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Abstract

With the development of high-throughput sequencing and genotyping technologies, the number of markers collected in
genetic association studies is growing rapidly, increasing the importance of methods for correcting for multiple hypothesis
testing. The permutation test is widely considered the gold standard for accurate multiple testing correction, but it is often
computationally impractical for these large datasets. Recently, several studies proposed efficient alternative approaches to the
permutation test based on the multivariate normal distribution (MVN). However, they cannot accurately correct for multiple
testing in genome-wide association studies for two reasons. First, these methods require partitioning of the genome into
many disjoint blocks and ignore all correlations between markers from different blocks. Second, the true null distribution of
the test statistic often fails to follow the asymptotic distribution at the tails of the distribution. We propose an accurate and
efficient method for multiple testing correction in genome-wide association studies—SLIDE. Our method accounts for all
correlation within a sliding window and corrects for the departure of the true null distribution of the statistic from the
asymptotic distribution. In simulations using the Wellcome Trust Case Control Consortium data, the error rate of SLIDE’s
corrected p-values is more than 20 times smaller than the error rate of the previous MVN-based methods’ corrected p-values,
while SLIDE is orders of magnitude faster than the permutation test and other competing methods. We also extend the MVN
framework to the problem of estimating the statistical power of an association study with correlated markers and propose an
efficient and accurate power estimation method SLIP. SLIP and SLIDE are available at http://slide.cs.ucla.edu.
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Introduction

Association studies have emerged as a powerful tool for

discovering the genetic basis of human diseases [1–3]. With the

development of sequencing and high-throughput genotyping

technologies, the number of single nucleotide polymorphism

(SNP) markers genotyped by current association studies is

dramatically increasing. The large number of correlated markers

brings to the forefront the multiple hypothesis testing correction

problem and has motivated much recent activity to address it [4–6].

There are two common versions of the multiple testing

correction problem: per-marker threshold estimation and p-value

correction. In a typical study which collects M markers, at each

marker, we perform a statistical test and obtain a p-value which we

refer to as a pointwise p-value. We would like to know how significant

a pointwise p-value needs to be in order to obtain a significant

result given that we are observing M markers. The per-marker

threshold can be defined as the threshold for pointwise p-values

which controls the probability of one or more false positives [6].

Similarly, we would like to quantitatively measure the significance

of a pointwise p-value taking into account that we are observing M
markers. For each pointwise p-value, the corrected p-value can be

defined as the probability that, under the null hypothesis, a p-value

equal to or smaller than the pointwise p-value will be observed at

any marker [7]. For example, the Bonferroni correction corrects a

pointwise p-value p to pM, or estimates the per-marker threshold

as a=M given a significance threshold a.

While the Bonferroni (or Šidák) correction provides the simplest

way to correct for multiple testing by assuming independence

between markers, permutation testing is widely considered the

gold standard for accurately correcting for multiple testing [7].

However, permutation is often computationally intensive for large

data sets [4]. For example, running 1 million permutations for a

dataset of 500,000 SNPs over 5,000 samples takes up to 4 CPU

years using widely used software such as PLINK [8] (See Results).

On the other hand, the Bonferroni (or Šidák) correction ignores

correlation between markers and leads to an overly conservative

correction, which is exacerbated as the marker density increases.

In this paper, we correct for multiple testing using the

framework of the multivariate normal distribution (MVN). For
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many widely used statistical tests, the statistics over multiple

markers asymptotically follow a MVN [9,10]. Using this

observation, several recent studies [4,9,10] proposed efficient

alternative approaches to the permutation test, and showed that

they are as accurate as the permutation test for small regions at the

size of candidate gene studies (with ,1% average error in

corrected p-values) [4]. However, when applied to genome-wide

datasets, they are not as accurate. In our analysis of the Wellcome

Trust Case Control Consortium (WTCCC) data [11], these

methods eliminate only two-thirds of the error in the corrected p-

values relative to the Bonferroni correction. There are two main

reasons why these methods do not eliminate all of the error. First,

the previous MVN-based methods can be extended to genome-

wide analyses only by partitioning the genome into small linkage

disequilibrium (LD) blocks and assuming markers in different

blocks are independent, because they can handle only up to

hundreds of markers in practice [4,9]. This block-wise strategy

leads to conservative estimates because inter-block correlations are

ignored (Figure 1B). Second, these methods do not account for the

previously unrecognized phenomenon that the true null distribu-

tion of a test statistic often fails to follow the asymptotic

distribution at the extreme tails of the distribution, even with

thousands of samples.

We propose a method for multiple testing correction called

SLIDE (a Sliding-window approach for Locally Inter-correlated

markers with asymptotic Distribution Errors corrected), which

differs from previous methods in two aspects. First, SLIDE uses a

sliding-window approach instead of the block-wise strategy.

SLIDE approximates the correlation matrix as a band matrix (a

matrix with non-zero elements along the diagonal band), which

can effectively characterize the overall correlation structure

between markers given a sufficiently large bandwidth. Then

SLIDE uses a sliding-window Monte-Carlo approach which

samples a statistic at each marker by conditioning on the statistics

at previous markers within the window, accounting for entire

correlation in the band matrix (Figure 1C).

Second, SLIDE takes into account the phenomenon that the

true null distribution of a test statistic often fails to follow the

asymptotic distribution at the tails of the distribution. It is well

known that if the sample size is small, the true distribution and the

asymptotic distribution show a discrepancy [12,13]. However, to

the best of our knowledge, the effect of this discrepancy in the

context of association studies has not been recognized, since

thousands of samples are typically not considered a small sample.

We observe that this discrepancy often appears in genome-wide

association studies, even with thousands of samples, because of the

extremely small genome-wide per-marker threshold (or pointwise

p-value). The error caused by this discrepancy is more serious for

datasets with a large number of rare variants, highlighting the

importance of this problem for association studies based on next-

generation sequencing technologies (See Materials and Methods).

SLIDE corrects for this error by scaling the asymptotic distribution

to fit to the true distribution.

With these two advances, SLIDE is as accurate as the

permutation test. In our simulation using the WTCCC dataset

[11], the error rate of SLIDE’s corrected p-values is more than 20

times smaller than the error rate of previous MVN-based methods’

corrected p-values, and 80 times smaller than the error rate of the

Bonferroni-corrected p-values. Our simulation using the 2.7

million HapMap SNPs [14] shows that SLIDE is accurate for

higher-density marker datasets as well. In contrast, the error rates

of previous MVN-based methods increase with the marker density,

since the dataset will include more rare variants. Computationally,

our simulation shows that SLIDE is orders of magnitude faster

than the permutation test and faster than other competing

methods.

Figure 1. Block-wise strategy and sliding-window approach. (A) Correlations between 10 markers are depicted. (B) Correlations taken into
account by a block-wise strategy with a block size of 5. The ignored correlations are shown as black. (C) Correlations taken into account by a sliding-
window approach with a window size of 5. The ignored correlations are shown as black.
doi:10.1371/journal.pgen.1000456.g001

Author Summary

In genome-wide association studies, it is important to
account for the fact that a large number of genetic variants
are tested in order to adequately control for false positives.
The simplest way to correct for multiple hypothesis testing
is the Bonferroni correction, which multiplies the p-values
by the number of markers assuming the markers are
independent. Since the markers are correlated due to
linkage disequilibrium, this approach leads to a conserva-
tive estimate of false positives, thus adversely affecting
statistical power. The permutation test is considered the
gold standard for accurate multiple testing correction, but
is often computationally impractical for large association
studies. We propose a method that efficiently and
accurately corrects for multiple hypotheses in genome-
wide association studies by fully accounting for the local
correlation structure between markers. Our method also
corrects for the departure of the true distribution of test
statistics from the asymptotic distribution, which dramat-
ically improves the accuracy, particularly when many rare
variants are included in the tests. Our method shows a
near identical accuracy to permutation and shows greater
computational efficiency than previously suggested meth-
ods. We also provide a method to accurately and efficiently
estimate the statistical power of genome-wide association
studies.

Multiple Testing Correction for Correlated Markers
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The MVN framework for multiple testing correction is very

general, allowing it to be applied to many different contexts such

as quantitative trait mapping or multiple disease models [4]. We

show that the MVN framework can also correct for multiple

testing for the weighted haplotype test [15,16] and the test for

imputed genotypes based on the posterior probabilities [17].

In addition to multiple testing correction, we extend the MVN

framework to solve the problem of estimating the statistical power of

an association study with correlated markers. There are two

traditional approaches to this problem: a simulation approach

constructing case/control panels from the reference dataset

[4,10,17,18], which is widely considered the standard but is

computationally intensive; and the best-tag Bonferroni method

[19–21], which is an efficient approximation but is often inaccurate.

The power estimation problem can be solved within the MVN

framework because the test statistic under the alternative

hypothesis follows a MVN centered at the non-centrality

parameters (NCP). The vector of the NCPs turns out to be

approximately proportional to the vector of correlation coefficients

(r) between the causal SNP and the markers. This is a multi-

marker generalization of the Pritchard and Preworzki [22] single-

marker derivation of the NCP proportional to r. Our method

SLIP (Sliding-window approach for Locally Inter-correlated

markers for Power estimation) efficiently estimates a study’s power

using the MVN framework.

Seaman and Müller-Myhsok [9] and Lin [10] pioneered the use

of the MVN for multiple testing correction. Seaman and Müller-

Myhsok described the direct simulation approach (DSA) method.

Conneely and Boehnke [4] increased its efficiency by adapting an

available software package called mvtnorm [23,24]. Both studies

primarily focused on datasets used in candidate gene studies and

suggested the block-wise strategy as a possible approach for

genome-wide studies.

Another approach for multiple testing correction is to estimate

the effective number of tests from eigenvalues of the correlation

matrix [25–27]. Recently, Moskvina and Schmidt [6] and Pe’er et

al. [28] showed that the effective number of tests varies by the p-

value levels, demonstrating that a method estimating a constant

effective number can be inaccurate. Moskvina and Schmidt [6]

proposed a pairwise correlation-based method called Keffective,

which estimates the effective number taking into account the

significance level. Keffective is a sliding-window approach similar

to SLIDE, but it differs because within each window it uses the

pairwise correlation to the most correlated marker, while SLIDE

uses the conditional distribution given all markers. Fitting the

minimum p-value distribution by a beta distribution [29] has been

shown often to be inaccurate [6]. Kimmel and Shamir [30]

developed an importance sampling procedure called rapid

association test (RAT). RAT is efficient for correcting very

significant p-values, but requires phased haplotype data.

Connecting the multiple testing correction and power estima-

tion problems leads to the insight that the per-marker threshold

estimated from the reference dataset for estimating power can be

used as a precomputed approximation to the true per-marker

threshold for the collected samples. In simulations using the

WTCCC control data, we show that the per-marker threshold

estimated from the HapMap CEU population data approximately

controls the false positive rate.

Our methods SLIP and SLIDE require only summary statistics

such as the correlation between markers within the window size,

allele frequencies, and the number of individuals. Therefore unlike

the permutation test, our method can still be applied even if the

actual genotype data is not accessible. Our methods are available

at http://slide.cs.ucla.edu.

Materials and Methods

Multiple Testing Correction
Multivariate normal approximation. For many widely

used statistical tests, the vector of statistics over multiple markers

asymptotically follows a MVN [9,10]. The covariance matrix of

the MVN can be derived for many popular statistical tests such as

Armitage’s trend test in the context of the general score test [4,9].

We perform this derivation at the haplotype level using the

properties of the hypergeometric distribution in the context of the

x2 test in order to highlight the connection between the multiple

testing correction and the power estimation problems. In Text S1,

we also derive the covariance for the weighted haplotype test

[15,16] and the test for imputed genotypes [17,31,32]. All of the

results presented here for balanced case/control studies can be

extended to unbalanced studies. We will interchangeably use the

terms ‘covariance matrix’ and ‘correlation matrix’, because the

variances are 1.

Assume we permute N case haplotypes and N control

haplotypes. Let pi be the minor allele frequency (MAF) at marker

mi estimated from the sample. Let p̂pz
i and p̂p{

i be the observed

MAFs in the permuted case and control haplotypes. Although pi

itself is an observed value from the sample, we will consider it as a

constant because it is invariant over random permutations. The

minor allele count in the permuted case haplotypes, Np̂pz
i , follows

a hypergeometric distribution. If N is large, the test statistic at mi

Si~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N{1

4

r
p̂pz

i {p̂p{
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pi 1{pið Þ
p *N 0,1ð Þ:

The squared statistic differs from the Pearson’s x2 statistic by a

constant 2N{1
2N

.

Let Si and Sj be the statistics at marker mi and mj . Let pij , pIj ,

piJ , pIJ be the sample frequencies of the four haplotypes with

minor and major alleles at mi and mj respectively. A random

permutation is equivalent to selecting N case haplotypes from 4

bins of different haplotypes. Thus, the haplotype count in the

permuted case haplotypes, (Np̂pz
ij , Np̂pz

Ij , Np̂pz
iJ , Np̂pz

IJ ), follows a

multivariate hypergeometric distribution. By the properties of the

hypergeometric distribution,

Cov p̂pz
i ,p̂pz

j

� �
~Cov p̂pz

ij zp̂pz
iJ ,p̂pz

ij zp̂pz
Ij

� �

~
1

2N{1
pij 1{pij

� �
{piJpij{pijpIj{piJpIj

� �

~
1

2N{1
pij{pipj

� �

Cov p̂pz
i {p̂p{

i ,p̂pz
j {p̂p{

j

� �

~Cov p̂pz
i { 2pi{p̂pz

i

� �
,p̂pz

j { 2pi{p̂pz
j

� �� �

~4Cov p̂pz
i ,p̂pz

j

� �
ð1Þ

Cov Si,Sj

� �
~

pij{pipjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pi 1{pið Þpj 1{pj

� �q ~rij ð2Þ

where rij is the correlation coefficient between mi and mj

measured in the sample.

Multiple Testing Correction for Correlated Markers
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Let S~ rij

� �
be the M|M covariance matrix between M

markers. By the multivariate central limit theorem [33], if N is

large, the vector of statistics S~ S1, . . . ,SMð Þ asymptotically

follows a MVN with mean zero and variance S. Given a

pointwise p-value u, let R uð Þ be the M-dimensional rectangle

with corners W{1 u=2ð Þ1M and W{1 1{u=2ð Þ1M where W is the

cumulative density function (c.d.f.) of the standard normal

distribution and 1M is the vector of M ones. The corrected p-

value u’ is approximated as the outside-rectangle probability,

u’~1{
1

2pð Þ
M
2 Sj j

1
2

ð
R uð Þ

e{1
2
X TS{1X dX , ð3Þ

as shown in Figure 2A. Similarly, given a significance threshold a,

the per-marker threshold am is approximated by searching for a

pointwise p-value whose corrected p-value is a.

Discrepancy between asymptotic and true distribu-

tions. If the asymptotic MVN closely approximates the true

distribution of the statistic, then Formula (3) will provide an

accurate multiple testing correction; this has been shown to be true

for small regions such as those tested in candidate gene studies [4].

One may expect that the discrepancy between the asymptotic and

true distributions would be negligible in current association

studies, given their thousands of samples.

However, we observe that this discrepancy can appear in

genome-wide association studies, in spite of the large sample size,

because of the extremely small per-marker threshold (or pointwise

p-value) caused by the large number of tests. At its extreme tails,

the asymptotic distribution is typically thicker than the true

distribution.

This phenomenon can be illustrated with a single-SNP

experiment using the x2 test. For a threshold t, the asymptotically

approximated p-value (asymptotic p-value) is pasym~2W {
ffiffi
t
p� �

.

Assume 1,000 case and 1,000 control haplotypes. Given a fixed

number of minor alleles, we can list every possible 262 table. The

true p-value ptrue is the sum of the probabilities of the tables whose

statistic is §t. If the asymptotic approximation is accurate, then

pasym~ptrue. We compare these two p-values for many different

thresholds and plot the ratio in Figure 3. We repeat the

experiments for various MAFs and sample sizes.

Figure 3 shows that even with thousands of samples, at the

genome-wide significance level, the asymptotic p-value is highly

inflated compared to the true p-value. The inflation is more

dramatic for SNPs with small MAFs. We observe the similar

phenomenon using genotypes and the trend test (data not shown).

One may argue that this phenomenon is not important because

it mostly occurs at rare SNPs (MAF#5%) where current studies

already have low power to detect associations. However, an

incorrect approximation of the distributions at some SNPs affects

the corrected p-values of all SNPs. This is because the corrected p-

value depends on the distributions of the statistics at all of the

SNPs, as it is defined as the probability observing significant results

at any marker. For example, suppose we approximate 10

independent normal distributions at 10 independent SNPs.

Assume that we correctly approximate 9 distributions, but for

one distribution we think that the tails are thicker than the true

distribution by a factor of 100. For any given pointwise p-value p,

the true corrected p-value is 1{ 1{pð Þ10&10p by the Šidák

correction. However, we will estimate the corrected p-value as

1{ 1{pð Þ9 1{100pð Þ&101p by integrating over the MVN. This

shows that incorrectly approximating the distributions at rare

SNPs can adversely affect the corrected p-values of all SNPs,

including common SNPs.

One can avoid this type of error in corrected p-values by using a

method not dependent on the asymptotic approximation, such as

the permutation test, or by eliminating rare SNPs in the analysis. It

may be sensible to remove rare SNPs with a few or tens of minor

allele counts, if the power is very low or if the SNPs are error-

prone in their calling. However, Figure 3 shows that the error

caused by using the asymptotic approximation happens even at

SNPs with minor allele counts in the hundreds. Therefore

removing all of them will decrease our power to detect

associations.

SLIDE. SLIDE corrects for multiple testing by using a sliding-

window approach to approximate the MVN and then scaling the

MVN to approximate the true distribution of the statistic. There

are two underlying intuitions. First, a sliding window approach

takes into account most of the correlations in the data due to the

local LD structure. Second, even though the asymptotic MVN

shows a departure from the true distribution at the tail, the scaled

MVN will closely approximate the true distribution because the

covariance between the statistics is identical in both the true

distribution and the MVN. (The covariance derivation does not

involve the central limit theorem.)

Step 1 — SLIDE first approximates the MVN by using a

sliding-window Monte-Carlo approach. Given M markers, let

(S1, � � � ,SM ) be the vector of statistics which asymptotically follows

a MVN under the null hypothesis. Let f S1,S2, � � � ,SMð Þ be the

joint probability density function (p.d.f.) of the statistics. Our goal

is to generate a large number of samples, (ŜS1,ŜS2, � � � ,ŜSM ), to

approximate the MVN. If M is very large, the standard sampling

Figure 2. Probability density function of a bivariate MVN at
two markers. The area outside the rectangle is the critical region. (A)
Under the null hypothesis, the MVN is centered at zero. The outside-
rectangle probability is the corrected p-value (or the significance level).
(B) Under the alternative hypothesis, the MVN is shifted by the non-
centrality parameter. The outside-rectangle probability is power.
doi:10.1371/journal.pgen.1000456.g002

Multiple Testing Correction for Correlated Markers
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approach using the Cholesky decomposition [34] is impractical

unless we split the region into small blocks.

Under the local LD assumption, the statistics at distant markers

are uncorrelated. Thus, given a window size w, we can assume

that Si is conditionally independent of S1,S2, � � � ,Si{w{1 given

Si{w,Si{wz1, � � � ,Si{1. Then by the chain rule,

f S1,S2, � � � ,SMð Þ

~f S1ð Þf S2 S1jð Þf S3 S1,j S2ð Þ � � � f SM SM{w,j � � � ,SM{1ð Þ:

Thus, ŜSi can be sampled given ŜSi{w, � � � ,ŜSi{1, based on the

conditional distribution f Si Si{w,j � � � ,Si{1ð Þ. The conditional

distributions are given by the standard formula for the MVN.

Thus we can efficiently generate a large number of samples. The

procedure is described in detail in Text S2.

Step 2 — We scale the approximated MVN to fit to the true

distribution of the statistic (Figure 4). The rationale for this step is

that, if we only consider the marginal distribution at each marker,

it is possible to analytically compute the true distribution by listing

all possible 262 or 263 contingency tables [35]. This allows us to

directly compare the asymptotic distribution and the true

distribution, and to compute how much we should scale the

asymptotic distribution to fit to the true distribution.

The level of discrepancy between the asymptotic and true

distributions is large at the tails of the distribution compared to the

center. Thus, in order to scale the asymptotic distribution to fit to

the true distribution, we cannot multiply the entire distribution by

a single scaling factor, but must instead compute the scaling factor

for each different threshold.

Given a x2 threshold t, we compute the scaling factor as follows.

The asymptotic p-value is 2 1{W
ffiffi
t
p� �� �

. Let X be a random

variable following the true discrete distribution of the x2 statistic.

The exact true p-value is ptrue~Pr X§tð Þ. The scaling factor is

computed as
ffiffi
t
p �

W{1 1{ptrue=2ð Þ, because if we scale the

standard normal distribution by this factor, the asymptotic p-

value for the scaled distribution becomes exactly ptrue at the

Figure 3. Discrepancy between asymptotic p-value and true p-value in a single SNP experiment. Given a x2 threshold t, the asymptotic
p-value is 2W {

ffiffi
t
p� �

. The true p-value is obtained by listing all possible contingency tables. The number of individuals (N) denotes the number of
haplotypes, half control and half case.
doi:10.1371/journal.pgen.1000456.g003

Figure 4. SLIDE’s scaling procedure. The probability density
function of the asymptotic bivariate MVN is depicted as a grid. The
probability mass function of the true distribution is depicted as a
histogram. (A) The asymptotic distribution often shows a discrepancy
from the true distribution. (The discrepancy is exaggerated in this
figure.) (B) After scaling down the asymptotic distribution, the
discrepancy is removed.
doi:10.1371/journal.pgen.1000456.g004

Multiple Testing Correction for Correlated Markers
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threshold t. In practice, we find that using the so-called mid p-

value pmid~Pr Xwtð Þz 1
2

Pr X~tð Þ [35] instead of ptrue provides

a better approximation to the true distribution.

Note that, for unbalanced case/control studies, the level of

discrepancy is not symmetric at the upper and lower tails of the

normal distribution. Thus, we should compute the scaling factor

for each tail of the normal distribution separately.

Step 3 — Given the scaled MVN, p-values are corrected by

integrating over the outside of the rectangle as in Formula (3).

Power Estimation
Assumptions. A discussion of association study power

depends on many arbitrary assumptions. Though our framework

can be extended to other assumptions, in this paper, we adopt

those used in De Bakker et al. [18]: (1) The disease status is affected

by a single SNP. (2) The allele effect is multiplicative. (3) The

relative risk is known. (4) The phased reference dataset represents

the population.(5) All marker SNPs are in the reference dataset. (6)

All possible causal SNPs are in the reference dataset. (7) Each

possible causal SNP is equally likely to be causal.

For complex diseases, assumption (1) can still be applied if each

causal SNP marginally contributes to the risk. Assumptions (4) and

(5) can lead to an overestimation of power, especially if the

markers are chosen using the reference dataset [36]. Instead of

assumption (7), a non-uniform distribution can also be used [37].

Finally, we assume that the investigator has determined the

number of individuals in the study and the significance threshold.

Multivariate normal approximation. We extend the

MVN framework to the power estimation problem. Consider a

study design which defines markers and plans to collect N=2 case

and N=2 control diploid individuals. Let ph
i be the population

MAF at marker mi estimated from the reference dataset (‘h’

denoting the HapMap [14]). Let pz
i and p{

i be the MAFs in the

case and control populations.

Single marker — If marker mi is causal for a disease of

prevalence F with relative risk c, under the multiplicative model,

pz
i ~cph

i

�
c{1ð Þph

i z1
� �

and p{
i ~ ph

i {Fpz
i

� ��
1{Fð Þ: ð4Þ

The case/control study can be thought of as a procedure which

draws N chromosomes from the case population and N

chromosomes from the control population. Let p̂pz
i and p̂p{

i be

random variables denoting the observed MAFs in the collected

cases and controls. Let p̂pi~ p̂pz
i zp̂p{

i

� ��
2 and pi~ pz

i zp{
i

� ��
2.

Then, since each of Np̂pz
i and Np̂p{

i follows a binomial

distribution, if N is large, the test statistic at marker mi

Si~
p̂pz

i {p̂p{
iffiffiffiffiffiffiffiffiffi

2=N
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂pi 1{p̂pið Þ
p *N li

ffiffiffiffiffi
N
p

,1
� �

,

where

li

ffiffiffiffiffi
N
p

~
pz

i {p{
i

2pi 1{pið Þ
ffiffiffiffiffi
N
p

is the non-centrality parameter.

If the marker and the causal SNP are distinct (a condition called

indirect association), the NCP derivation changes. Suppose a SNP sc

is causal but we collect marker mi. If we put an imaginary marker

mc at SNP sc, we can compute the NCP at marker mc lc

ffiffiffiffiffi
N
p� �

,

and compute the correlation coefficient between mi and mc from

the reference dataset (rh
ic). Pritchard and Preworzki [22] show that

the NCP at marker i is approximately rh
iclc

ffiffiffiffiffi
N
p

.

Multiple markers — We examine the covariance between

the statistic Si at marker mi and Sj at marker mj given that SNP sc

is causal. Let ph
ij , ph

Ij , ph
iJ , ph

IJ be the haplotype frequencies with

minor and major alleles at mi and mj respectively, in the overall

population. Let pz
ij , pz

Ij , pz
iJ , pz

IJ and p{
ij , p{

Ij , p{
iJ , p{

IJ be the

frequencies in the case and control populations.

Collecting cases (or controls) is equivalent to drawing N
chromosomes from four possible haplotypes. Thus, the haplotype

count in cases, (Np̂pz
ij , Np̂pz

Ij , Np̂pz
iJ , Np̂pz

IJ ), follows a multinomial

distribution. By the properties of the multinomial distribution,

Cov p̂pz
i ,p̂pz

j

� �
~Cov p̂pz

ij zp̂pz
iJ ,p̂pz

ij zp̂pz
Ij

� �

~
1

N
pz

ij 1{pz
ij

� �
{pz

iJ pz
ij {pz

ij pz
Ij {pz

iJ pz
Ij

� �

~
1

N
pz

ij {pz
i pz

j

� �

Cov p̂pz
i {p̂p{

i ,p̂pz
j {p̂p{

j

� �

~Cov p̂pz
i ,p̂pz

j

� �
zCov p̂p{

i ,p̂p{
j

� �

~
1

N
pz

ij {pz
i pz

j

� �
z

1

N
p{

ij {p{
i p{

j

� �

Cov Si,Sj

� �
~

pz
ij {pz

i pz
j

� �
z p{

ij {p{
i p{

j

� �

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pi 1{pið Þpj 1{pj

� �q ð5Þ

&
ph

ij{ph
i ph

jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ph

i 1{ph
i

� �
ph

j 1{ph
j

� �r ~rh
ij , ð6Þ

where rh
ij is the correlation coefficient between mi and mj

estimated from the reference dataset.

In practice, approximation in Formula (6) usually leads to an

accurate power estimate. However, if the relative risk is very large,

the Formula (5) can be computed exactly and used as follows. By

Formula (4), we can calculate pz
c and p{

c , the MAFs of the causal

SNP sc in the case and control populations. We can then estimate

pijc or pijC , the conditional probability that we will observe the

minor allele at mi given we observe the minor or major allele at sc.

Note that these conditional probabilities are exactly, not

approximately, invariant between cases and controls (See Text

S3). Therefore pz
i ~pijcpz

c zpijC 1{pz
c

� �
. We can similarly

estimate p{
i and the haplotype frequencies (pz

ij and p{
ij ), which

allows us to compute Formula (5).

Let Sh~ Cov Si,Sj

� �� �
be the M|M covariance matrix

between M markers. Let

Lc

ffiffiffiffiffi
N
p

~ l1,l2, . . . ,lMð Þ
ffiffiffiffiffi
N
p

~lc

ffiffiffiffiffi
N
p

rh
c1,rh

c2, . . . ,rh
cM

� �
ð7Þ

be the vector of NCPs induced by the causal SNP sc. By the

multivariate central limit theorem [33], if N is large, the vector of

statistics (S1, . . . ,SM ) asymptotically follows a MVN with mean

Lc

ffiffiffiffiffi
N
p

and variance Sh.
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Power depends on the per-marker threshold ah
m. Given a

significance threshold a, ah
m is set to a level which controls the

outside-rectangle probability of the null MVN at a such that

a~1{
1

2pð Þ
M
2 Sh
		 		12

ð
R ah

mð Þ
e{1

2
X T Shð Þ{1

X dX : ð8Þ

Given ah
m, the per-causal-SNP power with respect to a causal

SNP sc is the outside-rectangle probability of the alternative

MVN,

Power scð Þ~

1{
1

2pð Þ
M
2 Sh
		 		12

ð
R ah

mð Þ
e{1

2
X{Lc

ffiffiffi
N
pð ÞT Shð Þ{1

X{Lc

ffiffiffi
N
pð ÞdX ,

ð9Þ

as shown in Figure 2B. The average power is obtained by

averaging per-causal-SNP powers over all putative causal SNPs.

SLIP. Our method SLIP estimates the power of a study design

using the MVN framework. First, like SLIDE, SLIP estimates the

per-marker threshold in Formula (8) using a sliding window

approach. Then SLIP samples causal SNPs, approximates the

alternative MVN to estimate the per-causal-SNP power, and

averages per-causal-SNP powers over sampled causal SNPs.

Since power is typically larger (e.g. 80%) than a p-value (e.g.

.01), a small error in the per-marker threshold barely affects the

estimate. Thus, the error caused by using the asymptotic

approximation is negligible. Also, given a causal SNP, we can

assume that nearby markers (e.g. those within 61 Mb) can

capture most of the statistical power due to local LD. Thus, we can

set a window size and only use the markers within that window to

estimate the alternative MVN, which will be a n-dimensional
marginal MVN if we use n markers.

The computation becomes very efficient if we use approximation

(6). Since approximation (6) states that the covariance is the same for

the null and alternative MVNs, we can re-use the null MVN

constructed for estimating the per-marker threshold, by shifting it by

the NCP to get the alternative MVN. If we re-use the random

samples this way, the constructed random samples will be not

completely random, as they depend on each other. However, we

observe that the inaccuracy caused by this dependency is negligible

if we generate a large number of samples for the null MVN. If we re-

use the samples, then with almost no additional computational cost,

SLIP can generate power estimates for multiple relative risks or

study sample sizes, since these only change the NCP.

Multiple Testing Correction Using Reference Dataset
Multiple testing correction is generally performed using the

collected data and not the reference data. Recall that the

difference between the per-marker threshold for multiple testing

correction (am) and the per-marker threshold for power estimation

(ah
m) is that the former is estimated from the collected data, the

latter from the reference data. We suggest that multiple testing can

be approximately corrected using the reference data, by using ah
m

as a substitute of am. The advantage is that we can obtain an idea

of the per-marker threshold even before the samples are collected.

In Results, we show the accuracy of this approximation using the

HapMap data and the WTCCC data.

Genotype Data
We downloaded the HapMap genotype data (release 23a, NCBI

build 36) from the HapMap project web site [14,38] and phased

the data into haplotypes using HAP [39], which can handle the

trio information. We downloaded the case/control genotype data

from the Wellcome Trust Case Control Consortium web site [11]

and phased it into haplotypes using Beagle [40].

Web Resources
The URL for methods presented herein is as follows: http://

slide.cs.ucla.edu

Results

Multiple Testing Correction
P-value correction in Chromosome 22 of WTCCC

data. In order to compare how accurately and efficiently

different methods correct multiple testing, we simulate a study

using the WTCCC data [11]. We use the chromosome 22 data

(5,563 SNPs) of the Type 2 diabetes (T2D) case/control study

(4,862 individuals). Since not every method can be applied to

unphased genotype data, we use haplotype data using the allelic x2

test and permutation by chromosomes. We first remove any

existing associations by randomly dividing the chromosomes into

half cases and half controls. Removing associations is necessary

because to correct a pointwise p-value, RAT currently requires an

actual SNP with that pointwise p-value to be implanted in the

dataset as the most significant SNP.

First, we perform 10 M permutations to correct ten different

pointwise p-values from 1024 to 1027, whose corrected p-values

are from .04 to .0004. We will consider the corrected p-values by

the permutation test as the gold standard, and call them permutation

p-values. We will assume a method is accurate if its corrected p-

values are close to the permutation p-values.

We use SLIDE, DSA, mvtnorm, RAT, and Keffective to

correct p-values. DSA and mvtnorm are MVN-based methods

using the block-wise strategy. We use a constant block size

(window size) of 100 markers for all methods. Since RAT defines

the window size in terms of physical distance, we use 600 kb, the

average distance of 100 markers in the dataset. We use -X -e2

option for RAT for an exact computation of the importance

sampling procedure as suggested by Kimmel and Shamir [30]. For

every method, we use a large number (.1 M) of sampling

iterations, which allows 95% confidence interval within 6.01p for

p~:04 and 6.1p for p~:0004. Keffective corrects p-values by

estimating the effective number of tests for a significance threshold

and dividing the pointwise p-values by that number. We use

a~:05 and window size of 100 for Keffective.

Figure 5 shows the ratios between the ten corrected p-values

and the permutation p-values. An accurate method will yield a

ratio of 1 for all ten different thresholds. The dashed lines denote

the area where an accurate method’s estimate will be found more

than 95% of the time. As expected, the Bonferroni correction is

very conservative, overestimating the p-values by 64% on average.

DSA is conservative with an average error of 19%. This is

equivalent to reducing the error by only about two thirds relative

to the Bonferroni correction. The reasons for the errors include

the block-wise strategy ignoring inter-block correlations, and not

correcting for the error caused by using the asymptotic

approximation. In addition to these errors, mvtnorm suffers from

an anti-conservative bias which grows as the p-value becomes

more significant. This is because the p-value in each block is too

small for mvtnorm to accurately estimate. Our simulation shows

that this anti-conservative bias increases with the number of

sampling iterations (data not shown).

Keffective is more accurate and faster than DSA and mvtnorm.

The average error of Keffective is 10.6%. Note that Keffective is

Multiple Testing Correction for Correlated Markers
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optimized to provide an efficient approximation for the effective

number of tests within ,10% of error. Thus, Keffective is

achieving its goal.

Both RAT and SLIDE show accurate estimates with the same

average error of 0.8%. Thus, the error rate of SLIDE’s corrected

p-values is more than 10 times smaller than the error rate of

Keffective’s corrected p-values, more than 20 times smaller than

the the error rate of DSA’s corrected p-values, and 80 times

smaller than the error rate of the Bonferroni-corrected p-values.

We now explore how each source of error in MVN-based

methods – the block-wise strategy and the use of the asymptotic

approximation without correction – affects the error rate. We

remove 1,048 rare SNPs (MAF,.05) and perform multiple testing

correction with respect to the remaining 4,515 common SNPs.

When considering only common SNPs, the error caused by using

the asymptotic approximation will be much smaller (See Materials

and Methods). Figure S1 shows that the average error of DSA is

reduced from 19% to 3.5%, showing that a considerable amount

of the error is due to using the asymptotic approximation without

correction. The error of Keffective is also reduced from 10.6% to

6.5%. The error of mvtnorm is increased from 9.4% to 12.9%

because the conservative error caused by using the asymptotic

approximation no longer compensates for its anti-conservative

bias. SLIDE and RAT are consistently accurate regardless of the

exclusion of rare SNPs. Although many methods look relatively

accurate when considering only common SNPs, they are

inaccurate when considering all SNPs.

Table 1 shows the extrapolated running time of each method

for correcting p-values with 500 K SNPs tested over 5,000

individuals. The running times of RAT, DSA, and mvtnorm

increases linearly with the number of p-values we correct, since

they are currently implemented to correct one p-value at a time

(though this may change in future versions). Since Keffective is not

a sampling approach, its running time is independent of the

number of samples. Given a window size of 100, our time estimate

for Keffective (19 h) is similar to the estimate (,20 h) in Moskvina

and Schmidt [6].

In many settings, SLIDE is 500 times faster than the

permutation test and considerably faster than the other methods.

The running time of SLIDE, Keffective, DSA, and mvtnorm is

approximately independent of the study sample size, whereas the

time of the permutation test is linearly dependent on it. Thus, the

efficiency gain of these methods relative to the permutation test

will increase as the study size increases. We summarize the

accuracy and efficiency of the tested methods in Figure 6.

Here we describe a few details of our running time

measurements. We used our own C implementation for the

permutation test. However, we expect that the measured time will

be similar to that for commonly used software such as PLINK [8],

based on the claimed running time of PLINK on its website (1

CPU-day for 50 k permutations over 100 K SNPs of 350 samples).

Note that PLINK’s default ‘‘adaptive permutation’’ is a single SNP

permutation to estimate the pointwise p-value, thus its max(T)

permutation is required for multiple testing correction. Measuring

the running time of mvtnorm has some subtleties since it has two

parameters, the number of samples (maxpts) and the absolute

error (abseps). The procedure is terminated if either the maximum

number of samples is reached or the specified error is obtained.

Therefore, we set abseps to a very small level (10220) so that the

Figure 5. Ratios between corrected p-values and permutation
p-values for ten different p-value thresholds. We use the WTCCC
T2D case/control chromosome 22 data. Approximated time is for
correcting 10 p-values with respect to 500 K SNPs assuming 100 K
permutations. The dashed lines denote the interval where an accurate
methods’ estimate will be found more than 95% of the time.
doi:10.1371/journal.pgen.1000456.g005

Table 1. Running time for correcting genome-wide p-values in a study with 500 K SNPs over 5,000 individuals.

Procedure # Permutations Permutation SLIDE DSA Mvtnorm* RAT Keffective

Correcting 1 p-value 10 K 16 d 0.6 h 1.4 h 0.7 h 7 h 19 h

Correcting 10 p-values 10 K 16 d 0.6 h 14 h 7 h 70 h 19 h

Correcting 1 p-value 100 K 160 d 6 h 14 h 7 h 72 h 19 h

Correcting 10 p-values 100 K 160 d 6 h 140 h 70 h 30 d 19 h

Correcting 1 p-value 1 M 4 years 3 d 6 d 3 d 30 d 19 h

Correcting 10 p-values 1 M 4 years 3 d 60 d 30 d 300 d 19 h

*Often anti-conservative.
All values are extrapolated from the chromosome 22 results.
doi:10.1371/journal.pgen.1000456.t001
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specified number of samples will always be sampled. RAT also has

some subtleties involving accuracy and efficiency. If we drop the -

X -e2 parameters for an approximated importance sampling,

RAT becomes much faster, but the resulting p-values are

underestimated by a factor of up to 5 (data not shown). We

assumed a corrected p-value of 1024 to calculate the number of

iterations for RAT using the formula presented in Kimmel and

Shamir [30]. Since the formula is conservative, the running time of

RAT may be overestimated. The constant window size of 100 may

be too large for Keffective, since its purpose is to efficiently

approximate the estimate. With a window size of 10, Keffective

takes only 2 hours for 500 K SNPs. However, if we reduce the

window size, the time for other methods including SLIDE will also

be reduced.

Using the same WTCCC chromosome 22 dataset, we perform

an additional experiment for the unphased genotype data using

the trend test, assuming unbalanced case/controls. We find

SLIDE achieves similar accuracy (See Text S4 and Figure S2).

Per-marker threshold estimation using all SNPs in

HapMap. In this experiment, we assume that a single

threshold is being estimated to decide which findings to follow

up, instead of correcting each pointwise p-value. We estimate the

per-marker threshold corresponding to a significance threshold of

.05. We use the 2.7 million polymorphic SNPs in the HapMap

CEU data over the whole genome, instead of a single

chromosome.

We generate a simulated dataset using the phased haplotype

data of 60 HapMap CEU parental individuals. Specifically, we

create a new haplotype by randomly shuffling the 120 chromo-

somes so that the average length of a haplotype segment is

approximately 1 Mb. We mutate (flip) each SNP with probability

1025. We create 2,000 cases and 2,000 controls by randomly

pairing 8,000 such haplotypes. Although this model is arbitrary, it

suffices to compare different methods. The results of the relative

comparison between methods do not greatly vary using different

parameters, such as a different average haplotype segment length

(data not shown).

We compare the permutation test, Keffective, and SLIDE.

RAT is not efficient for this setting because it is optimized for very

significant p-values, much smaller than .05. We expect that the

results of DSA or mvtnorm will be similar to or worse than those of

Keffective, as in the previous experiment.

We perform 10 K permutations for this experiment. We run

SLIDE with 10 K samplings and window size 100. We run

Keffective with window sizes 100 and 10. Figure 7 shows the

‘‘effective number of tests’’ estimated by each method, which is

simply the significance threshold (.05) divided by the estimated

per-marker threshold. The permutation test estimates the effective

number of tests as 1,068,746 out of 2,721,223 tests. Thus, the

Bonferroni correction is conservative by 155%. Note that in the

previous experiment with a less-dense SNP set, the Bonferroni

correction was conservative by 64%. The Bonferroni correction’s

error will continue to increase with the marker density.

The dashed lines denote the interval where an accurate

methods’ estimate will be found more than 95% of the time.

SLIDE estimates the effective number as 1,038,888 (2.8% error),

which is within the 95% interval. This small anti-conservative

error is only due to the stochastic error and not an inherent bias,

since the result becomes highly accurate as 1,068,445 (0.03%

error) if we increase the number of samples to 100 K.

Keffective estimates the effective number as 1,409,811 (32%

error) with window size 10 and as 1,252,986 (17% error) with

window size 100. Unlike the previous experiment, for this higher-

Figure 6. SLIDE’s accuracy and efficiency compared to other
methods. We use the WTCCC T2D case/control chromosome 22 data.
The vertical axis is the average error in corrected p-values relative to the
Bonferroni correction. The horizontal axis is the approximated time for
correcting 10 genome-wide p-values for 500 K SNPs assuming 100 K
permutations.
doi:10.1371/journal.pgen.1000456.g006

Figure 7. Effective number of tests of the 2.7 million HapMap
SNPs for a simulated dataset. A dataset of 2,000 cases and 2,000
controls is generated from the HapMap CEU data. Using each method,
we estimate the per-marker threshold corresponding to a significance
level of .05. The effective number of test is simply .05 divided by the
per-marker threshold. The dashed lines denote the interval where an
accurate methods’ estimate will be found more than 95% of the time.
doi:10.1371/journal.pgen.1000456.g007

Multiple Testing Correction for Correlated Markers

PLoS Genetics | www.plosgenetics.org 9 April 2009 | Volume 5 | Issue 4 | e1000456



density marker dataset, Keffective no longer keeps the error within

10%. We do not expect that a larger window size will increase the

accuracy of Keffective, because the error does not seem to be due

to the missing long range correlations, since SLIDE is accurate

with the same window size of 100.

The running time is 260 hours for permutation, 10 hours for

SLIDE, 10 hours for Keffective with window size 10, and

90 hours for Keffective with window size 100.

Window size. Since SLIDE takes into account only

correlations within the window size, here we investigate the

effect of window size on performance. A reasonable choice for the

window size will be the number of markers whose average distance

is the average or maximum LD distance in the data. For our

experiments, we use the WTCCC T2D case/control chromosome

22 dataset. A large number (10 M) of permutations allows us to

find that a pointwise p-value 1.5361025 corresponds to the

corrected p-value .05. We correct this pointwise p-value using

SLIDE with various window sizes, and see if the corrected p-values

are close to .05.

Figure 8 shows the ratio between the corrected p-value and the

permutation p-value (.05) for various window sizes. Window size

zero denotes the Bonferroni correction. The estimate is within the

95% interval for window sizes greater than 20, showing that this is

the minimum choice of the window size for this dataset. In this

dataset, the average distance between 20, 50, and 100 markers are

approximately 100 Kb, 300 Kb, and 600 Kb.

Multiple testing correction using reference dataset. We

now examine whether the per-marker threshold estimated from

the reference dataset can approximate the true per-marker

threshold for a study which may have a different sample

correlation structure from the reference dataset. The marker set

we use is the SNPs in the Affymetrix 500 K chip over the whole

genome.

First, we apply SLIDE to the HapMap data using window size

100, to obtain the per-marker threshold 2.1961027 corresponding

to the significance threshold .05. Then, we permute the WTCCC

data to estimate the false positive rate given this per-marker

threshold. We use the WTCCC 1958 British birth cohort control

data, which consists of 1,504 individuals. We randomly permute

the dataset 100 K times. We estimate the false positive rate, as the

proportion of permutations showing significance given the per-

marker threshold, to be .0508. Thus, in this experiment, the per-

marker threshold estimated from the reference data controls the

false positive rate with only 1.6% relative error. This result shows

that, even if the reference population and the target population are

slightly different (one from the Utah, U.S.A., and the other from

the Great Britain), the per-marker threshold estimated from the

reference data is a reasonable approximation.

Power Estimation
We compare four different methods for estimating genome-wide

power: standard simulation, null/alternative panel construction,

best-tag Bonferroni, and SLIP. We assume a multiplicative disease

model with a relative risk of 1.2 and a disease prevalence of .01,

and a significance threshold of .05. We use the CEU population

data in the HapMap as the reference dataset. We use the genome-

wide markers in the Affymetrix 500 K chip and assume a uniform

distribution of causal SNPs over all common SNPs (MAF$.05) in

the HapMap.

We first perform the standard simulation, which we will

consider as the gold standard. We construct a number of

genome-wide ‘alternative’ panels from the HapMap data by

randomly assigning a causal SNP for each panel. We permute

each panel 1,000 times to estimate the panel-specific per-marker

threshold. The power is estimated as the proportion of panels

showing significance given its per-marker threshold. Conneely and

Boehnke [4] used this procedure for power estimation.

Another panel construction-based approach is the null/

alternative panel construction method. Instead of permuting each

of alternative panels, this method constructs another set of ‘null’

panels under the null hypothesis. The null panel gives us a ‘global’

per-marker threshold that can be applied to all alternative panels.

Since this method is as accurate as the standard simulation but is

more efficient, it is widely used [17,18,21].

We apply SLIP and re-use the samples for the null MVN for

estimating the alternative MVNs. Lastly, we apply the analytical

best-tag Bonferroni method [19–21] which uses the Bonferroni

correction for the per-marker threshold and estimates power for

each causal SNP by using the most correlated marker (best tag

SNP). This method can also be accelerated by sampling the causal

SNPs and setting a window size.

For the standard simulation, we use 10 K alternative panels.

For the null/alternative panel construction method, we use 10 K

alternative panels and 10 k null panels. For SLIP, we use 10 K

sampling points. For the best-tag Bonferroni method, we use 10 K

samples for causal SNPs. For SLIP, we use a window size of 100

markers. For all other methods, we use a window size of 1 Mb.

Figure 9 shows that both SLIP and the null/alternative panel

construction method are as accurate as the standard simulation.

The best-tag Bonferroni method is inaccurate, underestimating

power by up to 5%.

Table 2 shows the running time of each method for estimating

genome-wide power. As shown, SLIP is very efficient. Since SLIP

uses the correlation structure, the running time is approximately

independent of the study sample size, whereas the running time of

the standard simulation or the null/alternative panel construction

method is linearly dependent on the sample size.

Discussion

SLIDE and SLIP provide efficient and accurate multiple testing

correction and power estimation in the MVN framework. SLIDE

shows a near identical accuracy to the permutation test by using a

Figure 8. Effect of window size on SLIDE’s performance. Using
the WTCCC T2D case/control chromosome 22 data, we plot the ratios
between the corrected p-value and the permutation p-value for varying
window sizes for SLIDE. We use the pointwise p-value corresponding to
the permutation p-value .05. The window size zero denotes the
Bonferroni correction. The dashed lines denote the interval where an
accurate methods’ estimate will be found more than 95% of the time.
doi:10.1371/journal.pgen.1000456.g008
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sliding-window approach to account for local correlations, and by

correcting for the error caused by using the asymptotic

approximation. SLIDE can be applied to datasets of millions of

markers with many rare SNPs, while other MVN-based methods

become inaccurate as more rare SNPs are included. To the best of

our knowledge, SLIP is the first MVN-based power estimation

method.

Throughout this paper, we considered the classical multiple

testing correction controlling family-wise error rate (FWER) [7], the

probability of observing one or more false positives. SLIDE can be

extended to control false discovery rate [41,42] as well, using a

similar approach to Lin [10]. In Text S1, we show that the MVN

framework can be extended to the weighted haplotype test [15,16]

and the test for imputed genotypes [17]. SLIDE can be use for any

multiple testing correction problem with a local correlation

structure, as long as the covariance between statistics can be derived.

We considered the permutation test as the gold standard for

multiple testing correction. The permutation test can be

performed in two different ways: at each permutation, we can

either assess the maximum statistics among the markers (max-T

permutation), or assess the minimum pointwise p-value among the

markers by performing another permutation for each marker

(min-P permutation) [7,42]. We used the former approach because

the latter approach is computationally very intensive.

In Text S5 and Figure S3, we describe some additional insights

obtained through the study. When marker frequencies do not

follow the Hardy-Weinberg proportions (HWP), the use of an

allelic test (e.g. allelic x2 test) for unphased genotype data is not

recommended due to the possible bias [43]. However, widely used

software [8] often allows the use of an allelic test for genotype data

under the reasoning that, as long as the permutation or an exact

test is performed, the pointwise p-value will be the same as if we

use a genotypic test (e.g. Armitage’s trend test). Theoretically, this

is due to the fact that the allelic and genotypic test statistics differ

only by their variance [44]. However, for assessing corrected p-

values, the permutation test does not provide this kind of

‘‘protection’’. Even after a quality control process that excludes

SNPs which significantly deviate from the Hardy-Weinberg

equilibrium (HWE), still many SNPs may not follow HWP.

Therefore, using an allelic test for genotype data for multiple

testing correction can result in inaccurate estimates.

Recently, a different view of multiple testing correction has been

introduced [5,28], which suggest that we should correct for the

uncollected or unknown markers as well as the collected markers,

in order to take into account additional testing burdens such as the

possible testings in a follow-up study. Pe’er et al. [28] estimates the

per-marker threshold by extrapolating from the resequenced

ENCODE regions, and Dudbridge et al. [5] estimates the per-

marker threshold by subsampling the SNPs at an increasing SNP

density. Although we employed the classical point of view that

corrects for multiple testing only over observed SNPs, our method

can also be applied to this alternative view. Our method can be

used to estimate the effective number of tests for a representative

resequenced region or for the set of subsampled SNPs. Since the

SNP density of genotyping technology is dramatically increasing,

we assume that the number of unknown and uncollected SNPs will

decrease, causing the two different views to converge.

In our experiments, we used a constant block size for the block-

wise strategy. In practice, it will be more reasonable to split the

region according to the LD blocks. However, this is not always

possible because LD blocks are often ambiguous and some blocks

can be larger than the maximum block size of the method. For

example, if we collect 10 million SNPs, a block size of 1,000 is

required to cover 300 kb LD. However, the maximum block size

of mvtnorm that allows an accurate estimate is currently 300 [4],

and DSA with window size 1,000 often requires a prohibitively

large memory in our simulations (data not shown). By contrast,

SLIDE with window size 1,000 for the WTCCC chromosome 22

data requires ,150 Mb memory and thus is feasible. Nevertheless,

it should be noted that the block-wise strategy can always be

implemented to have the same block size as SLIDE.

Recently, a method called PRESTO [45] was introduced,

which increases the efficiency of the permutation test by applying

Figure 9. Genome-wide power of the Affymetrix 500 k chip
estimated by different methods. We use the HapMap CEU
reference data. We assume a multiplicative disease model with relative
risk 1.2, disease prevalence .01, and a uniform distribution of causal
SNPs over common SNPs (MAF$.05). We use the significance threshold
of .05.
doi:10.1371/journal.pgen.1000456.g009

Table 2. Running time for estimating genome-wide power with 10 K samplings.

Procedure #cases/controls Best-tag-Bonf.* SLIP Null/altern. Std. simul.

Estimating power 1,000/1,000 0.1 h 0.6 h 36 h 10 d

5,000/5,000 0.1 h 0.6 h 8 d 50 d

Estimating power for 5 different relative risks 1,000/1,000 0.1 h 0.6 h 8 d 50 d

5,000/5,000 0.1 h 0.6 h 40 d 250 d

*Inaccurate (average error is not within 1%).
doi:10.1371/journal.pgen.1000456.t002
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several optimization techniques. Based on the claimed running

time, SLIDE is ,10 times faster than PRESTO, but PRESTO has

an advantage that it does not depend on the asymptotic

approximation but provides exactly the same result as the

permutation test.

We considered the pairwise correlation between SNPs. There

can also be so-called higher-order correlations, such as the

correlation between a haplotype and a SNP. For example, even

though three SNPs are pairwisely independent, the combination of

the first two SNPs can be a perfect proxy to the third SNP.

However, the multivariate central limit theorem proves that the

joint distribution of the test statistics is fully characterized by the

matrix of the pairwise correlations. Thus, the effect of the other

correlation terms on the joint distribution is asymptotically

negligible. Nevertheless, our method is not limited to the SNP

test. If our method is applied to the weighted haplotype test

[15,16] as shown in Text S1, the pairwise correlation in the

correlation matrix can be interpreted as the higher-order

correlations between a haplotype and a SNP or between

haplotypes.

In summary, SLIP and SLIDE are two useful methods for

genome-wide association studies which provide accurate power

estimation at the design step and accurate multiple testing

correction at the analysis step. The software is available as a

resource for the research community.

Supporting Information

Figure S1 Ratios between the corrected p-values and permuta-

tion p-values after rare SNPs are removed. We use the

chromosome 22 of the WTCCC Type 2 diabetes cases/controls

data. Multiple testing is corrected with respect to the 4,515

common SNPs (MAF$.05).

Found at: doi:10.1371/journal.pgen.1000456.s001 (0.01 MB PDF)

Figure S2 Ratios between the corrected p-values and permuta-

tion p-values for genotype data. We simulate a unphased genotype

dataset using the chromosome 22 data of the WTCCC Type 2

diabetes cases/controls data, assuming a unbalanced study of

2,934 controls and 1,928 cases.

Found at: doi:10.1371/journal.pgen.1000456.s002 (0.01 MB PDF)

Figure S3 Inaccurate multiple testing correction caused by the

use of an allelic test for unphased genotype data. We generate a

simulated unphased genotype data of 120 cases and 120 controls

from the HapMap CEU population chromosome 22 data. Then

we plot the ratios between the corrected p-values by two different

permutations: permutation test using the allelic test statistic, and

permutation test using the genotypic test statistic. Quality control

is performed by the standard x2 test for HWE.

Found at: doi:10.1371/journal.pgen.1000456.s003 (0.01 MB PDF)

Text S1 Rapid and accurate multiple testing correction and

power estimation for millions of correlated markers.

Found at: doi:10.1371/journal.pgen.1000456.s004 (0.14 MB PDF)
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9. Seaman SR, MÃŒller-Myhsok B (2005) Rapid simulation of P values for

product methods and multiple-testing adjustment in association studies.

Am J Hum Genet 76: 399–408.

10. Lin DY (2005) An efficient Monte Carlo approach to assessing statistical

significance in genomic studies. Bioinformatics 21: 781–7.

11. Wellcome Trust Case Control Consortium (2007) Genome-wide association

study of 14,000 cases of seven common diseases and 3,000 shared controls.

Nature 447: 661–678.

12. Yule GU (1922) On the application of the x2 method to association and

contingency tables, with experimental illustrations. Journal of the Royal

Statistical Society 85: 95–104.

13. Yates F (1934) Contingency tables involving small numbers and the x2 test.

Supplement to the Journal of the Royal Statistical Society 1: 217–235.

14. Altshuler D, Brooks L, Chakravarti A, Collins F, Daly M, et al. (2005) A

haplotype map of the human genome. Nature 437: 1299–320.

15. Zaitlen N, Kang H, Eskin E, Halperin E (2007) Leveraging the HapMap

correlation structure in association studies. Am J Hum Genet 80: 683–91.

16. Nicolae DL (2006) Testing untyped alleles (TUNA)-applications to genome-wide

association studies. Genet Epidemiol 30: 718–727.

17. Marchini J, Howie B, Myers S, McVean G, Donnelly P (2007) A new multipoint

method for genome-wide association studies by imputation of genotypes. Nature

Genetics 39: 906–913.

18. de Bakker P, Yelensky R, Pe’er I, Gabriel S, Daly M, et al. (2005) Efficiency and

power in genetic association studies. Nat Genet 37: 1217–23.

19. Jorgenson E, Witte JS (2006) Coverage and power in genomewide association

studies. Am J Hum Genet 78: 884–888.

20. Klein RJ (2007) Power analysis for genome-wide association studies. BMC

Genet 8: 58.

21. Han B, Kang HM, Seo MS, Zaitlen N, Eskin E (2008) Efficient association study

design via poweroptimized tag SNP selection. Ann Hum Genet 72: 834–847.

22. Pritchard JK, Przeworski M (2001) Linkage disequilibrium in humans: models

and data. Am J Hum Genet 69: 1–4.

23. Genz A (1992) Numerical computation of multivariate normal probabilities.

Journal of Computational and Graphical Statistics 1: 141–150.

24. Genz A (1993) Comparison of methods for the computation of multivariate

normal probabilities. Computing Science and Statistics 25: 400–405.

25. Nyholt DR (2004) A simple correction for multiple testing for single-nucleotide

polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 74:

765–9.

26. Cheverud JM (2001) A simple correction for multiple comparisons in interval

mapping genome scans. Heredity 87: 52–8.

27. Li J, Ji L (2005) Adjusting multiple testing in multilocus analyses using the

eigenvalues of a correlation matrix. Heredity 95: 221–7.

28. Pe’er I, Yelensky R, Altshuler D, Daly MJ (2008) Estimation of the multiple

testing burden for genomewide association studies of nearly all common variants.

Genet Epidemiol 32: 381–385.

29. Dudbridge F, Koeleman B (2004) Efficient computation of significance levels for

multiple associations in large studies of correlated data, including genomewide

association studies. American journal of human genetics 75: 424–435.

30. Kimmel G, Shamir R (2006) A fast method for computing high-significance

disease association in large population-based studies. Am J Hum Genet 79:

481–92.

31. Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA (2002) Score

tests for association between traits and haplotypes when linkage phase is

ambiguous. Am J Hum Genet 70: 425–434.

Multiple Testing Correction for Correlated Markers

PLoS Genetics | www.plosgenetics.org 12 April 2009 | Volume 5 | Issue 4 | e1000456



32. Louis TA (1982) Finding the observed information matrix when using the EM

algorithm. Journal of the Royal Statistical Society Series B (Methodological) 44:
226–233.

33. Wasserman LA (2003) All of statistics: a concise course in statistical inference.

Springer.
34. Hajivassiliou V, McFadden D, Rudd P (1996) Simulation of multivariate normal

rectangle probabilities and their derivatives: theorerical and computational
results. Journal of Econometrics 72: 85–134.

35. Williams DA (1988) Tests for differences between several small proportions.

Applied Statistics 37: 421–434.
36. Bhangale TR, Rieder MJ, Nickerson DA (2008 Jul) Estimating coverage and

power for genetic association studies using near-complete variation data. Nat
Genet 40: 841–843.

37. Eskin E (2008) Increasing power in association studies by using linkage
disequilibrium structure and molecular function as prior information. Genome

Res 18: 653–660.

38. International HapMap Consortium (2007) A second generation human
haplotype map of over 3.1 million SNPs. Nature 449: 851–862.

39. Zaitlen NA, Kang HM, Feolo ML, Sherry ST, Halperin E, et al. (2005)

Inference and analysis of haplotypes from combined genotyping studies

deposited in dbSNP. Genome Res 15: 1594–1600.

40. Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and

missing-data inference for whole-genome association studies by use of localized

haplotype clustering. Am J Hum Genet 81: 1084–1097.

41. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical

and powerful approach to multiple testing. J R Statist Soc B 57: 289–300.

42. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies.

Proc Natl Acad Sci U S A 100: 9440–9445.

43. Sasieni PD (1997) From genotypes to genes: doubling the sample size. Biometrics

53: 1253–1261.

44. Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics

55: 997–1004.

45. Browning BL (2008) Presto: rapid calculation of order statistic distributions and

multiple-testing adjusted p-values via permutation for one and two-stage genetic

association studies. BMC Bioinformatics 9: 309.

Multiple Testing Correction for Correlated Markers

PLoS Genetics | www.plosgenetics.org 13 April 2009 | Volume 5 | Issue 4 | e1000456


