young adults indicate that fat mass is not beneficial to
bone.(39)

Several lines of evidence from environmental factors and
medical interventions also support an inverse correlation
between fat mass and bone mass. For instance, physical
exercise increases bone mass while reducing fat mass.(42)

Consumption of milk and tea are believed to be beneficial
for the prevention of both osteoporosis and obesity.(43)

Milk is a good source of highly absorbable calcium. In-
creased milk intake has been shown to increase peak bone
mass at puberty, slow bone loss, and reduce the incidence of
OFs in the elderly.(44) It has also been shown that high
calcium intake may promote weight or fat loss,(45) although
long-term trials are needed to confirm such observations.
Menopause has also been associated with increased bone
loss, increased fat mass, and decreased lean mass. Hormone
replacement therapy is an effective means of attenuating
loss of lean mass and bone(46) and reversing menopause-
related obesity(47) in postmenopausal women. Whereas the
beneficial interventions identified above reduce the risk of
both osteoporosis and obesity, other interventions have
been shown to have adverse effects on health, predisposing
to both osteoporosis and obesity. For example, osteoporo-
sis and obesity are the two main side effects of treatment
with gonadotropin-releasing hormone agonists, agents that
are used for treating nonmetastatic prostate cancer.(48) Fur-
thermore, the clinical use of glucocorticoids has been shown
to cause decreased bone mass and an increase in central
obesity.(49–52) The finding that all of these interventions
have opposite effects on fat versus bone mass supports the
concept that there is an inverse correlation between fat and
bone mass and that fat does not have a protective effect on
bone.

Although the studies cited above showed either a clear
positive or negative effect of whole body fat mass on bone,
regional fat distribution may also influence bone mass, in-
dependently of total body fat mass.(53) In epidemiologic
studies, the waist/hip circumferences ratio (WHR) is widely
used as an index of regional adipose tissue distribution be-
cause it is associated with the amount of abdominal visceral
adipose tissue measured by CT or MRI.(54) Several lines of
evidence have shown that abdominal fat weight and WHR
were positively and significantly associated with bone
mass.(53,55,56) In contrast, Jankowska et al.(57) reported that
WHR was inversely related to bone mass in Polish men.
Similarly, Huang et al.(58) reported that increased visceral
fat is associated with reduced lumbar spine BMD in HIV-
infected men. The inverse association between subcutane-
ous abdominal fat mass and bone mass has also been re-
ported in healthy children.(59)

These conflicting results suggest a complex effect of fat
mass on bone and may be partially attributed to interstudy
differences related to sex, sample size, ethnicity, study de-
sign, analysis methods, population structure, etc. For ex-
ample, in a large-scale cross-sectional study of 7137 men,
4585 premenopausal women, and 2248 postmenopausal
women, Hsu et al.(37) concluded that the lowest quartile of
percentage fat mass has a higher risk of osteoporosis than

the highest quartile in both Chinese men and women. How-
ever, a smaller study with 68 healthy white premenopausal
women and 51 white men showed that BMD is positively
related to fat mass in premenopausal women but less so in
men.(23) The study from Pluijm et al.(60) confirmed the ben-
eficial effect of fat mass on BMD in white women but not
in white men in a small sample (264 women and 258 men).
Castro et al.(61) reported that increased obesity is associated
with high BMD in white women, but with significantly
decreased BMD in black women. Finally, Afghani and
Goran(59) reported an inverse correlation between subcu-
taneous abdominal adipose tissue and BMC in whites, but
not in blacks, and an inverse association between intra-
abdominal adipose tissue and BMC in blacks but not in
whites. These differential findings might imply that results
from one ethnic group may not be transferable to another
ethnic group or that studies with a large sample size gen-
erally have sufficient power to detect associations that may
be undetectable in a smaller sample. The qualitatively dif-
ferent relationship between fat mass and bone mass is de-
pendent on whether bone mass is unadjusted or adjusted
for total body weight(40,62) indicates that selection of co-
variates may also contribute to the diverse results presented
above. Supporting this perspective is the study by Reid et
al.,(42) who proposed that exercise may dissociate the rela-
tionship between fat mass and BMD. They found that a
positive association between fat mass and BMD was only
found in sedentary women but not in the exercising sub-
jects.(42) Finally, the effect of fat mass on bone may also be
affected by growth.(63) For example, a longitudinal study of
female twins 8–25 years of age indicated that during the
“linear growth” period up to 4 years postmenarche, BMD
at the lumbar spine, total hip, and femoral neck are inde-
pendent from changes in fat mass. However, in postlinear
growth, changes in fat mass are an important predictor of
bone mineral measures.(63) Wearing et al.(64) indicated that
the relationship between obesity and the risk of fracture is
related to age. High adiposity is considered to be associated
with increased risk of distal forearm fracture in children
but seems to protect against hip and wrist fracture in the
elderly.(64)

Although the reasons listed above may partially explain
the inconsistent results from clinical and epidemiologic
studies, the relationship between fat mass and bone mass is
also confounded by complex genetic backgrounds and in-
teracting metabolic and regulatory pathways that influence
both obesity and osteoporosis.

RELATIONSHIP BETWEEN FAT AND BONE:
POTENTIAL MECHANISTIC EXPLANATIONS

Several potential mechanisms have been proposed to ex-
plain the complex relationship between fat and bone mass.
One straightforward explanation is that greater fat mass
imposes a greater mechanical stress on bone, and in re-
sponse, bone mass increases to accommodate the greater
load. However, only ∼27% and 38% of total body weight in
white men and women is attributable to fat mass, respec-
tively.(40) Therefore, weight-associated gravitational forces
associated with increased fat mass may be insufficient to
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explain the impact of fat mass on bone. Studies of adipocyte
function have revealed that adipose tissue is not just an
inert organ for energy storage. It expresses and secretes a
variety of biologically active molecules, such as estrogen,
resistin, leptin, adiponectin, and interleukin-6 (IL-6). These
molecules affect human energy homeostasis and may be
involved in bone metabolism, which may contribute to the
complex relationship between fat mass and bone. The se-
cretion of bone-active hormones from the pancreas (includ-
ing insulin, amylin, and preptin) may also explain part of
the relationship between fat mass and bone mass. Finally,
adipocytes and osteoblasts originate from a common pro-
genitor, the pluripotential mesenchymal stem cell.(65,66)

These stem cells display an equal propensity for differen-
tiation into adipocytes or osteoblasts, and the balance of the
differentiation is regulated by several interacting pathways
that may contribute to the final effect of fat mass on bone.
Figure 2 shows the possible function of common factors
shared in osteoblast and adipocyte differentiation.

In the following paragraphs, we will further explore
mechanistic explanations for the complex interactions be-
tween bone and fat.

Adipocyte-derived peptides

Aromatase: The enzyme aromatase, which is found in
gonadal tissue and adipocytes, uses androstene or testoster-
one to synthesize estrogen, an important hormone to pro-
tect against osteoporosis. Estrogen inhibits bone turnover
by reducing osteoclast-mediated bone resorption and
stimulating osteoblast-mediated bone formation. In post-
menopausal women, because ovaries no longer secrete es-
trogens, extragonadal estrogen synthesis in fat tissue be-
comes the dominant estrogen source. Therefore, the role of
adipocytes as estrogen producers may become more impor-
tant to bone metabolism in postmenopausal women.(24) In
obese postmenopausal women, increased extragonadal es-
trogen synthesis caused by high fat mass has been suggested
as one of the potential mechanisms for the protective effect
of fat mass on bone.

The identification of humans lacking aromatase or estro-
gen receptor-�, and the recent development of knockout
mice lacking aromatase or estrogen receptor-� or -�, sup-
ports the concept that estrogen is an inhibitor of obesity and
protects against cancellous bone loss.(67–72) This is consis-
tent with findings that estrogen deficiency in postmeno-
pausal women is associated with an increase in central body
fat,(73) increased bone turnover, and acceleration of bone
loss.(74) Furthermore, decreased endogenous estrogen lev-
els in postmenopausal women were recently shown to be
accompanied by an increase in adipocyte numbers and de-
creased osteoblast counts in bone marrow.(75) Estrogen re-
placement therapy has also been shown to prevent meno-
pause-induced gains in fat mass(73,76,77) and reduce the
incidence of OFs in postmenopausal women.(78) Finally,
high and early increases of estrogen concentrations in bone
marrow mesenchymal stem cells have been shown to di-
rectly stimulate bone formation and inhibit adipocyte dif-
ferentiation.(79)

Hydroxyl steroid dehydrogenase: Glucocorticoids are
used as therapy for a wide range of inflammatory diseases,

and the clinical use of oral glucocorticoids has been shown
to have an adverse impact on bone(49,50) and central obe-
sity.(51,52) Two isozymes of 11-�-hydroxysteroid dehydro-
genases (11b-HSDs) regulate the peripheral action of glu-
cocorticoids. 11b-HSD1 converts inactive cortisone into
active cortisol (the most important human glucocorticoid)
in intact cells and enhances glucocorticoid receptor activa-
tion.(80,81) In contrast, 11b-HSD2 potently inactivates glu-
cocorticoids. 11b-HSD1, but not 11b-HSD2, is expressed in
human adipocytes.(82)

11b-HSD1 is involved in adipocyte differentiation and
plays an important role in the regulation of obesity.(83) In
vivo, 11b-HSD1 mRNA is elevated in adipose tissue in
obese humans and rodents.(80,84,85) Consistently, 11b-
HSD1−/− mice have been found to have low intracellular
glucocorticoid levels and are protected from obesity.(80,86)

FIG. 2. Common factors shared in osteoblast and adipocyte dif-
ferentiation. Osteoblasts and adipocytes originate from common
progenitor-mesenchymal stem cells. The balance of their differ-
entiation is determined by several common factors, such as
PPAR-�, Wnt, TGF-�, leptin, and estrogen. Adipocytes express
and secrete a variety of bioactive peptides, such as estrogen, re-
sistin, leptin, adiponectin, and inflammatory cytokines. Some of
these peptides affect human energy homeostasis and may be in-
volved in bone metabolism. Adapted from Reference 15.
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In addition, 11b-HSD1−/− mice are resistant to hyperglyce-
mia normally seen with stress or high fat feeding.(87) Fi-
nally, 11b-HSD1 activity in fat cells from obese patients was
markedly enhanced compared with its activity in fat cells
from nonobese individuals.(88)

Although glucocorticoids are essential for human osteo-
blast differentiation and formation of a mineralized extra-
cellular matrix,(89,90) they are generally considered to be
negative regulators of bone formation. The risk of gluco-
corticoid-induced osteoporosis is widely recognized and this
risk increases with age and depends on autocrine actions of
the enzyme 11b-HSD1.(91) In addition to its expression in
adipocytes, 11b-HSD1 is also present in osteoblasts and
osteoclasts.(92,93) The expression of osteoblastic 11b-HSD1
affects the synthesis of active glucocorticoids with conse-
quent effects on osteoblast proliferation and differentia-
tion.(91) Osteoblastic 11b-HSD1 is considered to be a good
predictor of the detrimental effects of glucocorticoids on
bone.(94,95) Because of the important role of 11b-HSD1 on
both bone and obesity, it has been suggested that antago-
nists of 11b-HSD1 could be used to reduce the adverse
effects of glucocorticoids.(88)

Leptin: Leptin is the most widely recognized adipocyte-
derived hormone. It is mainly known for its function of
suppressing appetite and increasing energy expenditure.
Leptin-deficient ob/ob mice and leptin receptor–deficient
db/db mice are extremely obese.(96)

The effect of leptin on obesity is mediated by a series of
integrated neuronal pathways including the catabolic path-
way represented by proopiomelanocortin (POMC) neurons
and the anabolic pathway represented by neuropeptide Y
(NPY).(97) Leptin stimulates POMC neurons to secrete �-
melanocyte stimulating hormone (�-MSH), a post-
translational processing product of POMC.(98) The combi-
nation of �-MSH and its receptors MC3R and MC4R
(melanocortin receptor 3 and 4) results in reduced food
intake and increased energy expenditure.(98) In addition,
leptin inhibits the activity of agouti-related peptide
(AgRP), an endogenous MC3R and MC4R antagonist. All
these produce increases in MC3R and MC4R signaling,
which leads to decreased appetite.(98) In addition to the
effect on obesity, melanocortin-signaling pathways may
contribute to bone resorption(99) but not bone forma-
tion.(100) Mc4r knockout mice displayed an increase in hy-
pothalamic cocaine amphetamine-regulated transcripts
(CART) expression and high bone mass(99) because of a
decrease in bone resorption.(99)

NPY is a hypothalamus-derived peptide, essential for the
regulation of food consumption, energy homeostasis, and
bone remodeling.(101) Leptin inhibits NPY gene expression
in the hypothalamus, and knocking out the NPY gene in
ob/ob mice resulted in a reduction of body weight.(102) On
the other hand, decreases in plasma leptin levels enhanced
NPY expression, stimulated food intake, inhibited energy
expenditure, and lead to the development of obesity and its
related phenotypes.(103) The effect of NPY is regulated by
the Y-receptor system, which is expressed in the hypothala-
mus and consists of five different Y receptors (Y1, Y2, Y4,
Y5, and Y6), Among them, the NPY Y2 receptor has been
most widely studied. Hypothalamus-specific Y2 receptor

conditional knockout mice exhibited a significant decrease
in body weight and a significant increase in food intake.(104)

Moreover, the trabecular bone volume in germline Y2–/–

mice was increased 2-fold compared with wildtype ani-
mals.(105) Studies showed that simultaneous hypothalamus-
specific Y2 and Y4 receptor conditional knockout mice ex-
hibited greater reductions in adiposity and greater increases
in cancellous bone volume than mice with deficiencies of
either the Y2 or Y4 receptor alone.(106) These findings sug-
gest a potential synergy between Y2 and Y4 receptors in
the regulation of adiposity and bone mass.(106) Subsequent
studies on Y2–/– mice suggested distinct actions of the Y2
and leptin pathways in their regulation of osteoblast activ-
ity, with Y2 or Y2 receptor deletion consistently activating
osteoblast activity.(107)

In addition to regulating the appetite for food consump-
tion, leptin is also a major regulator of bone remodel-
ing.(96,100,108,109) The effect of leptin on bone is complex.
Both negative(38,110) and positive relationships(111–113) be-
tween serum leptin levels and BMD have been reported in
humans. Ob/ob mice have a complex bone phenotype, dis-
playing increased trabecular bone volume in the spine but
short femora with reduced cortical thickness and reduced
trabecular volume.(114,115) In vitro studies found that leptin
can act directly on bone marrow–derived mesenchymal
stem cells to enhance their differentiation to osteoblasts
and to inhibit their differentiation to adipocytes.(116,117) In
vivo studies indicate that the effect of leptin may depend on
its site and mode of function.(118–120) It has been proposed
that peripheral administration of leptin could increase bone
mass by inhibiting bone resorption(121) and increasing bone
formation.(117,122) However, leptin inhibits bone formation
through a central nervous effect.(109) The seminal study by
Ducy et al.(109) found that intracerebroventricular infusion
of leptin causes bone loss in leptin-deficient and wildtype
mice. Further studies indicated that leptin regulates both
bone formation and bone resorption through the sympa-
thetic nervous system (SNS) and CART.(99,100) The sym-
pathetic nervous system neurotransmitter, noradrenalin,
activates �2 adrenergic receptors (�2-AR) on osteoblasts,
which activates two distinct molecular cascades down-
stream of this receptor. One promotes RANKL expression
and increases bone resorption mediated by protein kinase
A and phosphorylation of ATF4, an essential regulator of
osteoblast biology.(99,100,123) The other inhibits osteoblast
proliferation through the molecular clock regulation of c-
myc and Cyclin-D expression.(124,125) In contrast to the fa-
vorable bone resorption effect through the SNS, leptin in-
hibits bone resorption through CART,(99) a neuropeptide
expressed in the hypothalamus that also regulates body
weight in mice.(126) �2-AR−/− mice, whose osteoblasts lack
adrenergic receptors, exhibit reduced bone resorption ef-
fects, leading to a net increase of bone formation.(99,127) In
contrast, absence of CART increases bone resorption in
ob/ob mice.(99)

Adiponectin: Adiponectin is another adipocyte-derived
hormone that regulates energy homeostasis and has anti-
inflammatory and anti-atherogenic effects.(128,129) Unlike
leptin, plasma adiponectin levels are generally reduced in
obesity and diabetic subjects(130) and may increase with
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moderate weight loss.(131) Adiponectin and the correspond-
ing receptors are expressed in primary human osteo-
blasts,(132) suggesting a link between adiponectin and bone.
Generally an inverse relationship between serum adiponec-
tin level and BMD are found in association studies.(131,133)

Reduced levels of adiponectin associated with obesity, in
conjunction with inverse correlations between adiponectin
levels and BMD, may provide a partial explanation for the
protective effects of fat on bone. Complicating this perspec-
tive, however, are in vivo and in vitro studies indicating that
adiponectin actually increases bone mass by suppressing
osteoclastogenesis and by activating osteoblastogen-
esis.(132,134,135) Based on these latter studies, it would be
reasonable to anticipate that a rise in adiponectin levels
caused by fat reduction should have a beneficial effect on
BMD. Clearly, further work is needed to improve our un-
derstanding of the adiponectin effects on bone.

Resistin: Resistin, also known as adipocyte-secreted fac-
tor, was discovered recently while screening for substances
that are downregulated in response to insulin-sensitizing
anti-diabetic drugs.(136) Resistin has been proclaimed to be
associated with obesity and diabetes,(136,137) and circulating
serum resistin levels were found to be elevated proportion-
ally to the degree of obesity.(137,138) Few studies have been
performed on the effect of resistin on bone. Thommesen et
al.(139) showed that resistin may play a role in bone remod-
eling. Their study indicates that resistin is expressed in mes-
enchymal bone marrow stem cells, osteoblasts, and osteo-
clasts and that resistin increases osteoblast proliferation and
cytokine release, as well as osteoclast differentiation.(139)

The associations between serum resistin levels and BMD
have recently been studied. Oh et al.(140) found an inverse
association (r � −0.237) between serum resistin levels and
lumbar spine BMD in adult men, but the variance was
small.

IL-6: IL-6, a pluripotent inflammatory cytokine, is re-
leased from adipocytes, the adipose tissue matrix, and else-
where.(141) Adipose tissue accounts for one third of the
circulating levels of IL-6. As with leptin, overweight and
obese children and adults generally have elevated serum
levels of IL-6,(142,143) and genetic polymorphism of IL-6
(−174G/C) is associated with indices of obesity.(144) Periph-
eral administration of IL-6 induces hyperlipidemia, hyper-
glycemia, and insulin resistance in rodents and humans.(145)

In contrast to the peripheral effect of IL-6 in increasing
obesity, administration of IL-6 in the central nervous sys-
tem increases energy expenditure and decreases body fat in
rodents.(145) Therefore, IL-6 has different effects on energy
homeostasis depending on its site of production or admin-
istration. It has been reported that IL-6 stimulates osteo-
clastogenesis in cell culture systems,(146) and IL-6 is gener-
ally recognized as an osteoresorptive factor.(147) IL-6
mRNA is expressed in pre-osteoblasts and osteoblasts,(148)

and IL-6 has been shown to stimulate osteoblast prolifera-
tion or differentiation,(149) possibly indirectly, by control-
ling the production of local factors.(150) Interestingly, IL-6
knockout (−/−) mice are generally healthy and experience
no specific bone phenotype, which may indicate that IL-6 is
not required for normal bone resorption and homeosta-

sis.(150) However, Franchimont et al.(150) and Sims et al.(151)

showed that IL-6 is essential for bone formation in condi-
tions of high bone turnover.

Pancreatic hormones

Insulin: Insulin resistance is highly correlated with obe-
sity, and several studies support the concept that insulin is
a potential regulator of bone metabolism. Fasting insulin
levels were significantly and positively associated with
BMD of the radius and spine in middle-aged women,(152)

and a similar effect was shown in both men and women in
another study.(153) Additionally, Tuominen et al.(154)

showed that individuals with type 1 and type 2 diabetes
mellitus generally have lower BMD compared with normal
controls. In contrast, other studies revealed that insulin may
contribute to the bone protective effect of obesity. For ex-
ample, hyperinsulinemia found in obesity is associated with
overproduction of androgen and estrogen and reduced pro-
duction of sex hormone-binding globulin in the liver.(24)

These phenomena lead to increased concentrations of free
sex hormones, resulting in reduced osteoclast activity and,
possibly, increased osteoblast activity, leading to high bone
mass.(24) The complex effects of insulin on bone are similar
to the complicated relationship between fat and bone. It
should be noted that, although obesity is strongly and sig-
nificantly correlated with type 2 diabetes, only a fraction
(10%) of obese people suffer diabetes. Obesity phenotypes
represent continuous traits, and the cut-off for the defini-
tion of obesity is arbitrary. Our lack of knowledge on the
continuum of obesity may account for the discrepancies in
the literature with respect to the correlation between fat
and bone.

Amylin: Co-secreted with insulin, amylin, a 37-amino
acid peptide, is a member of the calcitonin family of hor-
mones. The mean basal amylin concentration is generally
higher in obese than in lean, human subjects.(155) Amylin
administration seems to decrease food intake through both
central and peripheral mechanisms and has potential for
reducing body weight and body fat.(155,156) The elevated
amylin levels associated with obesity, however, may lead to
downregulation of amylin receptors and lessen the impact
of postprandial amylin secretion on satiety and gastric emp-
tying.(155) Similar to calcitonin, amylin has been shown to
reduce osteoclast development and thus inhibit bone re-
sorption.(157) In addition, amylin stimulates the prolifera-
tion of osteoblasts in vitro and increases indices of bone
formation when administered either locally or systemically
in vivo.(158) Consequently, high amylin levels associated
with obesity leads to high bone mass.

Preptin: Preptin is a 34-amino-acid peptide hormone
from the pancreatic � cells, corresponding to Asp(69)-
Leu(102) of the proinsulin-like growth factor II (proIGF-II)
E-peptide.(159) Cosecreted with insulin and amylin from the
pancreatic � cells, circulating preptin levels are elevated in
obesity.(159) Cornish et al.(160) assessed preptin’s activities
on bone and showed that preptin is anabolic to bone in vitro
and in vivo but that it does not affect osteoclast activity.
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Osteoblast and adipocyte differentiation

Our current understanding of the skeleton and differen-
tiation of adipose tissue in the bone marrow supports a
negative relationship between fat mass and bone mass. For
example, activation of peroxisome proliferators activated
receptor-� (PPAR-�) favors the differentiation of mesen-
chymal stem cells into adipocytes over osteoblasts.(161) In
contrast, the Wnt signaling pathway inhibits adipogen-
esis(162,163) while promoting osteogenesis.(164–166) Based on
these findings, an inverse relationship model, called the
“see-saw paradigm” has been proposed to describe the re-
lationship between fat mass and bone mass in bone mar-
row.(167) It should be noted that the above relationship is
limited to the marrow microenvironment. As discussed in
the epidemiologic and clinical observations, the effect of fat
on bone may be site-specific. For example, similar to bone
marrow mesenchymal stem cells, adipose-derived stromal
cells have osteogenic potential. Their osteogenic capacity
may vary by anatomical site, with visceral adipose-derived
cells exhibiting higher osteogenic potential than those iso-
lated from subcutis.(168) In addition, prospective studies in-
dicate that excess of visceral adipose tissue has higher risk
of morbidity than the excess of subcutaneous adipose tis-
sue.(169) This may be related to higher expression of gluco-
corticoid, interleukin-6, and 11b-HSD1 and lower leptin
and adiponectin levels in visceral adipose tissue compared
with subcutaneous adipose tissue.(169)

PPAR-� pathway: The PPAR-� pathway plays a key
regulatory role in initiating adipogenesis.(170) In the bone
marrow, PPAR-�2 regulates osteoblast development and
bone formation negatively and regulates marrow adipocyte
differentiation positively. PPAR-� ligands not only induce
murine bone marrow stem cell adipogenesis but also inhibit
osteogenesis.(171) Kirkland et al.(172) indicated that the
PPAR-� pathway is also associated with fat redistribution
and bone loss related with aging. Indeed, the expression of
PPAR-� in subcutaneous fat tissue is lower in old than
young monkeys, and mutations of the PPAR-� gene are
associated with an altered balance between bone and fat
formation in the marrow.(166,172,173) In advanced age, sub-
cutaneous and visceral fat depot size declines, whereas fat
depots in bone marrow increase, and it has been suggested
that PPAR-� accounts for increased bone marrow fat and
decreased production of osteoblasts related to aging.(174)

Decreased fat depot size is associated with decreased pro-
duction of the transcription factors, CCAAT/enhancer
binding � (C/EBP�) and PPAR-�, which results in reduced
expression of differentiation-dependent genes.(172) The ex-
pression of adipocyte-specific transcription factor is also in-
creased in old marrow compared with adult marrow.(174)

Altered production of these transcription factors leads to
dysdifferentiation of nonadipose, mesenchymal cells into
mesenchymal adipocyte-like default cells (MAD cells),
which contributes to accumulation of lipid in locations out-
side of fat tissue, such as the bone marrow.(173)

The effect of PPAR-� on bone and obesity suggests that
treatment with PPAR-� antagonists might be therapeuti-
cally beneficial for age-related bone loss intervention and
high marrow fat, although this has not yet been stud-

ied.(174,175) Combined treatment of bone marrow–derived
mesenchymal stem cells with PPAR-� and cytokines (IL-1
or TNF-�) in vitro, however, inhibited adipogenesis and
induced osteogenesis.(175)

Wnt signaling pathway: Recent studies have indicated
that the Wnt signaling pathway plays an important role in
inhibiting adipogenesis(162,176) and enhancing osteogen-
esis.(164,165) The inhibitory effect of the Wnt signaling path-
way on adipogenesis is mediated, in part, through �-
catenin, which inhibits expression of select PPAR-� target
genes.(177) The low-density lipoprotein receptor–related
protein 5 (LRP5) acts as a Wnt co-receptor,(178) and recent
data indicate that Wnt-mediated signaling through LRP5
affects bone formation.(164,165) Clinical studies indicate that
mutations in LRP5 are associated with changes in
BMD.(165,179) For example, loss-of-function LRP5 knock-
out mice showed an osteopenic/osteoporotic pheno-
type,(180) and osteoporosis-pseudoglioma syndrome, an au-
tosomal recessive disorder, was found in a patient with
mutations in LRP5.(164) In contrast, broader genetic studies
have shown that other point mutations in the LRP5 gene
are associated with enhanced high bone mass in hu-
mans(165) and that transgenic mice expressing this LRP5
mutation have a similar phenotype.(181,182)

TGF-� signaling pathway: A third, rather complex, regu-
latory pathway for mesenchymal stromal cell differentiation
is the TGF-� signaling pathway. TGF-�, a secreted factor
that is present at high levels in bone, has been shown to
inhibit adipocyte differentiation.(183) With osteoblasts, the
effects of TGF-� on proliferation and differentiation vary,
depending on the extracellular milieu and the stage of cell
differentiation at the time of exposure. TGF-� stimulates
proliferation and early osteoblast differentiation while in-
hibiting terminal osteoblast differentiation.(184,185) The
TGF-� signaling pathway interacts with the PPAR-� path-
way.(186) TGF-� has been shown to inhibit PPAR-� expres-
sion in human marrow stem cells and downregulate several
PPAR-� target genes.(186) TGF-� has also been shown to
influence the Wnt signaling pathway(187) by enhancing ex-
pression of Wnt and the Wnt co-receptor LRP5 and stabi-
lizing �-catenin. These TGF-�–induced changes stimulated
chondrocyte differentiation and inhibited adipocyte differ-
entiation in human marrow stromal cells.(187)

It should be noted that, in addition to adipocytes and
osteoblasts, pluripotential mesenchymal stem cells have the
potential to differentiate into chondrocytes, tenocytes,
myotubules, and neural cells (Fig. 2).(188) The PPAR-�,
Wnt, and TGF-� signaling pathways may also contribute to
differentiation into other mesenchymal lineages, besides
adipocytes and osteoblasts.(187) Clearly, the modulation
role of PPAR-�, Wnt, and TGF-� pathways in adipogenesis
and osteogenesis are complex, and further studies are
needed to clarify their role in cell differentiation.

SUMMARY

The majority of epidemiologic studies have highlighted
the existence of the interaction between adiposity and
bone. The results of these studies have supported contrast-
ing conclusions, however, and based on data generated to
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date, it is unclear whether fat mass has a beneficial effect on
bone. These inconsistent findings reflect the inherently
complicated nature of this relationship and call for new
approaches and strategies to accommodate the confound-
ing effects of fat mass on bone. It should be noted that our
knowledge of the clinical association between fat mass and
bone mass is derived primarily from cross-sectional studies,
which have limited capacity to dissect out the relationship
between these two variables. Longitudinal studies with
large sample size, powerful design, and careful data analysis
will be needed to conclusively show the true effect of fat
mass on bone. Elucidation of this relationship will generate
substantial research interest in the coming years, and stud-
ies using molecular and genetic methodology should help
identify regulatory pathways that lead to the development
of therapeutic interventions that can be used to treat osteo-
porosis and obesity simultaneously.
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