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Abstract
Provider profiling (ranking/percentiling) is prevalent in health services research. Bayesian models
coupled with optimizing a loss function provide an effective framework for computing non-standard
inferences such as ranks. Inferences depend on the posterior distribution and should be guided by
inferential goals. However, even optimal methods might not lead to definitive results and ranks should
be accompanied by valid uncertainty assessments. We outline the Bayesian approach and use
estimated Standardized Mortality Ratios (SMRs) in 1998-2001 from the United States Renal Data
System (USRDS) as a platform to identify issues and demonstrate approaches. Our analyses extend
Liu et al. (2004) by computing estimates developed by Lin et al. (2006) that minimize errors in
classifying providers above or below a percentile cut-point, by combining evidence over multiple
years via a first-order, autoregressive model on log(SMR), and by use of a nonparametric prior.
Results show that ranks/percentiles based on maximum likelihood estimates of the SMRs and those
based on testing whether an SMR = 1 substantially under-perform the optimal estimates. Combining
evidence over the four years using the autoregressive model reduces uncertainty, improving
performance over percentiles based on only one year. Furthermore, percentiles based on posterior
probabilities of exceeding a properly chosen SMR threshold are essentially identical to those
produced by minimizing classification loss. Uncertainty measures effectively calibrate performance,
showing that considerable uncertainty remains even when using optimal methods. Findings highlight
the importance of using loss function guided percentiles and the necessity of accompanying estimates
with uncertainty assessments.
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1 Introduction
Research on and application of performance evaluation steadily increases with applications to
evaluating health service providers (Christiansen and Morris 1997; Goldstein and Spiegelhalter
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1996; Landrum et al. 2000; Liu et al. 2004; McClellan and Staiger 1999; Grigg et al. 2003;
Zhang et al. 2006; Normand and Shahian 2007; Ohlssen et al. 2007), prioritizing environmental
assessments in small areas (Conlon and Louis 1999; Louis and Shen 1999; Shen and Louis
2000) and ranking teachers and schools (Lockwood et al. 2002). Inferential goals of these
studies include evaluating the population performance, such as the average performance of all
health providers and comparing performance among providers. Performance evaluations
include comparing unit-specific, substantive measures such as death rates, identifying the
group of poorest or best performing units and overall ranking of the units, e.g., profiling or
league tables (Goldstein and Spiegelhalter 1996).

The Standardized Mortality Ratio (SMR), the ratio of observed to expected deaths, is an
important service quality indicator (Zaslavsky 2001). The United States Renal Data System
(USRDS) produces annual estimated SMRs for several thousand dialysis centers and uses these
as a quality screen (Lacson et al. 2001; ESRD 2000; USRDS 2005). Invalid estimation or
inappropriate interpretation can have serious consequences for these dialysis centers and for
their patients. We present an analysis of the information from the United States Renal Data
System (USRDS) for 1998-2001 as a platform for demonstrating and comparing approaches
to ranking health service providers. From the USRDS we obtained observed and expected
deaths for the K = 3173 dialysis centers that contributed information for all four years. The
approach used by USRDS to produce these values can be found in USRDS (2005).

Though estimating SMRs is a standard statistical operation (produce provider-specific
expected deaths based on a statistical model, and then compute the “observed/expected” ratio),
it is important and challenging to deal with complications such as the need to specify a reference
population (providers included, the time period covered, attribution of events), the need to
validate the model used to adjust for important patient attributes (age, gender, diabetes, type
of dialysis, severity of disease), and the need to adjust for potential biases induced when
attributing deaths to providers and accounting for informative censoring.

The multi-level data structure and complicated inferential goals require the use of a hierarchical
Bayesian model that accounts for nesting relations and specifies both population values and
random effects. Correctly specified, the model properly accounts for the sample design,
variance components and other uncertainties, producing valid and efficient estimates of
population parameters, variance components and unit-specific random effects (provider-,
clinician-, or region-specific latent attributes), all accompanied by valid uncertainty
assessments. Importantly, the Bayesian approach provides the necessary structure for
developing scientific and policy-relevant inferences based on the joint posterior distribution
of all unknowns.

As Shen and Louis (1998) show and Gelman and Price (1999) present in detail, no single set
of estimates or assessments can effectively address multiple goals and we provide a suite of
assessments. Guided by a loss function, the Bayesian approach structures non-standard
inferences such as ranking (including identification of extremely poor and good performers)
and estimating the histogram of unit-specific random effects. For example, as Liu et al.
(2004) show, when estimation uncertainty varies over dialysis centers, ranks produced by Z-
scores that test whether a provider's SMR = 1 tend to identify providers with relatively low
variance as extreme because these tests have the highest power; ranks produced from the
provider-specific maximum likelihood estimates (MLEs) are more likely to identify dialysis
centers with relatively high variance as extreme. Effective ranks depend on striking an effective
tradeoff between signal and noise.

Lin et al. (2006) present estimates that minimize errors in classifying providers above or below
a percentile cut-point. Our analyses build on Liu et al. (2004) by extending the application of
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Lin et al. (2006)'s estimates to combine evidence over multiple years via a first-order,
autoregressive model on log(SMR), and by use of a nonparametric prior. For single-year
analyses we compare the results from the log-normal prior to those based on the Non-
Parametric, Maximum Likelihood (NPML) prior (Laird 1978).

In following, Sect. 2 presents our models; Sect. 3 outlines several ranking methods; Sect. 4
gives uncertainty measures; Sect. 5 presents results and Sect. 6 sums up and identifies
additional research. Computing code for all routines is available at,
http://people.umass.edu/rlin/jhuwebhost/usrds-ranking.htm.

2 Statistical models
We employ both single-year and longitudinal models for observed deaths and underlying
parameters, with the former a sub-model of the latter. To this end, let (Ykt, mkt) be the observed
and case-mix adjusted, expected deaths for provider k in year t, k = 1,... 3173, t = 0, 1, 2, 3 and
ρkt be the SMR. The USRDS computes the expecteds under the assumption that all providers
give the same quality of care for patients with identical covariates, see USRDS (2005) for
details. We employ the conditional Poisson model,

(1)

If the provider has “average performance”, ρkt = 1. For both single-year and multiple-year
analyses we model θkt = log(ρkt).

2.1 Single-year analyses
For single-year analyses, we assume that for year t; θkt  Gt, k = 1,…, 3173: We use a year-
specific, normal prior (see the note after Eq. 2) and for the single-year analyses also use the
non-parametric maximum likelihood (NPML) prior. See and Carlin and Louis (2008) and
Paddock et al. (2006) for additional details and Appendix C for the estimation algorithm.

2.2 The longitudinal, AR(1) model
To model longitudinal correlation among (ρk0, ρk1, ρk2, ρk3), let ϕ = cor(θk,t, θk(t+1)), with -1 <
ϕ < 1. Then, use a normal prior on the θkt and a normal prior on Z(ϕ) = 0.5 log {(1 + ϕ)/(1-ϕ)}
in the hierarchical model,

(2)

The notation “iid” means independently and identically distributed and “ind” means
independently distributed. The relation is first-order Markov, because though conditioning is
on all prior θs, only ρk(t-1) appears on the right-hand side of Eq. 2.

Marginally, for year t, θkt iid N(ξt, ) and setting ϕ = 0 produces four, single-year analyses,
each using the Liu et al. (2004) model with no borrowing of information over time. For ϕ > 0,
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we have a standard AR(1) model on the latent log(SMR)s and the posterior distribution
combines evidence across dialysis centers within year and within dialysis center across years.

2.3 Posterior sampling implementation and hyper-prior parameters
We implement a Gibbs sampler for model (2) with WinBUGS via the R package
R2WinBUGS, using the coda package to diagnose convergence (Spiegelhalter et al. 1999;
Gelman et al. 2006; Plummer et al. 2006). We use V = 10, μ = 0.01, α = 0.05, values that
stabilize the simulation while allowing sufficient adaptation to the data. With V = 10, the a
priori, 95% probability interval for ξt is (-6.20, 6.20) [(0.002, 492.75) in the SMR scale]; the
values for α and μ produce a distribution for τ2 with center near 100, inducing large, a priori
variation for the θkt. For the AR(1) model, reported results are based on the Vϕ = 0.2. This
produces an a priori 95% probability interval for ϕ of (-0.70, 0.70). In a sensitivity analysis,
we also tried Vϕ = 2, which produced the a priori interval (-0.99, 0.99) and yielded results
virtually identical to those based on the Vϕ = 0.2 hyper-prior. In both cases, the data likelihood
dominated the priors. This can also be seen in the shrinkage of τ2 towards zero, as reported in
the Sect. 5.4. There is no strong posterior correlation observed between ϕ and the τ2s.

3 Loss function based ranking methods
Two general strategies for ranking are available. The preferred strategic approach first
computes the joint posterior distribution of the ranks and then uses it to produce estimates and
uncertainty assessments, generally guided by a loss function that is appropriate for analytic
goals. This approach ensures that estimated ranks have desired properties such as not depending
on a monotone transform of the target parameters. The other approach is based on ordering
estimates of target parameters (MLEs or posterior means) or on ordering statistics testing the
null hypothesis that SMRk ≡ 1. If the posterior distributions of the target parameters are
stochastically ordered, then for a broad class of loss functions (estimation criteria) optimally
estimated ranks will not depend on the strategy. However, Lin et al. (2006) and others have
shown that estimates not derived from the distribution of the ranks can perform very poorly
and may not be invariant under monotone transformation of the target parameters. Producing
the joint posterior distribution of the ranks is computationally intensive, but most estimates
depend only on easily computable features.

We first define ranks and then specify candidate ranking methods. For clarity in defining ranks,

we drop the index t and write , with the smallest ρk having rank
1. Rank-based estimates are based on the joint posterior distribution of the Rk(ρ) and are
invariant under monotone transform of the ρk.

3.1 Squared-error loss
Shen and Louis (1998) and Lockwood et al. (2002) study ranks that minimize the posterior

risk induced by squared error loss (SEL): . It is minimized by the
posterior expected ranks,

(3)
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where pr(·) stands for probability. The optimal mean squared error (MSE) in estimating the
ranks is equal to the average posterior variance of the ranks. Generally, the  are not integers;

for optimal, distinct integer ranks, use .

In the notation that follows, generally we drop dependency on ρ (equivalently, on θ) and omit
conditioning on Y. For example, Rk stands for Rk(θ) and  stands for . We present
either ranks (Rk) or, equivalently, percentiles [Pk = Rk/(K + 1)] with percentiles providing an
effective normalization. For example, Lockwood et al. (2002) show that MSE for percentiles
rapidly converges to a function of ranking estimator and posterior distributions of parameters
that does not depend on K.

3.2 Optimizing (above γ)/(below γ) classification errors
The USRDS uses percentiles to identify the best and the worst performers. Let γ be the fraction
of top performers among the total that we want to identify, 0 < γ < 1. A loss function designed
to address this inferential goal was proposed by Lin et al. (2006). The loss function (Eq. 4)
penalizes for misclassification and also imposes a distance penalty between estimated
percentiles and the cutoff γ.

(4)

For ease of presentation, we have assumed that γK is an integer and so γ(K + 1) is not. It is not
necessary to make the distinction between > and ≥. To minimize the posterior risk induced by

(4), let  and .

 is minimized by:

(5)

Dominici et al. (1999) use this approach with γ = K/(K + 1), ordering by the probability of a
unit having the largest latent attribute.

3.3 Equivalence of the  and ordering posterior exceedance probabilities
Given an SMR threshold t, the ranks/percentiles induced by ordering the posterior probabilities
that an SMR exceeds the threshold, pr(ρk > t|Y) allow us to make a connection between the

 and the substantive scale (in our application, SMR). Normand et al. (1997) rank providers
based on these “exceedance probabilities” and Diggle et al. (2007) use them to identify the
areas with elevated disease rates. Lin et al. (2006) shows that exceedance probability based
percentiles are virtually identical to the  by choosing the γth percentile of the average of

posterior cumulative distribution function as the threshold t, i.e., , where

. We denote the percentiles based on  as . In
addition to providing a connection to the SMR scale, the  are far easier to compute than
are the . Note that the  are invariant under the monotone transform of ρk.
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4 Performance measures
As for all statistical procedures, estimated ranks/percentiles must be accompanied by
uncertainty statement. A wide variety of univariate and multivariate performance measures are
available and we propose three univariate measures of uncertainty.

4.1 Mean squared error
Using MCMC, the posterior mean squared error of percentiles produced by any method and
95% posterior intervals of dialysis center-specific percentiles can be computed. As a baseline,
if the data are completely uninformative so that the percentiles  (1/3174, 2/3174,…,
3173/3174) are randomly assigned to the 3173 dialysis centers, then

.

4.2 Operating characteristic for (above γ)/(below γ) classification

The vector of  from any ranking method can be used to classify units into (above γ)/(below
γ) groups and the posterior classification performance (operating characteristic) can be
computed. Following Lin et al. (2006), and suppressing dependence on Pest

(6)

where,ABR(γ|Y) = pr(percentile) > γ|percentile estimated < γ, Y) = pr(P > γ|Pest < γ, Y) BAR
(γ|Y) = pr(percentile < γ|percentile estimated > γ, Y) = pr(P < γ|Pest > γ, Y).

The second equality in (6) results from the identity, γABR(γ|Y) = (1 - γ)BAR(γ|Y). If the goal
is to identify units with the largest percentiles, then BAR(γ|Y) is similar to the False Discovery
Rate (Benjamini and Hochberg 1995; Efron and Tibshirani 2002; Storey 2002; Storey 2003).
ABR(γ|Y) is similar to the False non-Discovery Rate. When the data are completely
uninformative, BAR(γ|Y)/γ ≐ 1 and so OC(γ|Y) produces a standardized comparison across
γ values. Minimizing it produces the most informative cut point for a given Pest.

For any percentiling method, OC(γ|Y) provides a data analytic performance evaluation. The
direct computation of it sums πk(γ|Y) = pr(Pk > (γ|Y) over a Pest produced set of indices.

Plotting the πk(γ|Y) versus the  (see Fig. 1) displays percentile-specific, classification
performance. For ideal fully informative data, the exceedance probability should be 1 for those
classified as above γ and 0 for those classified as below γ. OC(γ) is the area between 
curve and 1 for j ≥ [γK] + 1 plus the area below  curve for j ≤ [γK]. Using  for the

X-axis produces a monotone plot and  is the minimum attainable. This plot is similar
to that proposed by Pepe et al. (2008)

Computing the πk(γ|Y) is numerically challenging. However, the virtual equivalence between
 and  justifies replacing these posterior probabilities by the easily computed pr(ρk

> t|Y) with .
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4.3 Longitudinal variation
For most of dialysis centers, we expect that percentile estimates of different years are similar
to each other. To measure variation in the ranks/percentile estimates within dialysis centers
over the four years, we compute Longitudinal Variation:

where  is the estimated percentile for dialysis center k in year t and  is the mean over
the four years. A smaller LV value indicates better consistency in percentiles estimates of
different years.

4.4 Subset dependency
Unlike estimating individual parameters (where there is individual shrinkage), ranks are highly
correlated and so changing the posterior distribution of some target parameters or removing or
adding units rearrange the order of individual parameters in a complicated manner. Ranks
computed using the posterior distribution of the ranks are thus not subset invariant in that re-
ranking the ranks for a subset of providers will not be the same as ranking only those providers.
Section Appendix A gives a numeric illustrative example. However, if the prior distribution
is known, ranks based on provider-specific summaries such as the MLEs, PMs, exceedance
probabilities or single-provider hypothesis tests are subset invariant. Of course, in an empirical
Bayes or fully Bayesian analysis with an unknown prior (thus, including a known hyper-prior),
no method is subset invariant because the data are also used to estimate the prior or to update
the hyper-prior. We investigate subset dependence by including/removing providers with small
mkt (high variance MLEs). These providers are generally small dialysis centers with very few
patients. Ranking procedures excluding these centers imply that the centers are first categorized
according to their sizes and rankings are then generated in different categories separately. We
pursue our comparison under model (2).

5 Results
5.1 Simulated performance

We conducted simulation studies comparing ranking/percentiling methods for the Poisson
sampling distribution similar to those reported in Lin et al. (2006) for the Gaussian sampling
distribution. Conclusions were similar with  performing well over a broad class of loss
functions, with MLE-based ranks performing poorly and ranks of posterior mean performing
reasonably well but by no means optimally (see Louis and Shen 1999; Gelman and Price
1999). Performances of all methods improved with increasing mkt (reduced sampling variance),
but generally the ranking results are quite indefinitive unless information in the sampling
distribution (e.g., provided by the data) is very high relative to that in the prior.

5.2 Subset dependency and the effect of unstable SMR estimates
We studied the effect including or excluding providers with small mkt (high-variance MLE
estimates) by running both single-year and multiple-year analysis with and without the 68
providers with expected deaths <0.1 in 1998. Comparisons based on  in a graph similar to
Fig. 2 shows that, there is almost no change in percentiles for providers ranked either high or
low, but noticeable re-ordering happens in the middle range. This is not surprising in that the
ranks for high-variance providers are shrunken considerably towards the midrank (K + 1)/2
and are not ranked at the extremes. The high variance providers “mix up” with the ranks from
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more stably estimated, central region providers, but are not contenders for extreme ranks/
percentiles. Also, there are more providers in a given interval length in the middle of the
distribution of parameters than in the tails. The ranks of these large providers in the middle
range will be more sensitive to the change of the joint posterior distribution caused by including
small providers. Performance measures MSE and OC(γ) were very similar for the two datasets.

5.3 Comparisons using the 1998 data
We computed ranks (formula (7)) based on the MLE and hypothesis testing statistics Z-scores
(testing the hypothesis H0: ρ = 1 for 1998); we computed the Bayesian estimates  and
percentiles based on the posterior means ( ) using model (2) with ϕ ≡ 0.

(7)

Globally, if we regard a dialysis center with  greater than 1.5 as “flagged,” then 379 (12%)
of dialysis centers will be identified; if we regard a dialysis center with Z-score greater than
1.645 as “flagged,” then 647 (20.4%) of dialysis centers are identified.

To compare methods, we select the 634 (20%) worst dialysis centers by ranking and selecting
the largest MLEs and Z-scores and compare to those identified by (0.8). The 80th percentiles
of the ρmle and Z-score are 1.44 and 1.67, respectively, whereas the 80th percentile of the
ρpm is 1.10 (these PMs are closer to 1 than their respective MLEs).

We calculate the kappa statistics between the (above γ)/(below γ) classifications based on
 and other estimators. The classifications based on  and ρpm have high agreement with

those based on  with respective kappa statistics 0.90 and 0.94. The kappa statistics
between the MLE and  is 0.78, between the Z-score and  is 0.83, and between MLE
and Z-score is the lowest 0.68.

Figure 3 compares different methods based on their posterior probability of correct
classification pr(Pk > 0.8|Y) The curve for  is monotone and optimal because we construct

 by ranking these probabilities. The curves for percentiles based on ρpm and on  are
very close to that for  (not plotted). The curves for MLE-based and Z-score-based
percentiles are far from monotone.

The MLE SMRs for centers with relatively small expected deaths have relatively large
variances. To study the impact of large and small variances on estimated percentiles, Fig. 3
identifies those for the 147 dialysis centers that treated fewer than 5 patients in 1998. These
constitute 4.5% of all centers. Generally, MLE-based percentiles for these centers are at the
extremes whereas Z-score based percentiles tend to be near 0.5. However, because the posterior
distribution of ρk for the high variance centers is concentrated around 1, the  for these
centers are near 0.5 and similarly for  and percentiles based on ρpm. For dialysis centers with
a large number of patients and thereby a small variance, the optimally estimated percentiles,

 and  spread out to cover full range from 0 to 1. There is better agreement between
MLE-based, Z-score-based and optimal percentiles when the small centers are removed from
the dataset and estimates are recomputed.
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Figure 4 displays estimates for the 40 providers at the 1/3174, 82/3174, 163/3174,…,
3173/3174 percentiles as determined by . For each display, the Y-axis is 100 ×  with its
95% posterior interval. The X-axis for the upper left panel is , for the upper right is percentiles
based on ρpm, for the lower left is percentiles based on ρmle, and for the lower right is percentiles
based on Z-scores testing ρk = 1. To deal with cases where Ykt = 0, for the hypothesis test
statistic we use

See Conlon and Louis (1999) for a similar plot based on SMRs of disease rates in small areas.

Note that in the upper left display the  do not fill out the (0, 1.0) percentile range; they are
shrunken toward 0.50 by an amount that reflects estimation uncertainty. Also, the posterior
probability intervals are very wide, indicating considerable uncertainty in estimating ranks/
percentiles. The plotted points in the upper left display are monotone because the X-axis is the
percentile based on ranking of Y-axis values. Plotted points in the upper right display, which
are based on posterior mean, are almost monotone and close to the best attainable. The lower
left and lower right panels show considerable departure from monotonicity, indicating that
MLE-based ranks and hypothesis test-based ranks are very far from optimal. Note also that the
pattern of departures is quite different in the two panels, showing that these methods produce
quite different ranks. Similar comparisons for SMRs estimated from the pooled 1998-2001
data would be qualitatively similar, but the departures from monotonicity would be less
extreme.

We divide MSE for different ranking methods by the MSE of randomly assigned ranks (Sect.
4.1) for standardization. The methods based on posterior distributions, Ppm, ,  and
P☆ (0.8) perform pretty close to each other with standardized MSEs 44.5%, 44.4%, 46.2% and
46.2%, respectively. Rankings based on MLE and Z-score have less improvement (52.3% and
47.4%) over randomly assigned ranks. The differences in  are less substantial and the
wide 95% intervals presented in Fig. 4 indicate that none of methods can give a conclusive
ranking result.

5.4 Single year and multi-year analyses
Using model (2) we estimated single-year based and AR(1) model based percentiles. Table 1
reports that the ξ are near 0, as should be the case since we have used internal standardization
(the typical log(SMR) = 0). The within year, between provider variation in 100 × log(SMR) is
essentially constant at approximately 100 × τ = 24, producing a 95% a priori interval for the
ρkt (0.62, 1.60). While we have a prior centering around 1000 for 100 × τ, the data likelihood
dominates the prior information and the posterior 95% credible interval of 100 × τt for all 4
years is (22.8, 26.8). Use of the AR(1) model to combine evidence over years (with the posterior
distribution for ϕ concentrated around 0.90) reduces 100 ×  from around 61 to around
48, a twenty percent decrease. Classification performance comparison using the  is very
close to that for the optimal 100 × .

Figure 1 displays the details behind the improvement of classification performance. In the
upper range of , the curve for the AR(1) model lies above that for the single year, in the
lower range it lies below. For the AR(1) model to dominate the single year at all values of
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, the curves would need to cross at  = 0.8, but the curves cross at about 0.7.
Appendix B provides some discussion on this phenomenon.

Longitudinal variation in ranks/percentiles (LVPest is dramatically reduced for the AR(1) model
going from 62 for the year-by-year analysis to 4 for the multi-year. As a basis for comparison,
if ϕ → 1,  → 0 and if the data provide no information on the SMRs (the τ → ∞), then

 = 83.

We have not compared fit of the AR(1) model to other correlation structures such as compound
symmetry (constant correlation rather than exponential damping). With only 4 years of data
per center, the power to compare different correlation structures will be low. With ϕ's posterior
mean 0.90 and 95% credible interval (0.88, 0.92), the AR(1) model is well supported by the
data relative to independence. Note that the AR(1) model operates on the θkt = log(ρkt) and not

on the observed estimates . The induced model for these is approximately ARMA(1, 1),
a hidden Markov model.

5.5 Parametric and non-parametric priors
We compare percentiles based on posterior distributions under the parametric and NPML priors
using 1998 data. Figure 5 displays Gaussian, posterior expected and smoothed NPML
estimated priors for θ = log(ρ). The Gaussian is produced by plugging in the posterior medians
for (μ0, τ0). The posterior expected is a mixture of Gaussians using the posterior distribution
of (μ0, τ0). The posterior distribution of (μ0, τ0) has close to 0 variance, so the two parametric
curves superimpose. The NPML is discrete and was smoothed using the “density” function in
R with adjustment parameter 10 (i.e., the Gaussian kernel bandwidth is ten times of the default
value, see Silverman (1986)). We smooth the NPML to graph a smooth curve, but use the
NPML itself to produce ranks/percentiles. Note that the smoothed NPML has at least two
modes with a considerable mass at approximately θ = 0.5; ρ = 1.65. However, this departure
from the Gaussian distribution has little effect on classification performance. Using 1998 data,
for the NPML 100 × OC(0.8) ≈ 67 while for the Gaussian prior the value is 62 (see Table 1).
For performance evaluations of the NPML, see Paddock et al. (2006). Fig. 2 compares

 under the two priors. The centers at the top or the bottom have less uncertainty in
percentiles (strong signal), and their percentiles are generally same under two priors. For the
dialysis centers with larger variance, the percentiles depend on the prior.

5.6 Ranks based on exceedance probabilities
We compute P*(0.8) (see Sect. 3.3) using the Gaussian prior for θ and 1998 data. The θ-

threshold,  (ρ-threshold = 1.184). Lin et al. (2006) prove the near equivalence
of P*(γ) and  and Fig. 1 displays this equivalence in that the curve based on P*(0.8) is
nearly identical to that based on  for ϕ = 0.

6 Discussion
Ranks and percentiles are computed to address specific policy or management goals. It is
important to use a procedure that performs well for the primary goals. A structured approach
guided by a Bayesian hierarchical model and a loss function helps clarify goals and produces
ranks/percentiles that outperform other contenders, such as those based on MLEs and Z-scores.
When the uncertainties of the direct estimate vary considerably over providers, the estimates
are very sensitive to the method used. In that situation, a structured approach is especially
important.
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Our data-analytic assessments support the Lin et al. (2006) finding that the  (general purpose
percentiles) perform well over inferential goals addressed by a range of loss functions, but that
if a specific percentile cut-point, γ, is identified,  (or P*(γ)) should be used. Unless the
substantive application dictates otherwise, we recommend the use of these. Cost or other
considerations can be incorporated to select γ.

Though the loss function guided estimates are the best possible, the ranking results might not
be conclusive, partially indicated by the wide confidence interval as shown in the Fig. 4.
Therefore, data-analytic performance evaluations are a necessary companion to estimated
ranks. Uncertainty assessments include standard errors and tabulation or display of the
probabilities of correct classification in a (above γ)/(below γ) assessment (our πk(γ|Y)). These
probabilities can be used to temper penalties or rewards. When available, data of multiple years
can be combined to reduce the uncertainty in ranking results, as shown in Table 1 and Fig. 1.

Robustness of efficiency and validity are important attributes of any statistical procedure. For
sufficiently large K, using a smoothed non-parametric prior is highly efficient relative to a
correct, parametric approach and confers considerable robustness (see Paddock et al. 2006).
Additional study of this strategy is needed.

Percentiles are prima facie relative comparisons in that it is possible that all providers are doing
well or that all are doing poorly; percentiles will not pick this up. Indeed, the SMR is, itself, a
relative measure and so percentiles produced from it are twice removed from a normative
context! In situations where normative values are available (e.g., death rates), percentiles that
have a normative interpretation are attractive and those based on posterior probabilities of
exceeding some threshold (P*(γ)) are essentially identical to a loss function based approach

 and so provide an excellent link to a substantively relevant scale. And, they confer a
considerable computing advantage over using the posterior distribution of the ranks to find the

.

Finally, because percentiles can be very sensitive to the estimation methods and because there
is considerable uncertainty associated with all percentiling methods, stakeholders need to be
informed of the issues in producing percentiles, in interpreting them, in their role in science
and policy, and in insisting on uncertainty assessments.
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Appendices

Appendix A: An illustrative example of subset dependency
In general, ranks depend on the framework for comparison and the list of contenders; they are
not necessarily subset invariant. For illustration, consider ranking 3 dialysis centers by  as
defined in Eq. 3. We have,
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Let , i = 1, 2, 3. Let μ1 = 0, μ2 = -0.15, μ3 = 0.05, ,
then pr(ρ1 > ρ2) = 0.51 > 0.49 = pr(ρ2 > ρ1); pr(ρ1 > ρ2) + pr(ρ1 > ρ3) = 0.51 < 0.98 = pr(ρ2 >
ρ1) + pr(ρ2 > ρ3). Thus if we rank only dialysis centers 1 and 2, center 2 has better rank (smaller
θ) than center 1; if we rank all 3 centers, center 2 has worse rank than center 1.

Appendix B: Crossing points of exceedance probability curves
We start from a simplified scenario where θk's share a common posterior variance. Assume
θk ~ N(μk, ν) a posteriori, Φ(t; μk, ν) = pr(θ > t; μk, ν). Let ν0 and  be two possible values of
ν, ν0 > . Without loss of generality, let μ1 < μ2 < …< μK.

For any given t,
•

If ;
•

If ;

By the common variance assumption and μ1 < μ2 <…μK, the posterior distributions of θk are

stochastically ordered and the rank of θk is k. The curves  and

 are both monotone increasing and cross each other between  and 
if μi < t < μi+1. The value of y-coordinate of the crossing point is around 0.5 due to

. We denote the x-coordinate of the crossing point as  ignoring at most 1/K
difference.

If t1 and t2 satisfy

then the curves  and  cross each other at ; the curves

 and  cross each other at ; And the crossing-over of

curves  and  happens between  and . When γ is

greater or smaller than both of  and , which depend on γ, ν0,  and vector (μ1, μ2,…,
μK), the x-coordinate of the crossing point can not be at γ.

Denote the posterior distributions of θk as N(μk, νk) and N  in single year and multiple
years analyses. If the dialysis centers perform consistently over years, inference uncertainty of
θk should be reduced (assuming  < νk) by accumulating data over years while the means do
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not change much (assuming  = μk). Assuming N(μk, νk)'s are stochastically ordered, N

's are stochastically ordered, the above discussion applies to the crossing point of

the curves  and .

In Fig. 1, two curves  and  are plotted without the
stochastically ordered assumption and the location crossing point is more complicated. In
general, it is not necessary that the x-coordinate of the crossing point will be at γ.

Appendix C: The NPML algorithm
Assume ρk ~ G, k = 1,…, K. G is discrete having at most J mass points u1,…,uJ with probabilities
p1,…, pJ. We use EM algorithm (Dempster et al. 1977) to estimate the u's and p's. Start with

 and , for each recursion,

This recursion converges to a fixed point  and, if unique, to the NPML. The recursion is

stopped when the maximum relative change in each step for both the  and the , j = 1, 2,
…,K is smaller than 0.001. At convergence,  is both prior and the Shen and Louis (1998)
histogram estimate .

Care is needed in programming the recursion. The w-recursion is:

Since  can be extremely small (  > can be extremely large), to stabilize the
computations we define,

and write
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The w-recursion becomes:
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Fig. 1.
πk (0.8|Y) versus  for 1998. Optimal percentiles and posterior probabilities computed
with the single year model (ϕ ≡ 0) and the AR(1) model (ϕ = 0.90) Two curves don't cross at
γ = 0.8. The line for fully informative data, i.e., when there is no uncertainty associated with
ranking results is given as reference
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Fig. 2.
Comparison of 1998  with NPML and Gaussian prior. Circles represent 40 dialysis
centers evenly spread across percentiles estimated with NPML prior. The percentiles of the
same center are connected
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Fig. 3.
πk(0.8) versus estimated percentiles by three ranking methods using the 1998 data: , MLE-
based and Z-score-based. For small dialysis centers (fewer than 5 patients in 1998), the symbol
“-” represents the MLE-based percentiles, the symbol “1” the Z-score-based percentiles and
the symbol “ ^ ” the 
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Fig. 4.
SEL-based percentiles for 1998. For each display, the Y-axis is 100 ×  with its 95%
probability interval. The X-axis for the upper left panel is , for the upper right is percentiles
based on ρpm, for the lower left is percentiles based on the ρmle and for the lower right is
percentiles based on Z-scores testing ρk = 1
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Fig. 5.
Estimated priors for θ = log(ρ) using the 1998 data. The solid curve is a smoothed NPML using
the “density” function in R with adjustment parameter = 10. The dashed curve is Gaussian
using posterior medians for (μ, τ); the dotted curve is a mixture of Gaussians with (μ, τ) sampled
from their MCMC computed joint posterior distribution
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