Skip to main content
. 2009 Mar 10;106(13):4963–4968. doi: 10.1073/pnas.0901093106

Table 3.

Accuracy of various QM methods for predicting noncovalent interactions

Functional Total HB6/04 CT7/04 DI6/04 WI7/05 PPS5/05
DFT
    M06-2X* 0.30 0.45 0.36 0.25 0.17 0.26
    XYG3 0.32 0.38 0.64 0.19 0.12 0.25
    M06* 0.43 0.26 1.11 0.26 0.20 0.21
    M06-L* 0.58 0.21 1.80 0.32 0.19 0.17
    B2PLYP 0.75 0.35 0.75 0.30 0.12 2.68
    B3LYP 0.97 0.60 0.71 0.78 0.31 2.95
    PBE 1.17 0.45 2.95 0.46 0.13 1.86
    BLYP 1.48 1.18 1.67 1.00 0.45 3.58
    LDA 3.12 4.64 6.78 2.93 0.30 0.35
Ab initio
    HF 2.08 2.25 3.61 2.17 0.29 2.11
    MP2 0.64 0.99 0.47 0.29 0.08 1.69
    QCISD(T) 0.57 0.90 0.62 0.47 0.07 0.95

MADs in kcal/mol for the 31 cases in the Truhlar web site DB (14, 15), which contains the best available information from ab initio calculations of noncovalent interactions (NCIE31/05). This consists of 6 HB complexes, 7 CT complexes, 6 DI complexes, 7 WI complexes, and 5 PPS complexes. The WI and PPS are dominated by London dispersion.

*Data are from ref. 14.

Our calculations used the 6-311+G(3df,2p) basis sets with geometries from the Truhlar DB web site. Counterpoise corrections for possible basis set superposition errors were not included.

Data are from ref. 15.