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The ecologic fallacy
In this issue, Robinson’s highly influential paper is
reprinted,1 along with a paper advocating the use
of multi-level thinking by Subramanian et al.2, and
commentaries by Oakes3 and Firebaugh.4

On re-reading Robinson’s paper, I was again struck
by the clarity of the basic take-home message:
ecological data can estimate individual associations
in only very rare situations. Robinson illustrated the
ecologic fallacy using correlation coefficients applied
at different levels of aggregation, whereas more recent
work has focused on loglinear models.5,6 For common
(in a statistical sense) outcomes, such as the
illiteracy-race example considered in Robinson’s
paper, a logistic form is more appropriate (and is
used by Subramanian et al.) but this form is less
amenable to analytic study.7 There has been an
abundance of work on the myriad causes of ecologic
bias on estimates of individual-level associations,
which include within-area variability in exposure,
and within-area confounding.8–13 One might think
that the estimation of contextual associations can be
carried out with ecologic data alone, but Greenland14

shows this is not the case. A key point is that contrary
to what is claimed by some authors,15 ecologic data
alone do not allow one to determine whether
ecological bias is likely to be present in a particular
dataset. The only solution to the ecologic fallacy is to
supplement the ecologic data with individual-level
data8,13, a subject that we now briefly review.

Hybrid designs
Prentice and Sheppard16 describe a very powerful
method for overcoming ecologic bias using within-
area covariate samples. When the outcome is not rare,
combining data is straightforward.13 When the model
is linear, one may analytically evaluate which areas

should be sampled in order to maximize informa-
tion.17 Work on developing methods for combining
ecologic and case–control data has also been carried
out.18–20 The ecologic data provide power, while the
case–control data provide identifiability, and hence
overcome ecologic bias, and only very small case–
control samples are required. A closely related
approach is to use two-phase methods21–25 in an
ecologic context.26 A number of alternative models
have also been proposed.27,28

Multi-level models
Subramanian et al.2 argue for the use of multi-level
models and provide a range of interesting analyses of
the Robinson data. Multi-level models are increasing
in popularity but I would like to stress the importance
of model checking (as does Oakes) and prior choice.
Multi-level models are very flexible and allow the
specification of complex nested and crossed struc-
tures, but as model complexity increases, in tandem
increase the number of assumptions that need
verification.

The random effects in multi-level models allow
dependencies in data to be acknowledged but their
use requires care. Outside of a linear-mixed effects
model, little theory exists to support the reliability of
estimation when violations of assumptions occur.
Typically, random effects are assumed to be normally
distributed and are required to be independent of any
covariates in the model. An important decision
is whether the random effect variances depend on
covariates, since misspecification can lead to serious
bias.29 Numerical investigations of deviations from
normality of random effects have been carried out30,31

and indicate that for estimation of fixed effects
misspecification may not be fatal. Serious bias can
arise when the random effects are correlated with
covariates, however.32 McCulloch et al.33 provide a
recent summary of what is currently known on the
effect of misspecification of the random effect
distribution. To summarize, it is crucial to assess the
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many layers of assumptions upon which reliable
inference rests. With respect to prior choice, the
specification for the variance components can be very
important, as we illustrate shortly.

Exploratory data analysis
If possible, it is preferable to use the raw data to
assess the assumptions required for the multi-level
models that we are contemplating, before modelling
has begun. After a model has been fitted, estimates of
random effects reflect both the data and the assumed
random effects distribution and so can be difficult to
interpret.

To illustrate we calculate the empirical log odds for
the data analysed by Subramanian et al., which consist
of state-level counts of the number illiterate (cannot
read and over 10 years of age), along with denomi-
nators, for each of the 49 states and three races (native-
born white, foreign-born white, black). These data
provide a relatively easy case study for model assess-
ment since the counts are large, and the models
envisaged are relatively simple. For each of the states,
we also have a binary indicator that denotes whether
Jim Crow laws were present in that state. These laws
enforced racial segregation in all public places.

In Figure 1, we plot the log odds of illiteracy by race
with points to the left corresponding to the 27 states
without Jim Crow laws and those to the right those
22 states with Jim Crow laws. Within each collection
of states the points are ordered by increasing overall
illiteracy rate. We clearly see the effect of Jim Crow
laws on native-born whites and blacks, and large
between-state variability in illiteracy is also evident.
We calculate summaries of these log odds by race and
by Jim Crow status; the row labelled ‘Analysis 1’ in
Table 1 gives the results. In both states with and
without Jim Crow laws, the odds of illiteracy for
foreign-born whites are roughly 15 times those of
native-born whites in states without Jim Crow laws.
Blacks in non-Jim Crow law states have odds that are
eight times those of native-born whites, whereas
relative to this category the odd ratio for blacks in Jim
Crow states is 27. In Table 2, we present the standard
deviations for the log odds for each of the 2� 3
combinations of absence/presence of Jim Crow laws
and race with ‘Analysis 1’ giving the empirical
standard deviations. We see that for foreign-born
whites the spread is roughly the same in both types of
states, while for the other two races the spread is
greater in Jim Crow states.

In Figure 2, we provide normal QQ plots of the log
odds and scatterplots of the pairs of log odds by state.
In the usual implementation of multi-level models,
these log odds are modelled as random effects and
assumed to be normally distributed. Panels (a)–(c)
give normal QQ plots for each race (after standardiza-
tion). Points close to the line indicate normality, and
nothing appears terribly amiss here. As an aside, we
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Figure 1 Log odds of illiteracy by state and race, ordered
by increasing proportion illiterate within states without
Jim Crow laws (background white), and within states with
Jim Crow laws (background grey)

Table 1 Odds ratio summaries from three analyses, by Jim
Crow status and race

Race

NBW FBW B

Non-Jim Crow Analysis 1 Ref 15.3 8.1

Analysis 2 Ref 14.5 7.9

Analysis 3 Ref 15.0 8.2

Jim Crow Analysis 1 4.5 15.8 27.4

Analysis 2 4.3 14.5 25.8

Analysis 3 4.8 16.7 30.0

NBW¼native-born white; FBW¼ foreign-born whites; B¼
black. Analysis 1 is based on the empirical log odds. Analysis
2 is based on a multi-level model that assumes that the random
effect distributions are identical for non-Jim Crow and Jim
Crow states. Analysis 3 is based on a multi-level model with
distinct random effect distributions for each of non-Jim Crow
and Jim Crow states.

Table 2 Standard deviation of log odds from three
analyses, by Jim Crow status and race

Race

NBW FBW B

Non-Jim Crow Analysis 1 0.48 0.55 0.40

Analysis 2 0.81 0.54 0.54

Analysis 3 0.48 0.56 0.37

Jim Crow Analysis 1 1.08 0.53 0.68

Analysis 2 0.81 0.54 0.54

Analysis 3 1.09 0.53 0.69

NBW¼native-born white; FBW¼ foreign-born whites;
B¼ black. Analysis 1 is based on the empirical log odds.
Analysis 2 is based on a multi-level model that assumes that
the random effect distributions are identical for non-Jim Crow
and Jim Crow states. Analysis 3 is based on a multi-level model
with distinct random effect distributions for each of non-Jim
Crow and Jim Crow states.
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note the collections of horizontal dots that are
apparent, particularly in panel (a) for states without
Jim Crow laws. On closer examination of the data, we
see that many of the population totals for native-born
whites end with ‘000’, ‘333’ or ‘667’, which suggests
that some form of rounding has been carried out in
their calculation. Panels (d)–(f) show the bivariate
relationships. Panel (e) shows that the log odds are
correlated within states for native-born whites and
blacks, suggesting there are unmeasured state-level
variables that influence illiteracy rates for these two
races.

Prior choice
We first describe issues pertinent to prior choice using
a multi-level model, which is identical to model 4 of
Subramanian et al.

Stage 1: observed data model
Let Yi1, Yi2, Yi3 denote the number of native-born
white, foreign-born white and black individuals who
are illiterate in state i, Ni1, Ni2, Ni3 the respective
denominators, and xi ¼ 0=1 a state-level indicator
for the absence/presence of Jim Crow laws. We define
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Figure 2 Log odds of illiteracy by Jim Crow status and race. Panels (a)–(c) give normal QQ plots, for native-born whites,
foreign-born whites and blacks, respectively (the log odds are standardized). Bivariate scatterplots for: (d) foreign-born
white versus native-born white, (e) black versus native-born whites, (f) black versus native-born white. Orange/black points
correspond to states without/with Jim Crow laws in place
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pij to be the proportion of illiterate individuals in
the population of race j in state i, i ¼ 1; . . . ; 49,
j ¼ 1; 2; 3.

Then Yij j pij �ind Binomial ðNij; pijÞ with

log
pij

1� pij

� �
¼ �j þ �jxi þ bij

Stage 2: random effects model
We assume

bi ¼

bi1

bi2

bi3

2
4

3
5 � N
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0
0
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@

1
A:

We write this latter distribution as bijD �iid Nð0;DÞ so
that an implicit assumption is that the random effects
distribution does not depend upon whether Jim Crow
laws are present in state i (which does not look
reasonable from the results of Table 2). This model
therefore allows the race-specific random effects to be
correlated across areas. In a Bayesian analysis, we
need to specify a prior distribution for the variance–
covariance matrix of the random effects which is a
tricky exercise since a variance–covariance matrix
needs to be positive definite.

Stage 3: hyperpriors
We assume independent priors:

�ð�1; �2; �3; �1; �2; �3;DÞ ¼ �ð�1Þ � �ð�2Þ � �ð�3Þ � �ð�1Þ

� �ð�2Þ � �ð�3Þ � �ðDÞ

with �j and � j, j ¼ 1; . . . ; 3, assigned flat (improper)
priors. One choice of prior over positive definite
matrices is the Wishart distribution, which is a
multivariate generalization of the gamma distribution.
Specifically, we assume that D

�1 � Wishart ðr; SÞ,
where r is a degrees of freedom and S is a scale
matrix (we parameterize the matrix so that
E½D�1� ¼ rS). The specification of these two para-
meters requires great care.

Subramanian et al. report the use of ‘diffuse’ priors
in MLwiN. In addition to the above model, they fit a
model with independent random effects, i.e.
bijj�

2 �ind Nð0; �2
j Þ with ��2

aj � Gammaða; bÞ and
a ¼ b ¼ 0:001. The latter is often used but can be
influential for some datasets and should be avoided.
As pointed out elsewhere,34 under this prior, 99% of
the prior mass for �j (the standard deviation of the
random effects—these are the values that appear in
Table 2) lies to the right of 6.4, which is clearly a
ridiculous prior. We follow a previously suggested
procedure,35 the details of which are in Appendix 1,
and give a range for expðbijÞ, the residual odds ratio
for race j in state i, i.e. the odds of being illiterate
compared with the median of the distribution of
odds across states for race j. For example, for a range

of residual odds of ½expð0:1Þ; expð10Þ� we obtain
a ¼ 0:5; b ¼ 0:0164. This gives 2.5, 50 and 97.5%
quantiles for �j of (0.08, 0.26 and 5.76), which are
far more prudent. For the more general dependent
case with 3� 3 variance–covariance matrix D,
Subramanian et al. choose the default in MLwiN
which, according to the manual, is a data-dependent
prior in which the matrix S is chosen based on the
data, which though often not fatal, is not strictly legal
since it is using the data twice. Appendix 1 contains
details of how r and S may be chosen in this more
general case. We again take the range of residual odds
to be ½expð0:1Þ; logð10Þ� with correlations of 0 (an
alternative would be to pick a correlation40 to reflect
the belief of shared unmeasured predictors of
illiteracy across all races), along with an integer
value of r which, in one sense, gives the most
conservative prior (the variance of the prior decreases
with increasing r, so a lower value of r gives larger
variance). These choices give r = 3 and S a diagonal
matrix with diagonal entries Sjj ¼ 30:45; j ¼ 1; 2; 3.

Hence, we see that prior specification is not
straightforward, but is important since it may
influence the results, particularly when the number
of units (here, states) is small. As a minimum,
priors should be clearly specified, along with the
estimation method used. Ideally data and code
should be made available on an author’s web site,
or as Supplementary Material.

Interpretation
The interpretation of parameters in multi-level models
requires great care. To illustrate, consider the model
for native-born whites only:

log
pi1

1� pi1

� �
¼ �1 þ �1xi þ bi1;

with bi1 �iid Nð0; �2
1Þ. This model implies that the odds

of exposure are log-normally distributed:

pi1

1� pi1
¼ expð�1 þ �1xi þ bi1Þ

� Log Normal �1 þ �1xi; �
2
1

� � :

For this model:

� expð�1 þ bi1Þ is the odds of illiteracy for native-born
whites in state i;

� expð�1Þ is the median illiteracy for native-born
whites for states without Jim Crow laws. An
alternative definition is the odds of illiteracy for
native-born whites in a ‘typical’ state without Jim
Crow laws; ‘typical’ here means bi1 ¼ 0;

� expð�1 þ �1Þ is the median odds of illiteracy for
native-born whites in states with Jim Crow laws;

� expð�1 þ �
2
1=2Þ ¼ E½expð�1 þ b1Þ� is the average

odds of illiteracy for native-born whites across
states without Jim Crow laws, and
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� expð�1 � 1:96� �1Þ is a 95% interval for the odds of
illiteracy for native-born whites across states with-
out Jim Crow laws. Hence, this function gives an
indication of the variability in the odds of illiteracy
across states without Jim Crow laws.

In Table 1, Analyses 2 and 3, we report the median
odds ratios. For native-born whites in states without
Jim Crow laws the median odds of illiteracy is
estimated as 0.005. A 95% interval for these odds
across states without Jim Crow laws is estimated as
(0.002, 0.0123), so that the odds of illiteracy range
between 1 in 500 and 1 in 80.

In Table 1, we report analyses with a common
random effects distribution across all states (‘Analysis
2’ and model 4 of Subramanian et al.) and a model
with distinct random effects for each category of
states (absence/presence of Jim Crow laws); this
model (‘Analysis 3’) is equivalent to separate fits to
each category of states. We see that this final analysis
is more appropriate, and essentially recovers the point
estimates from the analysis with the empirical log
odds, since here the denominators are large. Since the
random effects are so well estimated, and the number
of states is not small, the particular Wishart specifica-
tion assumed here is not influential.

We might ask what multi-level Analysis 3 has added
here, when compared the analysis based on the raw
empirical log odds, since the point estimates are
virtually identical. However, correct standard errors
for odds ratios require an explicit model for the
dependence between the counts within each state,
and this is provided by the multi-level approach, but
not by the empirical log odds calculations.
R and WinBUGS code for the analyses reported

here are available from http://faculty.washington.edu/
jonno.cv.html

Markov chain Monte Carlo
For these data, the Markov chain was very poorly
behaved, as shown in Figure 3, which displays the
time course of two chains for the log odds of illiteracy
for native-born whites in states without Jim Crow
laws. The chains were started from ‘good’ and ‘poor’
starting points. The good chain had initial values for
the fixed effects set at the maximum likelihood
estimates (MLEs), while the bad chain had fixed
effects set to zero. The bad chain does not ‘mix’ with
the good chain until around 300K iterations have
elapsed. Recently,36 a new approximation strategy for
Bayesian inference has been described, and is ideally
suited to data such as that considered here. The
approach is considerably faster than Markov chain
Monte Carlo (MCMC), and R code is available.

Diagnosis of convergence in an MCMC context can
be very difficult and is a black art, but various checks
are available. For these data, we fit the model (with
the same first two stages as the Bayesian model

described above) using maximum likelihood, and
then compare the results with the Bayesian analysis.
For such abundant data, one would not expect too
many differences, and this is confirmed in Table 3 for
the model in which a common random effects
distribution across all states is assumed.

We end with the usual caveats concerning the
analysis of observational data; clearly, we are far from
being able to make causal statements for these data
since the list of potential confounders is vast. Multi-
level models are a useful way of structuring analyses,
but their use requires care, and they cannot control
for confounding.

Supplementary Data
Supplementary data are available at IJE online.

Figure 3 Time course of two Markov chains for the log
odds of illiteracy for blacks

Table 3 Comparison of likelihood and Bayesian estimation
techniques

Likelihood Bayes

Parameter Estimate (SE) Estimate (SD)

�1 �5.32 (0.15) �5.25 (0.16)

�2 �2.58 (0.10) �2.57 (0.10)

�3 �3.21 (0.10) �3.19 (0.10)

g1 1.52 (0.23) 1.43 (0.25)

g2 0.03 (0.15) 0.02 (0.16)

g3 1.22 (0.15) 1.18 (0.17)

s1 0.79 (�) 0.81 (0.09)

s2 0.53 (�) 0.54 (0.06)

s3 0.52 (�) 0.54 (0.06)

For the likelihood summaries, we report the MLEs and the
asymptotic standard errors, whereas for the Bayesian analysis
we report the mean and standard deviation of the posterior
distribution.

334 INTERNATIONAL JOURNAL OF EPIDEMIOLOGY

http://faculty.washington.edu/


Funding
National Institute of Health (grant RO1 CAO95994).

Acknowledgement
I would like to thank Prof Subramanian for supplying
the data, and swiftly responding to queries concerning
his paper.

Conflict of interest: None declared.

References
1 Robinson WS. Ecological correlations and the behaviour

of individuals. Ame Sociol Rev 2009;15:351–57 (reprinted
in Int J Epidemiol 2009;38:337–41).

2 Subramanian SV, Jones K, Kaddour A, Krieger N.
Revisiting Robinson: the perils of individualistic and
ecologic fallacy. Int J Epidemiol 2009;38:342–60.

3 Oakes JM. Commentary: individual, ecological and multi-
level fallacies. Int J Epidemiol 2009;38:361–68.

4 Firebaugh G. Commentary: ’is the social world flat? W.S.
Robinson and the ecologic fallacy’. Int J Epidemiol
2009;38:368–70.

5 Richardson S, Stucker I, Hemon D. Comparison
of relative risks obtained in ecological and individual
studies: some methodological considerations. Int J
Epidemiol 1987;16:111–20.

6 Wakefield JC, Salway RE. A statistical framework for
ecological and aggregate studies. J Royal Stat Soc [Ser A]
2001;164:119–37.

7 Salway RA, Wakefield JC. Sources of bias in ecological
studies of non-rare events. Environ Ecol Stat 2005;12:
321–47.

8 Wakefield J. Ecologic studies revisited. Ann Rev Public
Health 2008;29:75–90.

9 Greenland S, Morgenstern H. Ecological bias, confound-
ing and effect modification. Int J Epidemiol 1989;18:
269–74.

10 Greenland S, Robins J. Ecological studies: biases, mis-
conceptions and counterexamples. Am J Epidemiol
1994;139:747–60.

11 Wakefield JC. Sensitivity analyses for ecological regres-
sion. Biometrics 2003;59:9–17.

12 Piantadosi S, Byar DP, Green SB. The ecological fallacy.
Am J Epidemiol 1988;127:893–904.

13 Wakefield JC. Ecological inference for 2 x 2 tables (with
discussion). J Royal Stat Soc [Ser A] 2004;167:385–445.

14 Greenland S. Ecologic versus individual-level sources of
bias in ecologic estimates of contextual health effects. Int
J Epidemiol 2001;30:1343–50.

15 King G. A Solution to the Ecological Inference Problem.
Princeton: Princeton University Press, 1997.

16 Prentice RL, Sheppard L. Aggregate data studies of
disease risk factors. Biometrika 1995;82:113–25.

17 Glynn A, Wakefield J, Handcock M, Richardson T.
Alleviating linear ecological bias and optimal design
with subsample data. J Royal Stat Soc [Ser A] 2008;71:
179–202.

18 Haneuse S, Wakefield J. The combination of ecological
and case–control data. J Royal Stat Soc [Ser B] 2008;70:
73–93.

19 Haneuse S, Wakefield J. Geographic-based ecological
correlation studies using supplemental case–control
data. Stat Med 2008;27:864–87.

20 Haneuse S, Wakefied J. Hierarchical models for combin-
ing ecological and case–control data. Biometrics
2007;63:128–36.

21 Cain KC, Breslow NE. Logistic regression analysis and
efficient design for two-stage studies. Am J Epidemiol
1988;128:1198–206.

22 Breslow NE, Holubkov R. Maximum likelihood estima-
tion of logistic regression parameters under two-phase,
outcome-dependent sampling. J Royal Stat Soc [Ser B]
1997;59:447–61.

23 Breslow NE, Holubkov R. Weighted likelihood, pseudo
likelihood and maximum likelhood methods for logistic
regression analysis of two-stage data. Stat Med 1997;16:
103–16.

24 Breslow NE, Chatterjee N. Design and analysis of two-
phase studies with binary outcome applied to Wilms
tumour prognosis. Appl Stat 1999;48:457–68.

25 Scott AJ, Wild CJ. Fitting regression models to case-
control data by maximum likelihood. Biometrika 1997;51:
54–71.

26 Wakefield J, Haneuse S. Overcoming eological bias using
the two-phase study design. Am J Epidemiol 2008;167:
908–16.

27 Jackson CH, Best NG, Richardson S. Improving ecological
inference using individual-level data. Stat Med 2006;25:
2136–59.

28 Jackson C, Best N, Richardson S. Hierarchical related
regression for combining aggregate and individual data in
studies of socio–economic disease risk factors. J Royal Stat
Soc [Ser A] 2008;171:159–78.

29 Heagerty PJ, Kurland BF. Misspecified maximum like-
lihood estimates and generalised linear mixed models.
Biometrika 2001;88:973–85.

30 Neuhaus JM, Hauck WW, Kalbfleisch JD. The effects
of mixture distribution misspecification when
fitting mixed-effects logistic models. Biometrika 1992;79:
755–62.

31 Neuhaus JM. Estimation efficiency with omitted covari-
ates in generalised linear models. J Am Stat Assoc
1998;93:1124–29.

32 Neuhaus JM, McCulloch CE. Separating between and
within-cluster covariate effects using conditional and
partitioning methods. J Royal Stat Soc [Ser B] 2006;68:
859–72.

33 McCulloch CE, Searle SR, Neuhaus JM. Generalized,
Linear, and Mixed Models. 2nd edn. New York: John
Wiley and Sons. 2008.

34 Kelsall JE, Wakefield JC. Discussion of ’Bayesian models
for spatially correlated disease and exposure data’, by
Best et al. In: Bernardo JM, Berger JO, Dawid AP,
Smith AFM (eds). Bayesian Statistics 6. Oxford: Oxford
University Press, 1999. p. 151.

35 Wakefield JC. Disease mapping and spatial regression
with count data. Biostatistics 2007;8:158–83.

36 Rue H, Martino S, Chopin N. Approximte Bayesian
inference for latent gaussian models using integrated

MULTI-LEVEL MODELLING 335



nested laplace approximations (with discussion). J Royal
Stat Soc [Ser B] 2009.

37 Gelman A. Prior distributions for variance parameters in
hierarchical models. Bayesian Analysis 2006;1:515–34.

38 Gustafson P, Hossain S, MacNab YC. Conservative prior
distributions for variance parameters in hierarchical
models. Canadian J Stat 2006;34:377–90.

Appendix 1
Prior choice
We begin with the independent random effects model
with

bijj�
2
j �ind N ð0; �2

j Þ

��2
j � Gamma ða; bÞ

for j ¼ 1; 2; 3. We can average over �2
j to obtain the

marginal distribution of expðbijÞ, the residual odds,
which is a more interpretable quantity and describes
the odds for race j in state i, relative to the median
odds across states. The marginal distribution for
expðbijÞ is a log Student’s t-distribution with d¼ 2a
degrees of freedom, location zero and scale �¼ b/a.
We choose a¼ 0.5 so that the marginal distribution

is a Cauchy distribution, and then choose b so that
95% of the residual odds lie within a range that we
specify. In particular, for the range ð1=R;RÞ we use the
relationship �td

0:025

ffiffiffiffi
�
p
¼ � log R, where td

r is the
100� r-th quantile of a Student’s t random variable
with d degrees of freedom, to give a ¼ d=2,
b ¼ ðlog RÞ2d=2ðtd

1�ð1�qÞ=2Þ
2. For example, for a range

of ½expð0:1Þ; expð10Þ�, we obtain b = 0.0164.
For the case of p dependent random effects,

bi ¼ ðbi1; . . . ; bipÞ, we have

bijD �ind Npð0;DÞ

D
�1 �Wishartpðr; SÞ

which, on marginalization over D, gives bi as multi-
variate Student’s t with location 0, scale matrix
½ðr � pþ 1ÞS��1 and degrees of freedom d ¼ r � pþ 1.
The margins of a multivariate Student’s t are t also,
which allows r and S to be chosen as in the univariate
case. Specifically, the j-th element, bij follows a
univariate student t distribution with location 0,
scale Sjj=ðr � pþ 1Þ, and degrees of freedom
d ¼ r � pþ 1 where Sjj is element (j, j) of the inverse
of S.

For other approaches to prior choice in hierarchical
models see Gelman37 and Gustafson et al.38
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