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Abstract

Chiral triazolium and imidazolium-derived N-heterocyclic carbene catalysts promote the direct
annulation of α,β-unsaturated aldehydes and achiral α-hydroxyenones to afford cyclopentane-fused
lactones with high enantioselectivity. Remarkably, otherwise structurally identical imidazolium and
triazolium precatalysts afford different major products. These studies provide both an efficient entry
to valuable chiral structures and a dramatic demonstration of stereodivergency of chiral imidazolium
versus triazolium-derived N-heterocyclic carbene catalysts.

Intense interest in the use of azolium salts as precursors to N-heterocyclic carbene catalysts
has led to a new generation of stereoselective transformations under exceptionally mild and
convenient reaction conditions.1 Underlying this explosion of new methods are intricate and
subtle effects of the reagents and catalysts in selecting discrete mechanistic manifolds,2 making
possible the catalytic generation of acyl anions,3 homoenolates,4 enolates,5 and activated
carboxylates6 from a common α,β-unsaturated aldehyde starting material.

As part of these efforts, we reported a cis-selective, highly enantioselective cyclopentene-
forming annulation of enals and enones promoted by chiral triazolium precatalyst 1•Cl.7 This
work complimented the elegant report of Nair on cyclopentene-forming annulations of α,β-
unsaturated aldehydes and chalcones catalyzed by achiral imidazolium-derived carbenes.8 The
unexpected formation of cyclopentenes was rationalized by spontaneous decarboxylation of a
β-lactone intermediate,9 a facet of the reactions that initially appeared to limit them to
substrates containing aromatic ketones; enones that would give stable lactone products were
unsuccessful.10 In this report, we document the use of α-hydroxyenones11 as reactive
substrates that trap the products at the lactone stage, thereby capturing the stereochemical and
functional complexity of these previously transient intermediates (Scheme 1).12 Furthermore,
we disclose a remarkable stereochemical divergence of reactions promoted by otherwise
structurally identical chiral triazolium and imidazolium precatalysts that offers both synthetic
utility and a window on the divergent reaction cascades of these two catalyst types.

Our attempts to trap the postulated activated carboxylate IV (see Scheme 2) with a pendant
nucleophile began by investigating hydroxyenone 3a as an annulation substrate. Following
reaction optimization we identified conditions that afforded high yields of a mixture of lactone
products. Careful structure determination of the products by X-ray revealed that only three
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lactone products were formed, with the major component constituting >65% of the isolated
material. To our surprise, this product was cis-substituted β-lactone 4a (Table 1). The minor
products were trans-substituted γ-lactone 5a and a small amount of β-lactone 6a, with
pseudoenantiomeric stereochemistry at the cyclopentane substitutents. The expected cis-
substituted γ-lactone 7a (see Table 2) was not detected in reactions employing 1 as precatalyst.
Although the product ratios varied somewhat depending on the cinnamaldehyde employed,
annulations with 3a promoted by 1•Cl consistently provided the cis-substituted β-lactone as
the major product in 99% ee (Table 1, entries 1–6). Interestingly, albeit in accord with our prior
work,7 aryl substituted enones 3b and 3c afforded trans-substituted cyclopentane lactones
(entries 7–8). In our prior studies, the trans products were formed in lower (∼60%) ee. In this
case the enantiomeric, catalyst-bound intermediates partition at the lactone forming step into
isomeric products 5 and 6, and each are formed with excellent enantioselectivity.

In surprising contrast, the use of imidazolium-derived precatalyst 2•ClO4
13,14 resulted in

preferential formation of cis-substituted γ-lactone 7, to the complete exclusion of cis-
substituted β-lactone 4, which was the major product with triazolium 1 (Table 2). This is the
first example of a high yielding and highly enantioselective annulation reaction catalyzed by
a chiral imidazolium-derived carbene. The minor product of the reaction, 5, was identical to
that from the triazolium catalyst reaction, but was formed in only 6% enantiomeric excess. The
minor trans-substituted β-lactone 6 was not observed.

Subtle effects in the conditions or catalysts employed for NHC-catalyzed annulations can have
dramatic effects on the products. In this case, an atomic substitution of carbon for nitrogen at
a remote site of the precatalysts leads to a complete change in diastereoselectivity, resulting in
the formation of the γ-lactone.

Consideration of the reaction cascade leading to the formation of the lactone products can shed
some light on the stereochemical divergence. The initial bond-forming event for the formation
of cis-configured products 4 and 7 is likely to be a tandem or concerted benzoin–oxy-Cope
reaction via a boat-like transition state (Scheme 2). This mechanism, rather than direct
conjugate addition of an extended Breslow intermediate, provides a basis for both the observed
cis-selectivity as well as a platform for the high levels of enantioinduction. The fate of resulting
intermediate III appears to depend on the nature of the catalyst employed via differences in
the facial selectivity of the intramolecular aldol reaction. We initially hypothesized that
intermediate III, when formed with the imidazolium catalyst (cat = 2), was slow to undergo
aldol reaction; however, all attempts to trap it by addition of nucleophiles failed. We therefore
speculate that both catalysts initially provide product IV but the imidazolium-derived activated
carboxylate (IV, cat = 2) is not competent for β-lactone formation. The poor enantioselectivity
for the formation of 5 when the imidazolium precatalyst 2 is employed, in contrast to the high
levels observed with triazolium precatalyst 1, reflects the inability of the imidazolium catalyst
to form β-lactone 6, thereby funneling both diastereomers of VII to a nearly racemic mixture
of γ-lactone 5.

These observations demonstrate a discrete difference in reactivity between otherwise identical
imidazolium and triazolium-derived N-heterocyclic carbenes. Based on our current
observation and understanding, we attribute this not, in this case, to a mechanistic difference
between the reactions of the two catalysts or their interactions with the enal substrates but rather
to a discrete difference in the reactivity of the acyl azolium species involved in the lactone-
forming step. The fate of postulate tetrahedral intermediate A (Scheme 3), appears to be
determined by the leaving group ability of the N-heterocyclic carbene. In the case of the
triazolium catalyst, the NHC is a sufficiently good leaving group to afford β-lactones as the
major products. In contrast, the identical intermediate derived from the imidazolilum catalyst
prefers to eliminate alkoxide, leading to acyl imidazolium B, which undergoes a retro-aldol–
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aldol sequence mutating the stereochemistry and leading to the formation of the more stable
γ-lactone product 7a.

In addition to serving as an auxiliary for enhancing the reactivity of enone 3 and, in the case
of 7, trapping activated carboxylate VI (Scheme 2), the pendant alcohol offers a synthetic
handle for product processing. For example, lactone 4 is readily transformed to enantiopure
cyclopentanone 8 (eq 1).

(1)

Our findings establish that otherwise identical triazolium and imidazolium derived NHC-
catalysts can effect stereodivergent transformations. These intriguing results make a
compelling case for further design of chiral azolium salts and investigations into the remarkable
properties of these catalysts and the powerful synthetic transformation they enable under
simple, operationally friendly reaction conditions.
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Refer to Web version on PubMed Central for supplementary material.
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Scheme 1.
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Scheme 2.
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Scheme 3.
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Table 2
Chiral imidazolium catalyzed annulations.a

entry R % yieldb 7:5c % eed

1 (a) Ph 85 5:1 99; 6

2 (b) p-BrC6H4 76 3e:1 99; 4

3 (c) 2-furyl 80 3:1 99; 8

4 (d) 2-thiophenyl 68 3:1 99; 28

a
See Supporting Information for reaction details.

b
Total isolated yields of lactone products.

c
Determined by 1H NMR analysis of unpurified reaction mixtures.

d
Determined by SFC analysis on chiral columns.

e
Structure determined by X-ray analysis of the product from ent-2•ClO4.
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