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Summary
The penalised least squares approach with smoothly clipped absolute deviation penalty has been
consistently demonstrated to be an attractive regression shrinkage and selection method. It not only
automatically and consistently selects the important variables, but also produces estimators which
are as efficient as the oracle estimator. However, these attractive features depend on appropriately
choosing the tuning parameter. We show that the commonly used the generalised crossvalidation
cannot select the tuning parameter satisfactorily, with a nonignorable overfitting effect in the resulting
model. In addition, we propose a BIC tuning parameter selector, which is shown to be able to identify
the true model consistently. Simulation studies are presented to support theoretical findings, and an
empirical example is given to illustrate its use in the Female Labor Supply data.
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1. Introduction
In regression analysis, an underfitted model can lead to severely biased estimation and
prediction. In contrast, an overfitted model can seriously degrade the efficiency of the resulting
parameter estimates and predictions. Hence, obtaining a sparsely parsimonious and effectively
predictive model is essential.

Traditional model selection criteria, such as AIC (Akaike, 1973) and BIC (Schwarz, 1978), suffer
from a number of limitations. Their major drawback arises because parameter estimation and
model selection are two different processes, which can result in instability (Breiman, 1996)
and complicated stochastic properties (Fan & Li, 2001). Moreover, the total number of
candidate models increases exponentially as the number of covariates increases.

To overcome the deficiency of traditional methods, Fan & Li (2001) proposed the smoothly
clipped absolute deviation or SCAD method, which estimates parameters while simultaneously
selecting important variables. As compared with another popular regression shrinkage and
selection method, the least absolute shrinkage and selection operator or Lasso of Tibshirani
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(1996), the smoothly clipped absolute deviation method not only selects important variables
consistently, but also produces parameter estimators as efficient as if the true model were
known, i.e., the oracle estimator, a property not enjoyed by the Lasso. The above features of
the smoothly clipped absolute deviation method rely on the proper choice of tuning parameter,
or regularisation parameter, which is usually selected by generalised crossvalidation (Craven
& Wahba, 1979).

We show that the optimal tuning parameter selected by generalised crossvalidation has a
nonignorable overfitting effect even as the sample size goes to infinity. Moreover, we propose
a BIC-based tuning parameter selector for the smoothly clipped absolute deviation method, and
prove that the proposed procedure identifies the true model consistently.

2. The Smoothly Clipped Absolute Deviation Method
Consider the linear regression model,

(2.1)

where yi is the response from the ith subject, xi = (xi1, ⋯ , xid)′ is the associated d-dimensional
explanatory covariate, β = (β1, ⋯ , βd)′, and ∊i is the random error with mean 0 and variance

. Let (xi, yi), i = 1, ⋯ , n, be a random sample from (2.1). To select simultaneously variables
and estimate parameters, the smoothly clipped absolute deviation method of Fan & Li
(2001) estimates β by minimising the penalised least squares function

(2.2)

where Y = (y1, ⋯ , yn)′, X = (x1, ⋯ , xn)′, ∥ · ∥ stands for the Euclidean norm, and pλ(·) is the
smoothly clipped absolute deviation penalty with a tuning parameter λ to be selected by a data-
driven method. The penalty pλ(·) satisfies pλ(0) = 0, and its first-order derivative is

where a is some constant usually taken to be a = 3.7 (Fan & Li, 2001), and (t)+ = tI{t > 0} is
the hinge loss function. For a given tuning parameter, we denote the estimator obtained by
minimising (2.2) by β ̂λ = (β ̂λ1, ⋯ , β ̂λd)′.

Fan & Li (2001) showed that if λ → 0 and  as n → ∞, the method consistently
identifies irrelevant variables by producing zero solutions for their associated regression
coefficients. In addition, the method estimates the coefficients of the relevant variables with
the same efficiency as if the true model were known, which is referred to as the oracle property
(Fan & Li, 2001). Hence, the choice of λ is critical. In practice, λ is usually selected by
minimising the generalised crossvalidation criterion

(2.3)

where , DFλ is the generalised degrees of freedom (Fan & Li, 2001) given by
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and . The diagonal elements of Σλ are
coefficients of quadratic terms in the local quadratic approximation to the smoothly clipped
absolute deviation penalty function pλ(·) (Fan & Li, 2001). Since some coefficients of the
estimator of β are exactly equal to zero, DFλ is calculated by replacing X with its submatrix
corresponding to the selected covariates, and by replacing Σλ with its corresponding submatrix.
The resulting optimal tuning parameter is λ̂GCV = argminλGCVλ.

The log-transformation of GCVλ can be approximated by

Hence, log GCVλ is very similar to the traditional model selection criterion AIC, which is an efficient
selection criterion in that it selects the best finite-dimensional candidate model in terms of
prediction accuracy when the true model is of infinite dimension. However, AIC is not a
consistent selection criterion, since it does not select the correct model with probability
approaching 1 in large samples when the true model is of finite dimension. For further
discussion of efficiency and consistency in model selection, see Shao (1997), McQuarrie &
Tsai (1998) and Yang (2005). Consequently, the model selected by λ̂GCV may not identify the
finite-dimensional true model consistently. This motivated us to employ a variable selection
criterion known to be consistent, BIC (Schwarz, 1978), as the tuning parameter selector. We
select the optimal λ by minimising

(2.4)

The resulting optimal regularisation parameter is denoted by λ̂BIC.

3. Theoretical Results
3.1. Notation and conditions

Suppose that there is an integer 0 ≤ d0 ≤ d, such that βjk ≠ 0 for 1 ≤ k ≤ d0, with the other βj's
equal to 0. Thus, the true model only contains the j1th, ⋯ , jd0th covariates as significant
variables. Furthermore, in order to define the underfitted and overfitted models, we denote by

F = {1, ⋯ , d} and T = {j1, ⋯ , jd0} the full and true parsimonious submodels, respectively.
Then any candidate model  ⊅ T, is referred to as an underfitted model in the sense that it
misses at least one important variable. In contrast, any  ⊃ T other than T itself, is referred
to as an overfitted model in the sense that it contains all significant variables, but also at least
one insignificant variable.

For an arbitrary model  = {j1, ⋯ , jd*} ⊂ F, we denote its associated covariate matrix by
X , which is an n × d* matrix with the ith row given by (xij1, ⋯ , xijd*). After fitting the data
with model  by least squares, we denote the resulting ordinary least squares estimator, the
residual sum of squares, the variance estimator and the generalised crossvalidation value by

(3.1)
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(3.2)

(3.3)

(3.4)

respectively. The smoothly clipped absolute deviation estimator β ̂λ, obtained by minimising
the objective function in (2.2), naturally identifies the model λ = {j : β ̂λj ≠ 0}, for which the
ordinary least squares estimator is β ̂ λ. By the definition of the ordinary least squares estimator,
we have

(3.5)

Furthermore, the  defined in (2.3) can be simply expressed as . If λ = 0, then the
penalty term in (2.2) is 0, and β ̂0, is exactly the same as the full-model's ordinary least squares

estimator, β ̂ F. Moreover, SSE0 = SSE F,  and GCV0 = GCV F.

In practice, however, λ is unknown, and it is necessary to search for the optimal λ from the
positive real line ℛ+, or, within the bounded interval Ω = [0, λmax], for some upper limit
λmax. We now present the technical conditions that are needed for studying the theoretical
properties of the tuning parameter selectors.

Condition 1. For any  ⊂ F, there is a  such that  in probability.

Condition 2. For any  ⊅ T, we have , where  is a positive value such that

, in probability.

Condition 3. The ∊i's are independent and identically distributed as .

Condition 4. The upper limit λmax → 0 as n → ∞.

Condition 5. The matrix cov(xi) = Σx is finite and positive definite.

Condition 1 facilitates the proof of the asymptotic results, while Condition 2 elucidates the
underfitting effect. Both conditions are satisfied if (xi, ∊i) are jointly non-degenerate
multivariate normal distribution. Similar conditions can be found in Shi & Tsai (2002, 2004)
and Huang & Yang (2004). Condition 3 is needed only for evaluating generalised
crossvalildation's overfitting effect in §3.2, and is not necessary for establishing the consistency
of the proposed BIC criterion. Condition 4 implies that the search region for λ shrinks towards
0 as the sample size goes to infinity. This condition is used to simplify the proof of the
consistency of BIC in §3.3. Note that the rate at which λmax converges to 0 is not specified.
Finally, Condition 5 ensures the root-n consistency of an unpenalised estimator.

Wang et al. Page 4

Biometrika. Author manuscript; available in PMC 2009 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3.2. The overfitting effect of generalised crossvalidation
We define Ω− = {λ ∈ Ω : λ ⊅ T}, Ω0 = {λ ∈ Ω : λ = T}, and Ω+ = {λ ∈ Ω : λ ⊃

T and λ ≠ T}. In other words, Ω0, Ω− and Ω+ are three subsets of Ω, in which the true,
under, and overfitted models can be produced. We first show that the smoothly clipped absolute
deviation method with generalised crossvalidation is conservative in the sense that it does not
miss any important variables as long as the sample size is sufficiently large.

Lemma 1—Under Conditions 1 and 2, we have

All proofs are given in the Appendix. According to this lemma, the generalised crossvalidation
evaluated at the tuning parameter which produces the underfitted model, is consistently larger
than GGV F = GCV0. As a result, the optimal model selected by minimising the generalised
crossvalidation values, i.e., λ̂GCV

, must contain all significant variables with probability
tending to one. However, this does not necessarily imply that λ̂GCV

 is the true model T. In
the next lemma, we show that the optimal model selected by generalised crossvalidation
overfits the true model with a positive probability.

Lemma 2—Under Conditions 1—3 there exists a nonzero probability α > 0 such that lim
infn pr(infλ∈Ω0 GCVλ > GCV F = GCV0) ≥ α.

According to this lemma, there is a nonzero probability that the smallest value of generalised
crossvalidation associated with the true model is larger than that of the full-model. Hence, there
is a positive probability that any λ associated with the true model cannot be selected by
generalised crossvalidation as the optimal tuning parameter. Combining the results from
Lemmas 1 and 2, we obtain the following theorem.

Theorem 1—If Conditions 1—3 hold, there is a nonzero probability α > 0 such that pr
( λ̂GCV

 ⊃ T) → 1 and

Theorem 1 indicates that, with probability tending to 1, the model λ̂GCV
 contains all significant

variables, but with nonzero probability includes superfluous variables, thereby leading to
overfitting.

3.3. Consistency of BIC

To establish the consistency of BIC, we first construct a sequence of reference tuning parameters,
. Thus, λn → 0 and . According to Theorem 2 of Fan & Li (2001),

pr( λn = T) → 1 under appropriate regularity conditions. This implies that the model
identified by the reference tuning parameter converges to the true model as the sample size
gets large.

Lemma 3—Under Condition 5, pr(BICλn = BIC T) → 1.

According to this lemma, with probability tending to 1,
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Applying this result, we finally show that, for any λ which cannot identify the true model, the
BIC value is consistently larger than BICλn.

Lemma 4—Under Conditions 1, 2, 4 and 5,

Note that this lemma does not necessarily imply that λn = λ̂BIC. However, it does indicate that
those λ's which fail to identify the true model cannot be selected by BIC asymptotically, because
at least the true model identified by λn is a better choice. As a result, the optimal value λ̂BIC can
only be one of those λ's whose smoothly clipped absolute deviation estimator yields the true
model, i.e., λ ∈ Ω0. Hence, the subsequent theorem follows immediately.

Theorem 2—If Conditions 1, 2, 4, and 5 hold, pr( λ̂bic = T) → 1.

In addition to generalised crossvalidation and BIC, other selection criteria, such as AIC and RIC

(Shi & Tsai, 2002) can be used to select the tuning parameter for the smoothly clipped absolute
deviation method. Techniques similar to those used above show that AIC performs like
generalised crossvalidation, with a potential for overfitting, while RIC consistently identifies the
true model.

4. Partially Linear Model
In the context of partially linear models, Bunea (2004) and Bunea & Wegkamp (2004) proposed
an information-type criterion and established a consistency property. Fan & Li (2004) extended
their nonconvex penalised least squares method to partially linear models with longitudinal
data, and showed that the resulting estimator performs as well as the oracle estimator. However,
Fan & Li (2004) employed generalised crossvalidation for selecting the tuning parameter. In
this section, we demonstrate that this results in overfitting. We further propose a BIC approach
and show that it can identify the true model consistently.

Consider the partially linear model

(4.1)

where ui is a covariate, α(ui) is nonparametric smooth function of ui, and the remainder of the
notation is the same as that for model (2.1). Various estimation procedures have been proposed
in the literature (Engle et al., 1986;Heckman, 1986;Robinson, 1988;Speckman, 1988), and a
comprehensive survey for the partially linear model is given by Härdle et al. (2000).

Similar to (2.2), we propose

(4.2)

as a penalised least squares function for the partially linear model, where
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the penalty function pλ(|βj|) is defined as in (2.2), and α(·) is a nonparametric smoothing
function. To obtain the penalised least squares estimator, we first adopt Fan & Li's (2004)
profile least squares technique to eliminate the nuisance parameter Θ for a given β. As a result,
we have

(4.3)

where . We then use Fan & Gijbel's (1996) local linear regression approach to
estimate α(·). For u in a neighbourhood of ui, we find (α̂0, α̂1) by minimising

where K(·) is a kernel function, h is a bandwidth and Kh(·) = h−1K(·/h). The local linear estimator
at u is simply α̂(u; β) = α̂0.

Since the local linear estimator is a linear smoother, Θ̂ has the closed-form expression

(4.4)

where Sh is the smoothing matrix corresponding to the local linear regression and depends only
on ui and Kh(·). Substituting Θ in (4.2) with Θ̂, we obtain the penalised profile least squares
function

(4.5)

where I is an n × n identity matrix. Under certain regularity conditions, Fan & Li (2004)
established the oracle property for the penalised profile least squares estimator. Note that the
profile least squares estimator of β is closely related to Speckman's (1988) partial residual
estimator, which is obtained by minimising the first term of equation (4.5). In addition,
Speckman (1988) used the kernel smoothing approach to estimate α, while we employed the
local linear smoothing approach.

Based on (4.5), we define GCVλ for the penalised profile least squares problem by substituting
X and Y in (2.3) with Xh = (I − Sh)X and Yh = (I − Sh)Y, respectively. Analogously, we define
BICλ by replacing X and Y in the calculation of  in (2.4) with Xh and Yh, respectively. Applying
the selector GCVλ or BICλ, we are finally able to compute the SCAD estimator of β.

As shown in Fan & Li (2004), the penalised profile least squares estimator β ̂λ is root-n consistent
provided that λ → 0 and  as n → ∞. Under regularity conditions given in the Appendix,
the asymptotic bias and variance of α̂(u) are of order Op(h2) and Op(1/nh), respectively, since
the parametric convergence rate of β ̂ is faster than the nonparametric convergence rate of α̂
(u). Furthermore, it can be shown that
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by using results in Mack & Silverman (1982), where  is the support of u; see Fan & Huang
(2005) for details. Thus, Conditions 1 and 2 are reasonable assumptions in the proofs of
asymptotic properties of GCV and BIC in partially linear models.

Applying Theorem 3.1 of Fan & Huang (2005), we have

in distribution. This, together with the arguments used in the proofs of Lemmas 1 and 2, implies
that Theorem 1 holds for penalised profile least squares with the smoothly clipped absolute
deviation penalty. Theorem 3.1 of Fan & Huang (2005) also implies that

in distribution for any overfitted model λ(⊃ T) including dλ variables. As a result, equation
(A7) is valid for profile least squares estimators. Applying this result, in conjunction with the
same arguments as those employed in the proofs of Lemmas 3 and 4, shows that Theorem 2 is
true for penalised profile least squares with the smoothly clipped absolute deviation penalty.

Remark
To facilitate choosing the bandwidth h and the tuning parameter λ, we consider the β ̂ to be a
root-n consistent estimator of β. Thus, its convergence rate is faster than the nonparametric
convergence rate of α̂(u). This motivates us to substitute β in the expression of  with its root-
n consistent estimator. By following the approach of Fan & Li (2004), we can show that the
leading terms in the asymptotic bias and variance of the resulting local linear estimator α̂(u)
are the same as those obtained by replacing β with its true value. This indicates that we are
able to choose the bandwidth and tuning parameter separately, which expedites the
computation of h and λ. To be specific, we adapt the approach of Fan & Li (2004) to obtain
the difference-based estimator of β for the full-model, which is a root-n consistent estimator
(Yatchew, 1997). Subsequently, we replace β in  with the difference-based estimator so that
(4.3) becomes a one-dimensional smoothing problem, and we use a smoothing selector to
choose the bandwidth. Here, we use the plug-in method proposed by Ruppert et al. (1995) to
choose the bandwidth, but this does not exclude the use of other known bandwidth selectors,
such as generalised crossvalidation. Finally, we apply GCVλ or BICλ to choose λ.

5. Numerical Studies
5.1. Preliminaries

We examine the finite sample performance of the BIC and generalised crossvalidation tuning
parameter selectors in terms of both model error, i.e., lack-of-fit, and model complexity.
However, we do not compare the smoothly clipped absolute deviation method with the best-
subset variable selection BIC since Fan & Li (2001, 2004) have compared them by Monte Carlo.
To facilitate the computational process, we directly applied the local quadratic approximation
algorithm to search the smoothly clipped absolute deviation solution. We set the threshold for
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shrinking β ̂j to zero at 10−6, which is much smaller than half of the standard error of the
unpenalised least squares estimator, the threshold used in Fan & Li (2001). Thus, the average
number of zeros using the generalised crossvalidation tuning parameter selector is expected to
be slightly smaller than that in Fan & Li (2001). All simulations were conducted using Matlab
code, which is available from the authors.

5.2. Simulation studies
We first consider Fan & Li's (2001) model error measure. Let (u,x,y) be a new observation
from a regression model with E(y|u,x) = μ(u,x), and let μ̂ (·,·) be an estimate of the regression
function based on data {(ui,xi,yi), i = 1,…, n}. Then model error is defined to be E{μ̂(u,x) − μ
(u,x)}2, where the expectation is the conditional expectation given the data used in caluclating
μ̂(·,·). For a partially linear model, μ(u,x) = α(u) + x′β, the model error is

(5.1)

The first term in (5.1) measures the nonparametric component fit, while the second term
assesses the parametric component fit. To investigate the performance of the smoothly clipped
absolute deviation method on the just parametric regression component, we chose the
simulation setting so that the cross-product term in (5.1) equals 0. Note that for the linear
regression model (2.1), the model error exactly equals E(x′β̂ − x′β)2. To compare the generalised
crossvalidation and BIC approaches, we define the model error as

and define the relative model error as RME = ME/MESF, where MESF is the model error
obtained by fitting the data with the full-model SF in conjunction with the unpenalised least
squares estimator, β ̂ F.

In addition to model error, we also calculate the percentages of models correctly fitted,
underfitted and overfitted by generalised crossvalidation and BIC, and the average number of
zero coefficients produced by the smoothly clipped absolute deviation method.

Example 1—We simulated 1000 datasets, each consisting of a random sample of size n, from
the linear regression model

where β = (3,1.5,0,0,2,0,0,0)′, ∊ ∼ N(0,1) and the 8 × 1 vector x ∼ N8(0, Σx), in which (Σx)ij
= ρ|i–j| for all i and j. Values chosen were σ∊ = 3 and 1, n = 50, 100 and 200, and ρ = 0.75, 0.5
and 0.25.

As a benchmark, we compute the oracle estimator, which is the least squares estimator, of the
true submodel, y = β1x1 + β2x2 + β5x5 + ∊. Since the pattern of the results is the same for all
three correlations, we only present the results for ρ= 0.5. Table 1 indicates that median of RME
over 1000 realisations of the BIC approach rapidly approaches that of the oracle estimator as the
sample size increases or the noise level decreases, whereas the value for the generalised
crossvalidation method remains at almost the same level across different noise levels and
sample sizes. Hence, the BIC approach outperforms the generalised crossvalidation approach in
terms of model error measure.

Wang et al. Page 9

Biometrika. Author manuscript; available in PMC 2009 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The column labelled ‘C’ in Table 1 denotes the average number of the five true zero coefficients
that were correctly set to zero, and the column labeled ‘I’ denotes the average number of the
three truly nonzero coefficients incorrectly set to zero. Table 1 also reports the proportions of
models underfitted, correctly fitted and overfitted. In the case of overfitting, the columns
labelled ‘1’, ‘2’ and ‘≥3’ are the proportions of models including 1, 2 and more than 2 irrelevant
covariates, respectively. It shows that the BIC method has a much better rate of correctly
identifying the true submodel than does the generalised crossvalidation method. Furthermore,
among the overfitted models, the BIC method is likely to include just one irrelevant variable,
whereas the generalised crossvalidation approach often includes two or more. Not surprisingly,
both methods improve as the signal gets stronger, i.e., σ∊ decreases from 3 to 1. However, the
generalised crossvalidation method still seriously overfits even if σ∊ = 1 and n = 200. In contrast,
the BIC method overfits less often. These results corroborate the theoretical findings.

Example 2—In this example, we considered the partially linear model,

where u ∼ Un(0,1), and α(u) = exp{2sin(2πu)}. The rest of the simulation settings are the same
as in Example 1. As mentioned in the remark of §4, in each simulation, we replace β in  with
the difference-based estimator, and then use the plug-in method proposed by Ruppert et al.
(1995) to choose a bandwidth. Table 2 presents the simulation results for ρ = 0.5, and shows
that once more, the BIC method out-performs the generalised crossvalidation method in both
identifying the true model and in reducing the model error and complexity.

5.3. Real data examples
Example 3—We consider the Female Labour Supply data collected in East Germany in about
1994. The dataset consists of 607 observations and has been analysed by Fan et al. (1998) using
additive models. Here we take the response variable y to be the ‘wage per hour’. The u-variable
in the partially linear model is the ‘woman's age’; this is because the relationship between y
and u cannot be characterised by a simple functional form; see Fig. 1. There are seven
explanatory variables: x1 is the weekly number of working hours; x2 is the ‘Treiman prestige
index’ of the woman's job; x3 is the monthly net income of the woman's husband; x4 = 1 if the
years of the woman's education is between 13 and 16, and x4 = 0 otherwise; x5 = 1 if the years
of the woman's education is not less than 17, and x5 = 0 otherwise; x6 = 1 if the woman has
children less than 16-years-old, and x6 = 0 otherwise; and x7 is the unemployment rate in the
place where she lives. After some preliminary analysis, we consider the following partially
linear model with seven linear main effects and some first-order interaction effects among x1,
x2 and x3:

Here the x-variables have been standardised.

Following Fan & Li's (2004) approach, we first calculate the difference-based estimator for
β, and then apply the plug-in method to select 4.6249 as a bandwidth for α̂(·). With this
bandwidth, we next choose the tuning parameters by minimising the generalised
crossvalidation and BIC scores, resulting in λ̂GCV = 0.0896 and λ̂BIC = 0.2655. Subsequently, we
obtain the unpenalised profile least squares estimate (Fan & Li, 2004) and the smoothly clipped
absolute deviation estimate based on generalised crossvalidation and BIC, together with their
standard errors (Table 3). We also consider the model selected by the unpenalised full-model
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profile least squares method, i.e., equation (4.5) without the penalty term, and the best-subset
variable selection criterion, , where , SSEhs is the sum of
squares of the errors by fitting Yh versus Xhs = (I – Sh)X , and d* is the dimension of X . The
first four columns of Table 3 clearly show that the unpenalised full-model profile least squares
approach fits spurious variables, while the smoothly clipped absolute deviation method based
on GCV tends to include variables with small, insignificant effects. In contrast, all variables
selected by the smoothly clipped absolute deviation method based on BIC are significant at level
0.05. Fig. 1 shows that the four estimates of α(·) are fairly similar, but that the estimate from
the unpenalised full-model profile least squares approach is slightly different from the others.
Moreover, the resulting intercept function changes with age with no particular functional form.

The fourth column of Table 3 shows that the best-subset variable selection with the BIC criterion
yields a simpler model than that from the smoothly clipped absolute deviation method based
on BIC. However, Breiman (1996) found that the best-subset method suffers from a lack of
stability. To demonstrate this point, we exclude the last 5 observations, so leaving a dataset
with n = 602. The last column of Table 3 shows that the best-subset variable selection with
BIC criterion yields a different model from that with n = 607, which corroborates Breiman's
finding. The model based on the smoothly clipped absolute deviation method with BIC turns out
to be unchanged, although details are not given.

We conclude that the best model in this study is that selected by the smoothly clipped absolute
deviation method with BIC:

Hence, the hourly wage of a woman depends primarily on working hours, job prestige and
years of education, while the husband's income, the local unemployment rate and the indicator
of whether or not the woman has a young child seem not to affect the hourly wage significantly.
Fig. 1 indicates that the hourly wage is almost constant before the age of 50, but decreases
rapidly thereafter.

6. Discussion
One could extend the current work by adapting Fan & Li's (2001) approach to define the
penalised likelihood function for the generalised linear model by replacing the first term of
equation (2.2) with twice the negative of the corresponding loglikelihood function.
Subsequently, one could explore the overfitting effect of generalised crossvalidation and the
consistency of BIC. It is also of interest to compare the generalised crossvalidation approach to
the BIC method for semiparametric models and single-index models. Research along these lines
is currently under investigation.
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Appendix

Proofs
Proof of Lemma 1

When λ = 0, we have DF0 = d and GCV0 = GCV F in (2.3). Then, applying Condition 1 together
with 2log(1 – d/n) = O(n−n), we obtain

(A1)

According to (3.5), SSEλ ≥ SSE λ, which leads to

As a result,

(A2)

In addition, Condition 2 implies that  for  ⊅ T. Hence,

. This result, in conjunction with Conditions 1 and 2 and equations
(A1), and (A2), yields

as n → ∞, and the proof is complete.

Proof of Lemma 2
For any λ ∈ Ω0, we have λ = T. Hence, GCVλ > (1/n)SSE λ = (1/n)SSE TT. This, together with
the fact (1 − d/n)−2 = 1 + 2d/n + O(n−2), leads to

(A3)

since . According to Conditions 1 and 2, we have that  in

probability. Furthermore, under Condition 3,  follows a 
distribution. As a result,
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This completes the proof.

Proof of Lemma 3
Let β  = (βj1, ⋯ , βjd0)′ be the vector of relevant coefficients, and let βN consist of irrelevant
coefficients. Without loss of generality, we assume that β  = (β1, ⋯ , βd0)′, and βN = (βd0+1,
⋯ , βd)′. In addition, let β ̂λn = (β ̂′Sλn, β ̂′Nλn)′, where β ̂′Sλn and β ̂′Nλn are the smoothly clipped
absolute deviation estimators of β′S and β′N, respectively. Under Condition 5, we apply
Theorem 2 of Fan & Li (2001) to obtain that, with probability tending to 1, β ̂Sλn satisfies

(A3)

where bn(βS) = (p′λn(|β1|)sign(β1), ⋯ ,p′λn(|βd0|)sign(βd0))′. According to Theorem 1 of Fan &
Li (2001), β ̂Sλn → βS ≠ 0 in probability. In addition, because , we have aλn →
0. As a result, pr(|β ̂Sλn| > aλn) → 1, which implies that pr{bn(β ̂Sλn) = 0} → 1. This, together
with (A4), implies that, with probability tending to 1, the normal equation (A4) is exactly the
same as

which is the normal equation for the ordinary least squares estimator based on the true model.
As a result, with probability tending to 1, the smoothly clipped absolute deviation estimator
β ̂Sλn is exactly the same as β ̂ T = (X′ TX T)−1 (X TY), the first d0 elements of the oracle
estimator. It follows immediately that pr(SSEλn = SSE T) → 1, since, with probability tending to
one, β ̂Nλn = 0 by the sparsity in Theorem 2 of Fan & Li (2001). Using similar arguments, we
can show that, with probability tending to one, the non-vanished diagonal elements of Σλn
converge to zero, which implies that pr(DFλn = d0) → 1. As a result, with probability tending to
one, we have BICλ = BIC T. This completes the proof.

Proof of Lemma 4
For λ ≠ T, i.e., λ ∈ Ω_ U Ω+, we can identify two different cases, i.e. underfitting or
overfitting. In each case, we show that Lemma 4 holds as given below.

Case 1: Underfitted model, i.e. λ ⊅ T—Applying Lemma 3 and Condition 1, we first
have that

(A5)

in probability. It follows by the fact of λ ⊅ T and Conditions 1 and 2 that
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(A6)

in probability. Finally, (A5) and (A6) imply that pr{infλ∈Ω_ BICλ > BICλn} → 1.

Case 2: Overfitted model, i.e. λ ⊃ T, but λ ≠ T—According to Condition 1,

. Next, let dλ be the number of variables included in the model λ. Then,
for the overfitted model, dλ > d0. Moreover, using the theory of the sum of squares

decomposition, we can easily show that  in distribution as n →
∞. Under the normality assumption, Condition 3, this is also true for a finite sample. Thus, for
any overfitted model ,

(A7)

This, together with Lemma 3 and the definition of BICλ, implies that, with probability tending
to 1,

where the last equality follows because DFλ = dλ + op(λ) by Conditions 4 and 5. Thus,

(A8)

It follows from (A7) that

This, together with the fact  in probability, the right-hand side of (A8) diverges to
+∞ as n → ∞, which implies that

The results of Cases 1 and 2 complete the proof.

Regularity Conditions for Partially Linear Model
Suppose that {(ui, xi, yi), i = 1, ⋯ , n}, is a random sample from (4.1). The following regularity
conditions are imposed to facilitate the technical proofs:

(i) the kernel function is a symmetric density function with compact support;

Wang et al. Page 14

Biometrika. Author manuscript; available in PMC 2009 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(ii) the random variable u1 has a bounded support , and its density function f(·) is Lipschitz
continuous and bounded away from 0 on its support;

(iii) the function α(·) has a continuous second-order derivative for u ∈ ;

(iv) the conditional expectation E(x1|u1 = u) is Lipschitz continuous for u ∈ ;

(v) there is an s > 1 such that E∥x1∥2s < ∞ and for some η < 2 − s-1 such that n2η−1h → ∞;

(vi) the bandwidth h = OP(n−1/5).
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Fig. 1.
Female Labour Study data. The plot of α̂(u). The solid curve is α̂(·) based on the penalised
profile least squares with λ̂BIC, the dashed curve is α̂(·) based on the penalised profile least
squares with λ̂GCV, the dotted curve is α̂(·) obtained by smoothing partial residuals with the BIC

best-subset selection, over ui, and the dash-dotted curve is α̂(·) based on the unpenalised full-
model profile least squares estimate.
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