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Abstract
Violation of energy conservation in Poisson-Boltzmann molecular dynamics, due to the limited
accuracy and precision of numerical methods, is a major bottleneck preventing its wide adoption in
biomolecular simulations. We explored the ideas of enforcing interface conditions by the immerse
interface method and of removing charge singularity to improve the finite-difference methods. Our
analysis of these ideas on an analytical test system shows significant improvement in both energies
and forces. Our analysis further indicates the need for more accurate force calculation, especially the
boundary force calculation.

Introduction
Biomolecules are highly complex molecular machines with thousands to millions of atoms.
What further complicates the picture is the need to realistically treat the interactions between
biomolecules and their surrounding water molecules that are ubiquitous and paramount
important for their structures, dynamics, and functions. Efficient molecular dynamics
simulation in a realistic aqueous environment is still one of the few remaining challenges in
molecular biophysics.

Since most particles in molecular dynamics are to represent water molecules solvating the
target biomolecules, treating these water molecules implicitly allows the simulation efficiency
to be increased greatly. Indeed, implicit solvation treatments, or implicit solvents, offer a
unique opportunity for more efficient simulations without the loss of atomic-level resolution
for biomolecules. The simplified implicit solvation treatments propose to model water
molecules and any dissolved ions as a structureless and continuous medium. In contrast
biomolecules, i.e. the solutes, are still represented in atomic detail. One of the most successful
implicit solvents, the Poisson-Boltzmann (PB) implicit solvent has become a gold standard in
implicit solvation treatments of biomolecules after years of basic research and development.
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The earliest attempts to use PB implicit solvents in molecular dynamics date back to as early
as the 1990s when Davis et al.[1], Zauhar[2], Sharp[3], Luty et al.[4], and Gilson et al.[5,6]
contributed to adopting numerical PB solvents for dynamic simulations. Recently there has
been renewed interest in finding ways to apply numerical PB solvents in dynamic simulations
[7-15]. Efforts have also been reported to achieve higher-level accuracy in the finite-difference
approach and thus to help the application of PB in dynamic simulations[16-19]. More
interestingly, there are proposals to couple electrostatic and nonelectrostatic interactions within
the implicit solvation treatment and to use level set to help the definition of solvent and solute
interface[20-22].

Even with constant community-wide efforts to improve the efficiency and accuracy of
numerical PB solvents, mathematical and computational challenges still remain in the adoption
of the numerical PB solvents to molecular dynamics simulations, i.e. the PB molecular
dynamics method. One of the issues is the observed violation of energy conservation in PB
molecular dynamics, in part due to its limited numerical precision and accuracy in widely used
finite-difference methods. This combined with other reported limitations or difficulties in the
continuum treatment solute and solvent, such as efficient update of dielectric interface[12],
lack of adaptive responses to molecular structural and energetic fluctuations[23], and the lack
of asymmetric responses to positive and negative atom charges[24], prompt the researchers to
develop next generation PB molecular dynamics that is more physical and more accurate in
simulations of biomolecules.

In this study we investigate a higher-accuracy numerical scheme, the immersed interface
method (IIM), which was proposed to solve the elliptic Partial Differential Equations with
interface conditions on a rectangular finite-difference grid[25]. The key point of IIM is to
enforce the interface conditions into the discretization, e.g., the finite-difference schemes, at
grid points near the interface. The main advantages of IIM are: (1) the method is based on the
finite-difference scheme on a simple rectangular grid that does not need to be aligned with the
interface; (2) the scheme can achieve uniform high-order accuracy even near the interface; and
(3) the finite-difference scheme on the rectangular grid can have a regular structure for certain
jump conditions and hence efficient solvers can be applied to solve the linear system after
discretization.

In this study we have analyzed the overall accuracy of IIM in reproducing reaction field
energies and forces and dielectric boundary forces for a well studied test system of single
dielectric sphere. We have also investigated the role of charge singularity in the numerical
accuracy of energy and forces, especially dielectric interface forces within the finite-difference
numerical scheme.

Methods
Finite-difference/finite-volume method

Without loss of generality, we focus on the Poisson’s equation in this study since the Boltzmann
term is nonzero only outside the Stern layer, which is typically set 2 Å away from the dielectric
interface where the dielectric constant is smooth. The partial differential equation

(1)

establishes a relation between charge density (ρ) and electrostatic potential (ϕ) given a
predefined dielectric distribution function (ε) for a solvated molecule.
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A commonly used numerical method to solve the Poisson’s equation is to use a uniform
Cartesian grid to discretize a finite rectangle box containing the molecule. The grid points are
numbered as (i, j, k) , i=1,…,xm, j=1,…,ym, k=1,…,zm, where xm , ym , and zm are the numbers
of points along the x, y, and z axes, respectively. The spacing between neighbor points is
uniformly set to be h. With the finite-volume discretization, Equation (1) can be written as

(2)

Use of Equation (2) requires dielectric constant ε to be defined at the mid-points between any
two neighbor grid points. It also requires mapping point charges onto the grid points. A
commonly used method is the trilinear mapping method[26]. More detailed implementation
information can be found in our recent works[11,12].

Interface treatment: Harmonic average
In biomolecular calculations the dielectric distribution often adopts a piece-wise constant
model. In such a model, the dielectric constant at a midpoint apparently should be assigned to
the dielectric constant in this region where the two neighbor grid points belong. However, when
the two neighbor grid points belong to different dielectric regions, its dielectric constant is
nontrivial to assign, because the dielectric constant is discontinuous across the interface. One
simple treatment is the use of harmonic average (HA) of the two dielectric constants at the
interface midpoints[27]. For example, if (i−1, j, k) and (i, j, k) belong to different dielectric
regions, there must be an interface point on the grid edge between (i−1, j, k) and (i, j, k) . In

HA is defined as

(3)

Where a is the distance from the interface point to grid point (i−1, j, k) , b is the distance from
the same interface point to grid point (i, j, k) . This strategy has been shown to improve the
convergence of reaction field energies respect to the grid spacing[27].

Interface treatment: Immersed interface method
A more accurate method for interface treatment is IIM[25]. In IIM the interface is represent
by a zero level set function φ(x,y,z)

(4)

where Ω−and Ω+ are the different regions and Γ is the interface. After defining
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(5)

a grid point can be classified irregular if , and regular if otherwise. Given our
interface problem as

(6)

where f is used to denote the point charge term, and two jump conditions at interface Γ as

(7)

IIM propose new equations involving 27 points instead of the original 7-point finite-difference
equations at irregular points.

The new equation at irregular point (i, j, k) can be written as

(8)

where ns is the number of grid points, γm are the undetermined coefficients, and C(i, j,k) is the
undetermined correction term. The basic idea of IIM is to determine γm in Equation (8) for the
irregular points so that the second-order global accuracy is obtained as in an interface-free
problem with the finite-difference/finite-volume discretization scheme. Since only grid points
nearby the interface are involved, it is sufficient to have an O(h) local truncation error at those
points to reach the goal[25,28].

To compute the local truncation error T(i, j,k) at grid point (i, j, k)

(9)

we expand ϕ(i+im,j+jm,k+km) in the local coordinate with a Taylor series about the grid point
(i, j, k) ’s projection point (X*) on the interface. The following interface relations are used in
the Taylor expansion
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(10)

where the superscript denotes different sides of the interface, ξ is the normal direction, η and
τ are two orthogonal tangential directions, and ξ=χ(η,τ) is the expression of the interface in the
local coordinate system[28].

Thus the local truncation error can be written as

(11)

where ai,i =1,…,10, are in the linear combination of γm, T ̂(i, j,k) is a linear combination of jump
conditions and their surface derivatives from the interface relations[25,28]. To minimize T(i,
j,k), all ten ai should be set to zero. This leads to a linear system denoted as Bγ=b below[25,
28]. To solve Bγ = b with 27 unknowns, a minimization problem is constructed:

subject to

where

After obtaining γm, C(i, j,k) is calculated to cancel T ̂(i, j,k) to construct the new equations at
irregular points[25,28].
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Charge singularity: Finite-volume treatment
Point charge models are widely used in molecular dynamics of biomolecules. The
representation of point charges by delta functions apparently introduces singularity to the PB
equation. The finite-volume discretization scheme overcomes this problem by resorting to the
integral form of the PB equation. Thus the total charge, instead of the singular charge density,
appears in the discretized form (Equation (2)). However, such a treatment does distort the
otherwise singular Coulombic potential especially when it is close to a grid charge[4].

Charge singularity: Regulation treatment
Several strategies are available to remove the charge singularity[29-32]. Here we adopted an
efficient strategy recently developed by us[33]. In our method two separate equations for two
different potentials in two different regions are solved simultaneously, i.e., the reaction field
potential in the solute region and the total potential in the solvent region, different from
published decomposition schemes that require solution of separate set of equations[29-32].

Briefly we solve for the reaction field potential (ϕRF) in the solute region (Ω̅−) and solve for
the total potential (ϕ =ϕRF+ϕC) in the solvent region (Ω+). Here ϕC is the Coulombic potential,
satisfying [33]. The respective equations for ϕRF and ϕ are

(12)

where N(ϕ) represents the Boltzmann term and is set to zero in the current study[33]. The
corresponding jump condition across Γ are

(13)

Thus the Coulombic potential is needed on the interface in Equation (13)[33].

Electrostatic energy and force
Potential and electrostatic field—After solving the finite-difference equations, only
potential at grid points are known. To obtain potential or electrostatic field at any position
(x0, y0, z0), we utilize the one-side least-square interpolation method[28]. Briefly a function of
the form

(14)

is fitted using the potentials of Nm(≥19) nearest grid points in the same region. The coefficients
ai, i =1, …, 10 are determined to minimize
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(15)

so that the potential and gradient of potential at position (x0,y0,z0) is given by the following
relation:

(16)

Reaction field energy and force—The reaction field energy (ΔG) is calculated as

(17)

If the charge singularity is removed, it can be calculated as

(18)

The reaction field force (qE) is readily obtained as

(19)

with electric field computed in Equation (16).

Dielectric boundary force—The dielectric boundary (db) force can be written as

(20)

where p is the Maxwell stress tensor and n is the normal unit vector of the interface element
[2]. The field E– in Equation (20) is obtained by the one-side least-square interpolation, and
E+ is calculated from E– based on the jump condition. The surface integration is numerically
implemented with a certain number of evenly-distributed elements on the surface, generated
by the spiral method[34]. The number of surface elements is chosen to be large enough to
secure 6-digit accuracy in the dielectric boundary force when analytical electrostatic field is
used at the interface. This turns out to be 51.2 million elements for the worse case scenario,
i.e. when the point charge is closest to the surface.
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Test cases
To quantify the accuracy and precision of tested methods, we used a well-studied testing
system, a single dielectric sphere imbedded with point charges (Fig. 1). The analytic potential
and gradient is

with

Here Nq is the number of charges (set to be 1 in this study) and qk is the kth charge located at
(rk,θk,φk). ε+ and ε− are the dielectric constant outside and inside, respectively. R is the radius
of the sphere.Ylm is spherical harmonics.

The radius of the sphere R is 2.0Å, about the size of a united carbon atom. The charge is located
0.25Å to 1.50Å from the center. Q is set as +e . The dielectric constant outside ε− is 1.0, The
dielectric constant outside ε+ is set at 80.0. The grid spacing ranges from 1/4Å to 1/16Å. A
total of 27 different finite-difference grid origins were used to analyze the precision the
methods, i.e. the effect of relative location of finite-difference grids with respect to the interface
and charge distribution.

Results and Discussion
In the following we focus on the influences of enforcing the interface conditions with IIM and
removing charge singularity upon the accuracy and precision of reaction field energies and
forces, and dielectric boundary forces. Here the accuracy is represented as the maximum error
of numerical results, and the precision is represented with the standard deviation of numerical
results for each test condition. Three methods were compared in reproducing analytical
energies and forces. In the first method, IIM was used and charge singularity was removed,
termed as “IIM−Singularity”. In the second method, HA was used and charge singularity was
removed, termed as “HA−Singularity”. The third method is the original method in finite
difference PB, HA was used and charge singularity was retained, termed as “HA+Singularity”.
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Accuracy and precision of reaction field energies
The accuracy and precision of reaction field energies were investigated with three typical
situations: (a) the charge is positioned close (0.25Å) to the spherical center, (b) the charge is
1.0Å away from the interface, and (c) the charge is only 0.50Å away from the interface.
Reaction field energies by IIM−Singularity, HA−Singularity, and HA+Singularity were
analyzed and shown in Table 1. Since the computation of reaction field energies naturally
implies removal of the singular Coulombic component, HA−Singularity and HA+Singularity
are equivalent in this analysis.

Clearly IIM−Singularity delivers the best accuracy in all three test cases regardless of h. Its
numerical accuracy is the most impressive when the charge is far away from the interface, with
the maximum error about 22-28 times smaller than that of HA ± Singularity. In the more
challenging cases of charge placed 1.0Å and 0.5Å away from the interface, the accuracy
advantage of IIM−Singularity over HA ±Singularity is reduced to a factor of 2 to 5, depending
on h.

An issue important for stable dynamics simulation is the standard deviation of reaction field
energies when the finite-difference grid is randomly positioned. Sensitivity of grid positions
respect to the solute molecule has been a particularly annoying limitation in current finite-
difference PB methods. We observed impressively reduced standard deviations for all three
test cases, with reduction factors ranging from 8 to over 33 when the charge is at least 1.0Å
away from the interface. The reduction factors in standard deviations for the most challenging
case, nevertheless, are reduced to 2 to 5.

Accuracy and precision of qE forces
The accuracy and precision of reaction field forces by IIM−Singularity and HA ±Singularity
were analyzed similarly and shown in Table 2. Consistent with the analysis of reaction field
energies, IIM−Singularity delivers the most impressive advantage over HA ±Singularity when
the charge is far away from the interface, with maximum errors up to 25 times smaller than
that of HA ±Singularity. In the more challenging cases of the charge placed 1.0Å and 0.5Å
away from the interface, the accuracy advantage of IIM−Singularity over HA ±Singularity is
reduced to a factor of 1 to 4, indicating the high curvature of the reaction field close to the
interface which cannot be improved dramatically without reducing h.

Standard deviations of IIM−Singularity over HA ±Singularity are reduced by a pronounced
factor over 35 when the charge is far away from the interface. Unfortunately, the benefit of
IIM−Singularity over HA ±Singularity is reduced to a factor of 1 to 3 in the more challenging
cases of the charge placed 1.0Å and 0.5Å away from the interface, similar to the case of the
accuracy analysis.

Accuracy and precision of db forces
The accuracy and the precision of db forces were also investigated. One difference here is the
distinction between HA−Singularity and HA+Singularity, which turns out to be the most
important improvement in the case of db forces as shown in Table 3.

First we focus on the effect of charge singularity by comparing HA−Singularity and HA
+Singularity. Different from previous analyses, the advantage of HA−Singularity over HA
+Singularity depends on grid spacing. Its advantage is highest with coarsest h: the maximum
errors are 25 to 400 smaller and the standard deviations are 8 to 202 times smaller, especially
at the two challenging cases. The factors of reductions are changed to 2 to 13 at the finest h as
expected since the finite-difference Coulombic field is the most accurate.
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Second we focus on the effect of jump conditions at sub-grid resolution by comparing IIM
−Singularity and HA−Singularity. Similar to the tests of qE forces, IIM−Singularity delivers
the most impressive advantage over HA−Singularity when the charge is far away from the
interface, with maximum errors up to 50 times smaller than those of HA−Singularity. In the
more challenging cases of the charge placed 1.0Å and 0.5Å away from the interface, the
accuracy advantage of IIM−Singularity over HA−Singularity is unclear, though the average
values are often better with IIM−Singularity, indicating a smaller systematic error. Similarly
in the precision analysis, the advantage of IIM−Singularity over HA−Singularity is a
pronounced factor over 35 when the charge is away from the interface, but it is unclear when
the charge is placed 1.0Å and 0.5Å away from the interface.

Error analysis of numerical db forces
The calculation of the db forces is far more involving than that of the reaction field forces.
First, we need to interpolate the electrostatic field on the interface. The extra step in principle
introduces interpolation error. Second we need to perform numerical surface integration of the
Maxwell stress tensor on the interface. The second step in principle introduces integration error.
Thus the final error in db forces is dependent on the solver, the interpolation procedure, and
the integration procedure.

To understand the marginal improvement of IIM−Singularity over HA−Singularity in
calculation of db forces, we conducted more detailed analysis at each numerical step. Fig. 2
shows the errors of the potential at the inside grid points nearby the interface, the potential at
sample points on the interface, and the field at sample points on the interface from both IIM
−Singularity and HA−Singularity. Fig. 2a clearly shows that the errors in IIM−Singularity are
smaller than those in HA−Singularity at grid points. It is worth noting that the maximum errors
from HA−Singularity are 100 times larger than those from IIM−Singularity and these occur at
grid points nearby the interface with large z values, i.e. close to the charge (see Fig. 1). Least
square fitting of potential certainly brings down the accuracy of IIM−Singularity. However the
errors in least-square-fitted potentials from HA−Singularity are surprisingly reduced with
maximum errors 10 times smaller than those at the grid points. The end result is comparable
errors in least-square-fitted potentials and fields from IIM−Singularity and HA−Singularity
(Fig. 2b&c). This abnormity can be understood from the potential distribution on the interface,
as shown in Fig. 2d. The curvature of the potential on the interface makes the least-square-
fitted potential systematically more positive due to extrapolation since no or few grids are on
the interface. This systematic positive error happens to balance out the negative errors from
HA−Singularity at grids nearby the interface, causing the fortuitous enhancement in fitted
potentials and fields from HA−Singularity, which may not be possible in more complicated
interfacial geometries. Nevertheless, our analysis shows the need for more robust interpolation
scheme for high quality db force calculation.

The numerical integration quality may also play a role here and can be analyzed by studying
the convergence behavior of db forces versus the number of interface elements, as shown in
Fig. 3. Note that when the number of interface elements increases, the numerical db forces
converge, but not to the analytic value. There are systematic errors between the numerical
values and the analytic value. This analysis also shows that about 0.1 million elements, instead
of 51.2 million elements (obtained using analytical surface electric field, thus free of the
systematic errors) are sufficient to calculate the db forces due to the existence of the systematic
errors from the grid potentials. Nevertheless, the use of extra surface elements clearly rules out
the cause of integration error in the final quality of db forces in this study.
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Convergence of energies and forces versus grid spacing
Finally we studied the convergence of reaction field energies and forces and dielectric boundary
forces with respect to grid spacing in IIM−Singularity (Fig. 4). Here the same three
representative test cases are shown. It is apparent that the convergence trends of both standard
deviations and maximum errors approximately follow the O(h2) global truncation errors for
finite-difference algorithms. It is also interesting to ask, given the smallest atomic cavity radius
to be set as 1.0Å, for example, what grid spacing can we use to achieve a reasonable energy
conservation and stability in molecular dynamics? Let us assume, quite arbitrarily, this
corresponds to the standard deviation in energies to be ≤10−4 and the standard deviations in
forces to be 10≤−3 [35]. We can achieve this requirement at the grid spacing of 1/8Å with IIM
−Singularity. If we relax the standard deviations in forces by a factor of two, we can also use
the grid spacing of 1/4Å.
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Figure 1.
A single dielectric sphere with radius R=2Å. The inside dielectric is ε− and outside dielectric
is ε+ . A single point charge (Q=+e) is positioned d away from the center.
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Figure 2.
Comparison of errors of potential and electric field on inside grid points near the interface and
those of interpolated potential and field on the interface (left). Analytical potential on the
interface is shown on the right.
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Figure 3.
Convergence of numerical db forces with respect to the number of numerical surface elements
(N) for the charge placed at d=1.0 Å.
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Figure 4.
Standard deviations (upper) and maximum errors (lower) of reaction field energies, qE forces,
and db forces versus decreasing h.
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