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Abstract
A number of small organic molecules have been developed that bind to amyloid fibrils, a subset of
which also inhibit fibrillization. Among these, the benzothiol dye, Thioflavin-T (ThT), has for
decades been used in the diagnosis of protein-misfolding diseases and also in kinetic studies of self-
assembly (fibrillization). Despite its importance, efforts to characterize the ThT binding mechanism
at an atomic level have been hampered by the inherent insolubility and heterogeneity of peptide self-
assemblies. To overcome these challenges, we have developed a minimalist approach to designing
a ThT-binding site in a “peptide self-assembly mimic” (PSAM) scaffold. PSAMs are engineered
water-soluble proteins that mimic a segment of β-rich peptide self-assembly, and they are amenable
to standard biophysical techniques and systematic mutagenesis. The PSAM β-sheet contains rows
of repetitive amino acid patterns running perpendicular to the strands (“cross-strand ladders”) that
represent a ubiquitous structural feature of fibril-like surfaces. We successfully designed a ThT-
binding site that recapitulates the hallmarks of ThT-fibril interactions by constructing a cross-strand
ladder consisting of contiguous tyrosines. Their x-ray crystal structures suggest that ThT interacts
with the β-sheet by docking on surfaces formed by a single tyrosine ladder, rather than in the space
between adjacent ladders. Systematic mutagenesis further demonstrated that tyrosine surfaces across
four or more β-strands formed the minimal binding site for ThT. Our work thus provides structural
insights into how this widely used dye recognizes a prominent subset of peptide self-assemblies and
proposes a strategy to elucidate the mechanisms of fibril-ligand interactions.
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The formation of β-rich peptide self-assemblies is associated with a diverse set of the so-called
protein misfolding diseases.1; 2 Accordingly, there have been intense interest and research
activities in the development of small organic molecules for the detection and inhibition of
fibril formation.3–7 Although it is clear that understanding how these small molecules interact
with fibrils would greatly aid the development of effective diagnostic and therapeutic reagents,
there is a paucity of experimental data that provide such information at an atomic level. Fibrils
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and other peptide self-assemblies are insoluble and often heterogeneous in their composition,
making it extremely difficult to characterize their interactions with ligands using high-
resolution biophysical techniques. In this work, we report an alternative, protein-engineering
approach to addressing this seemingly intractable problem.

Since its introduction in 1959, the benzothiol dye, Thioflavin-T (ThT), (Fig. 1a) has been a
cornerstone in diagnosing amyloid fibrils.8 Its dramatic increase in fluorescence upon binding
to β-sheet-rich deposits has made it an essential tool for staining amyloid in tissue samples, as
well as in real-time monitoring of self-assembly kinetics in vitro.9–11 ThT represents a
growing number of small organic compounds that bind to and sometimes inhibit amyloid
fibrils.3; 6 Yet despite nearly 50 years of prominent use, the mechanism by which ThT
recognizes and binds peptide self-assemblies remains poorly understood.

Existing models of ThT binding are both incomplete and conflicting. Some research has
suggested ThT binds promiscuously to a wide variety of substrates and that ThT micelles
interact with fibrils.12 However, these models of ThT interaction cannot account for the chiral
bias of bound ThT,13; 14 nor its preference to bind parallel to the long axis of fibrils.15 It is
therefore increasingly accepted that ThT and other amyloid dyes bind to a common structural
motif in fibrils.16; 17 Moreover, the fact that not all fibrils bind ThT further suggests that ThT
recognizes certain structural and/or chemical features within fibrils.

β-Rich peptide self-assemblies, such as fibrils, commonly adopt the “cross-β” structure,
characterized by an extended β-conformation with the strands running perpendicular to the
long axis of the assembly and lamination of multiple β-sheets.18 Both parallel and anti-parallel
β-strand orientations give rise to a specific arrangement of side-chains in self-assemblies,
termed “cross-strand ladders”.19 These cross-strand ladders consist of repeating side-chain
interactions running across β-strands within a β-sheet layer (i.e. parallel to the long axis of the
assembly; Fig. 1b) and arise from the inherently repetitive nature of self-assembly. Recent
structures of short fibril-forming peptides demonstrate that these neighboring rows of cross-
strand side-chains occur regardless of peptide sequence, and form extended channel-like motifs
along solvent-exposed surfaces of the assembly into which linear dyes could bind (Fig. 1b).
20–23 Our hypothesis is that ThT binds to the β-sheet surface along motifs formed by cross-
strand ladders of certain amino acid composition, hence rationalizing the ThT-binding
properties of many peptide self-assemblies.

Unfortunately, characterizing the role the side-chains of cross-strand ladders play in ThT
binding is hampered by the experimental intractability of fibrils. Previous models of ThT
binding are therefore based on macroscopic observations and are ambiguous at the molecular
level. Though recent work has yielded atomic-resolution insight into microcrystalline self-
assemblies, which could in principle be used as the starting structure for systematic mutagenesis
experiments for ThT binding, the surface properties of the short peptide subunits cannot be
precisely manipulated without disrupting, destabilizing or altering the mode of assembly.20;
21 Recently, the x-ray crystal structure of ThT bound to acetylcholine esterase was determined
24. Although this structure reveals interactions responsible for extremely high affinity (Kd in
the low nM range), the binding site is constructed with residues in mostly α-helical regions of
the enzyme, providing little insights into the mechanism of ThT-fibril interactions. Thus it
remains a major challenge to elucidate the minimal chemical and structural requirements for
ThT binding to fibrils.

In an attempt to overcome many of these experimental limitations of short peptide studies, we
employed a complementary approach by examining ThT binding using a “peptide self-
assembly mimic” (PSAM) derived from Borrelia outer surface protein A (OspA) (Figs. 1c and
1d).25 PSAMs covalently link a fixed number of β-hairpin units into a single-layer β-sheet
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(SLB) scaffold, thereby eliminating the heterogeneity in composition of self-assembly. This
sheet is capped by N- and C-terminal globular domains that prevent lateral assembly and
lamination. Unlike fibrils, PSAMs are water-soluble, crystallization-efficient and highly
amenable to site-directed mutagenesis, allowing us to precisely control the surface properties
of the β-sheet.26; 27 A peptide corresponding to the β-hairpin unit readily forms β-rich self-
assemblies, suggesting that the underlying subunit is primed for self-assembly and that the
combination of the PSAM and the peptide can serve as a model for studying mechanisms of
peptide self-assembly.28; 29 Although our current PSAM system mimics only anti-parallel
self-assemblies due to the strand topology of OspA, it can still provide fundamental information
that would be otherwise unattainable. Using PSAMs as “host” scaffolds, we can introduce a
variety of “guest” mutations and study their effects on ThT binding in solution using well-
established biophysical methods, thus providing a unique opportunity to systematically define
chemical and structural requirements for the interaction of ThT with self-assembly-like
materials.

Results
Design of cross-strand ladders

We selected a PSAM scaffold containing four homologous β-hairpins comprising a total of
eight β-strands (Figs. 1c and 1d),30 which we will refer to it as the “wild type” hereafter. This
scaffold’s large SLB minimizes the context effects from the N- and C-terminal globular
domains, and at the same time its sequence can be manipulated efficiently. Furthermore, we
have successfully crystallized this PSAM,25; 27 suggesting a good likelihood of obtaining
atomic structures of mutants.

The PSAM β-sheet contains several endogenous cross-strand ladders and can be considered a
structural mimic of the surface of fibrils (Fig. 1d). However, ThT did not appreciably bind to
the wild-type PSAM (Figs. 2b and 2c). This scaffold contains mostly polar and charged amino
acids in the SLB (Fig. 1d), and its lack of ThT binding agrees with ThT’s low affinity to highly
charged fibrils.17; 31 Thus, the PSAM provides an inert platform on which we can attempt to
design a ThT-binding site.

We selected 16 residues, two adjacent ladders each containing 8 residues, in the center of the
SLB as “host” positions into which amino acid substitutions were introduced (Fig. 1d). These
positions exhibit particularly regular β-sheet geometry because they are distant from the turn
regions of the scaffold. These ladders are referred to as Ladder1 and Ladder2 (Fig. 1d). We
emphasize that these ladder represent motifs across β-strands, not continuous segments along
the peptide chain. Because PSAMs are designed to mimic peptide self-assemblies, each ladder
always contains four repeats of a two-residue basic unit. In the wild-type PSAM, Ladder1
consists of four repeats of Glu and Lys (EK), while Ladder2 consists of four repeats of Lys
and Glu (KE) (Fig. 1d). We hereafter will refer to these mutants in the form of [ladder length]
−[basic unit for Ladder1]/[basic unit for Ladder2]. Hence, the wild-type pattern is denoted 8-
EK/KE (Figs. 1d and 2a).

Single Tyr ladders define ThT-binding threshold
As aromatic amino acids are often present in self-assembling peptides32 and have been
implicated in computational models of ThT binding,16 we initially investigated whether a
cross-strand ladders consisting solely of Tyr could promote interactions between the PSAM
and ThT. We had previously designed the 8-YY/KE mutant by replacing all residues in Ladder1
with Tyr in order to study the structural and stability effects of long aromatic ladders (Fig. 2a).
27 Because this PSAM was already well characterized and it is soluble and monomeric,27 we
used it in our initial screen for ThT binding.
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Surprisingly, ThT bound to 8-YY/KE with many of the hallmarks of ThT binding to true
peptide self-assemblies, including a dramatic increase in fluorescence emission at 485 nm (Fig.
2b). To define the minimal length required for ThT binding to the Tyr ladders, we constructed
smaller ladders in the 8-EK/KE scaffold, termed 2-, 3-, 4-, and 6-YY/KE (Fig. 2a). Due to
restrictions in mutagenesis imposed by repetitive DNA sequences for the β-hairpin repeats, the
positions of the Tyr ladders in these mutants varied for different ladder lengths. ThT bound at
comparably low levels to PSAMs containing Tyr ladders shorter than four residues. ThT
binding became significant when the Tyr ladder was lengthened between four and six residues
(Fig. 2c), suggesting the minimal ladder length for ThT binding lies between these values (see
below for further investigation). While we observed a substantial range of ThT binding to these
PSAMs, fluorescence emission measured as a function of PSAM concentration did not show
a sign of saturation even at a PSAM concentration of 100 μM (data not shown). This indicates
the affinity of ThT for these PSAMs is much weaker than the 1–5 μM Kd of the dye to many
amyloid fibrils.3; 17 Therefore, additional factors must contribute to the higher-affinity
interactions between amyloid fibrils and ThT.

Side-by-side ladders create high-affinity ThT-binding sites
The discovery that the Tyr-rich cross-strand ladders confer ThT binding on otherwise inert
PSAMs suggest that linear stretches of solvent-exposed residues in peptide self-assemblies are
important determinants for ThT binding. This view is consistent with the channel model in
which ThT binds between two adjacent ladders on the surface of the self-assembly. To assess
the role of neighboring ladders in the ThT binding mechanism, we introduced eight Leu
residues into Ladder2 to create the 8-YY/LL mutant (Fig. 3a). These side-by-side ladders of
Tyr and Leu are homologous to the alternating Val-Phe ladders that have been suggested as a
possible ThT-binding site on amyloid-β.16 We additionally designed smaller versions of the
YY/LL ladders termed 3-, 4-, and 5-YY/LL, which contain cross-strand ladders stretching only
three, four, and five residues (Fig. 3a). These mutants were constructed by disrupting the
continuous Tyr and Leu ladders of 8-YY/LL with the wild-type, E/K (or K/E) pattern within
a β-strand (Fig. 3a). The lack of ThT binding to the 8-EK/KE ladders (Figs. 2b and 2c) suggested
that the intra-strand E/K (or K/E) pattern would effectively bisect the YY/LL ladders into
shorter ones. The 3-, 4-, and 5-YY/LL PSAMs were expressed as monomeric and soluble
proteins as judged by size-exclusion chromatography (data not shown). In contrast, 8-YY/LL
did not exhibit a monodispersed elution profile, and thus we eliminated it from further analysis.

Of all PSAMs constructed to date, 5-YY/LL displayed the highest affinity for ThT, with a
Kd of ~2.5 μM that is comparable to that observed for amyloid fibrils (Fig. 3b). ThT binding
titrations performed at a high concentrations of 5-YY/LL with respect to the Kd determined
the ThT:PSAM binding stoichiometry to be ~1:1 (Fig. 3c). Moreover, ThT titration data for 5-
YY/LL (Fig. 3b) show no significant deviation from a hyperbolic binding curve near the critical
micelle concentration of ThT, reported previously as between 4–8 μM in a solution of
comparable composition 12; 17. Along with stoichiometry data, these results indicate that a
single ThT molecule binds to each PSAM. Circular dichroism (CD) measurements of ThT in
complex with 5-YY/LL revealed the Cotton Effect peak near 450 nm, similar to ThT bound to
fibrils (Fig. 3d). The Cotton Effect indicates that ThT is bound in a chiral environment and is
twisted in terms of the rotation about the bond between the two rings.13; 14; 17 This
immobilization has been viewed as the cause of the increase in quantum yield responsible for
ThT’s characteristic fluorescence enhancement upon fibril binding.33 Together, these results
demonstrate that 5-YY/LL fully recapitulates a fibril-like ThT-binding site.

In corroboration of our findings on the ladder length requirement from the single Tyr ladder
(Fig. 2c), 3-YY/LL lost nearly all ability to bind ThT, while 4-YY/LL showed a diminished,
but still observable interaction with the dye (Fig. 3b). The YY/LL mutants therefore refine our
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knowledge of the ladder-length dependence for ThT binding, demonstrating that while low-
affinity interactions can be mediated by ladders stretching four cross-strand residues, ladders
across five or more β-strands are required for fibril-like affinity.

As side-by-side ladders may comprise generic binding sites for small molecules on peptide
self-assemblies, we further investigated the ability of 5-YY/LL to bind a variety of common
amyloid dyes (BTA-1, Congo Red and bis-ANS; Fig. 4a). The naphthalene sulfonate dye, bis-
ANS, showed a substantial increase in fluorescence upon binding to 5-YY/LL (Fig. 4b) and
competed with ThT (Fig. 4c), suggesting these dyes share a common binding site on the PSAM.
In contrast, we did not observe binding of the uncharged ThT derivative BTA-1 (data not
shown), which differs from the parent molecule by a several exo-cyclic methyls.3 Our results
are consistent with previous work showing that, despite their structural similarity, ThT and
BTA bind to distinct sites on fibrils.3 We also found no evidence for binding of the amyloid
dye Congo Red to 5-YY/LL (data not shown). This may be because the designed ThT-binding
site is too small for Congo Red (the tip-to-tail length of Congo Red is ~26 Å, compared to ~15
Å for ThT; Fig. 4a), or it requires a distinct binding motif.17

High-resolution x-ray crystal structures of ThT-binding PSAMs
To further understand the structural basis for ThT binding, we determined the x-ray crystal
structures of the strongest ThT binders from both the single- and side-by-side ladder mutants.
We introduced a set of surface mutations into the N- and C-terminal globular domains of the
PSAM, which facilitates crystallization without perturbing the structure of the SLB region (see
Methods).25; 30 The structure of 5-YY/LL was determined at a 1.75 Å resolution (Table 1),
while the structure of 8-YY/KE at 1.50 Å has been reported (previously referred to as
(YY)4).27

Although crystallization of 5-YY/LL was performed in the presence of excess ThT, no electron
density interpretable as ThT was observed. This is probably due to inhibitory effects of the
40% (v/v) PEG-400 precipitant required for crystallizing 5-YY/LL. We found that even 10%
PEG-400 ablated ThT binding (Fig. 3e). Two well-resolved portions of PEG molecules were
observed near the presumed ThT-binding site (Fig. 5b), suggesting direct competition between
ThT and PEG-400. Small molecules such as glycerol are known to compete with ThT for
binding to fibrils.34; 35 Although no bound ThT was observed, the putative ThT-binding site
of 5-YY/LL is exposed to a large solvent-channel in the crystal, and is not involved in crystal
contacts (Fig. 5a). Therefore, the 5-YY/LL crystal structure likely represents a dominant
structure in solution of the ThT-binding cross-strand ladders.

As expected, 8-YY/KE and 5-YY/LL retained the overall structure of the PSAM scaffold. Both
structures have nearly identical N- and C-terminal domains (Cα RMSD = 0.7 Å and 0.5 Å,
respectively). While the topology of the SLB region was identical in these proteins, a larger
Cα RMSD (2.1 Å) indicated conformational differences in their SLBs. We found that the 8-
YY/KE β-sheet has a mild degree of twist, while the 5-YY/LL β-sheet is almost perfectly flat
(Fig. 5e). A quantitative analysis of these differences further supports this notion (Fig. 5f).

Clear electron density was observed for all of the introduced ladder residues, though the Tyr182
side chain in 8-YY/KE had two equally-occupied rotamers. In analyzing 5-YY/LL below, we
will focus solely on the five consecutive Tyr and Leu residues in the ladder and ignore the
smaller two-residue Tyr and Leu ladder, an artifact of bisecting 8-YY/LL with Glu and Lys
(Fig. 3a). This simplification is justified because we have shown that ladders shorter than three
residues are incapable of binding ThT (Fig. 3b).

In both 8-YY/KE and 5-YY/LL, Tyr residues grafted into Ladder1 predominantly exhibit the
trans side-chain rotamer, which due to the anti-parallel arrangements of adjacent β-strands
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resulted in alternating side-chain orientations along the Tyr ladders (Figs. 5b and 5c). Because
of this alternation, the planes of neighboring Tyr rings are essentially orthogonal and give rise
to extended channels across the β-strands of the SLB (Fig. 5b and 5c). These Tyr channels in
8-YY/KE and 5-YY/LL present 380 and 240 Å2 of hydrophobic surface to the solvent,
respectively. In contrast, unlike the Tyr side chains, the Ladder2 residues do not present an
obvious solvent-accessible surface channel. In particular, the row of Leu of 5-YY/LL is well-
buried by adjacent residues within the ladder as well as by neighboring Tyr (Figs. 5b and 5c).
The PSAM structures thus give no indication of a channel formed between adjacent ladders,
as has been proposed.15

We attempted to confirm the putative ThT-binding site suggested by the PSAM crystal
structures using solution NMR spectroscopy. Though HSQC spectra of 8-YY/KE and 5-YY/
LL displayed several peak shifts upon addition ThT (data not shown), extensive overlap of
resonances and the presence of four copies of the nearly identical β-hairpin repeats prevented
us from unambiguously identifying peaks for the ThT-binding site. Nevertheless, these spectra
confirm a modest-affinity interaction between ThT and the PSAMs that is consistent with the
results of fluorescence dye-binding assays.

The dominant role of the Tyr ladder in ThT binding
To further test the mode of ThT-binding, we designed a set of additional point-mutations to 5-
YY/LL. Replacing a single Tyr at one end of the 5-YY ladder (“-Y” mutant) with Lys
dramatically reduced ThT binding, but an equivalent mutation in the 5-LL ladder (“-L” mutant)
had a much smaller effect (Fig. 3f). These results demonstrate that the Tyr ladder is particularly
important for ThT interactions and the Leu ladder may play an accessory role in ThT-binding.

We additionally constructed the YIYIY mutant, which replaced two Tyr residues of 5-YY/LL
with Ile, to determine whether hydrophobic residues could substitute for Tyr in this context.
These Ile mutations abolished ThT binding (Fig. 3f). Thus, data from the -Y, -L and YIYIY
variants of 5-YY/LL collectively support that the Tyr ladder forms the dominant binding motif
in the PSAMs.

Discussion
The PSAM system allowed us to systematically manipulate the surface properties of a self-
assembly-like extended β-sheet and demonstrate that cross-strand ladders of certain amino acid
compositions are sufficient for recapitulating the characteristic high-affinity interactions
between ThT and amyloid fibrils (Fig. 3b). In particular, we demonstrated that cross-strand
ladders consisting of Tyr may be important in mediating a ThT interactions with a subset of
peptide self-assemblies. While our results do not exclude the possibility of alternative ThT
binding modes to fibrils, such as binding to β-sheet edges and to the “dry” face between β-
sheet layers, a large degree of structural variation among different amyloid models20; 21;
36–38 suggest that alternative binding modes do not explain the broad binding spectrum of
ThT. The cross-strand ladders represent common surface motifs of cross-β fibrils, and therefore
provide an attractive model for the general ability of ThT to bind to peptide self-assemblies.

The transition from a non-binding to a binding-competent surface produced by extending the
Tyr/Leu ladders (e.g. 3-, 4-, and 5-YY/LL; Fig. 3a) down the long axis of the β-sheet argues
that ThT binds preferentially parallel to the long axis of peptide self-assemblies, which is
consistent with previous spectroscopic studies.15 ThT binding data suggest that a five-residue
ladder is necessary for achieving fibril-like affinity for ThT (Fig. 3), though four cross-strand
Tyr residues form the minimal, weak binding site. These requirements are consistent with the
tip-to-tail length of ThT (~15 Å) and the Cα-Cα distance of a four-residue ladder (~14 Å). In
the context of the single-ladder Tyr mutants, lengthening the ladder increased the fluorescence
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intensity with no enhancement of binding affinity, suggesting that the fluorescence increase is
due to an increase of the number of ThT-binding sites but not due to affinity increase. This is
reasonable because a longer ladder encodes multiple copies of the minimal ThT binding ladder.

In light of the common (though not identical) capacity of 8-YY/KE and 5-YY/LL to bind ThT,
the alternating Tyr ladder motif shared by them, and the absence of an apparent channel
between the Tyr and Leu ladders in 5-YY/LL (Fig. 5), we propose that the side-chain surfaces
formed by the cross-strand Tyr ladders are the primary binding site for ThT to these PSAMs.
Fig. 5c shows a model of ThT binding to the Tyr surfaces. The fact that the 5-YY/LL mutant
in which two Tyr were replaced with Ile (YIYIY) did not bind ThT (Fig. 3f) suggests that the
aromatic side chains of the Tyr ladder are particularly favorable binding sites for ThT. Though
it is possible that conformational dynamics of the side-chains could permit the formation of a
ThT-binding site between the ladders, the large impact of the Tyr replacements and the
comparatively small impact of the Leu-to-Lys (“-L”) mutation (Fig. 3f) suggests that this is
unlikely. The Leu ladder removes charged residues near the ThT-binding site, and it appears
to provide tight packing interactions to stabilize the Tyr rings. Taken together the Leu ladder
seems to play a secondary role in forming the ThT-binding site. Like the mechanism proposed
for ThT-PSAM interactions, the binding pocket of acetylcholinesterase is highly enriched with
aromatic side chains, forming π-stacking and hydrophobic interactions with ThT.24 Strikingly,
Trp and Tyr residues lining this pocket form a perpendicular edge that is similar to the
orthogonal side-chain surface formed by the Tyr ladder of 5-YY/LL (Figs. 5c and 5d).
Interactions mediated by aromatic residues may be particularly effective in immobilizing the
two aromatic rings of ThT, the prerequisite for fluorescence enhancement.33 Aromatic side
chains have been proposed to play the major role for binding of polyphenol inhibitors to fibrils,
5 a view consistent with our results for ThT-PSAM interactions.

In addition to their differences in side-chain composition, the degree of β-sheet flatness of the
PSAM mutants also correlates with their ability to bind ThT (Figs. 5e and 5f). While we
observed that ThT does not bind to the most twisted sheet of 8-EK/KE, it does interact with
the somewhat flatter 8-YY/KE, and even more so with almost perfectly flat 5-YY/LL. We have
previously shown that the PSAM β-sheet conformation is sensitive to the size and composition
of its constituent side chains, with bulky aromatic residues having a pronounced effect in
directing flatter β-sheet conformations.27 Therefore, although our results clearly show that flat
β-sheets containing cross-strand Tyr surfaces are sufficient for ThT binding, we cannot
conclude whether the flat β-sheet surface itself is a requirement for the interaction or rather a
by-product of the ladders introduced. Minimally twisted β-sheets are required for the formation
of the laminated, cross-β structure common in fibrils.20; 21 It is quite possible that the flatness
is critical for high affinity ThT binding, which may explain why ThT does not bind to larger
β-sheets in water-soluble proteins that are often heavily twisted.39

The rigidity of the β-sheet scaffold may also be an important factor for high-affinity ThT
binding. We have previously shown that a long Tyr cross-strand ladder (8-YY/KE) enhances
the rigidity of the PSAM scaffold.27 Such increased rigidity is likely to be shared by 5-YY/
LL. A high-level of rigidity may promote the formation of a well-ordered ThT-binding site
and reduce the entropic penalty upon ThT binding.33 Further studies are required to dissect
the contributions of β-sheet flatness and flexibility to dye binding.

Using PSAMs, we have experimentally identified minimal structural and chemical
requirements for ThT binding in the context of anti-parallel peptide self-assembly. The unique
ability of PSAMs to accommodate mutations at specific positions without significantly
changing the overall structure of the system was critical for this minimalist design of a ThT-
binding site. Our strategy should be applicable to characterizing interactions of other ligands
with peptide self-assemblies.
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The aromatic channel model provides a molecular mechanism by which ThT binds to a variety
of β-rich self-assemblies and helps explain ThT’s moderate binding specificity. Because our
results establish a minimal structural threshold for high-affinity ThT binding, they may
facilitate interpretation of ThT binding data in molecular terms. Knowledge gained from PSAM
studies may therefore be useful for better defining the structure of small self-assemblies
(oligomers) that are proposed to play an important role in neurotoxicity1; 40 but remain poorly
characterized due to their transient nature.

We note that the Tyr surfaces observed in the anti-parallel PSAMs may not exist in parallel
self-assemblies, where the aromatic side chains in a ladder can form contiguous π-stacking
interactions.20 Still, we speculate that certain cross-strand ladder motifs rich in aromatic amino
acids may be important for dye binding in parallel self-assemblies. We moreover note that
while our results demonstrate cross-strand Tyr ladders are sufficient for recapitulating the ThT
binding behavior of fibrils, these particular amino acid motifs are not a universal explanation
for amyloid dye-binding interactions. The breadth of ThT binding to cross-strand ladders of
various compositions and in distinct structural environments (anti-parallel vs. parallel β-sheets)
could be uncovered by an approach analogous to ours presented here.

Finally, the acquisition of a ThT binding function by introducing the Tyr ladder is also
interesting from an evolutionary point of view. It demonstrates that a point mutation to Tyr in
a short peptide can create a self-assembly with a new binding function. It is notable that Tyr,
among the natural amino acids, is particularly suited for producing a binding interface.41 Thus,
such simple point mutations may have played an important role in the evolution of primordial
peptides from inert to functional self-assemblies.

Materials and Methods
Sample preparation

Mutagenesis, expression and purification of PSAMs were performed as described previously.
26 Each protein was analyzed using size-exclusion chromatography (Superdex 75,
Amersham). A majority of PSAMs were found to be predominantly monomeric, and thus they
were used without further purification. Because of its high affinity to ThT, 5-YY/LL and its
point mutants (Fig. 3f) were further purified using size-exclusion chromatography to eliminate
potential contamination of oligomers. For crystallization, the ladder mutants were transferred
into the OspAsm1 scaffold that contains mutations in the N- and C-terminal globular domains
(“caps”) of OspA, which increase crystallization efficiency without perturbing global structure
or the SLB region.30 An N-terminal his-tag was removed prior to crystallization. ThT, bis-
ANS, BTA-1, and Congo-Red were purchased from Sigma-Aldrich.

Dye Binding
ThT fluorescence measurements were conducted using 90 μL of sample in a black, 96-well
NUNC plate using a Tecan Safire 2 plate reader with excitation at 440 nm. Samples were
dissolved in 10 mM sodium phosphate buffer pH 7.4 containing 150 mM NaCl. For
characterizing low-affinity variants, fluorescence measurements of 10 μM ThT were
performed by titrating protein into the solution. For high-affinity mutants, ThT was titrated
into a solution containing 10 μM protein. Competition assays with BTA-1 and bis-ANS were
conducted using 1 μM protein and 5 μM ThT. BTA-1 was dissolved in DMSO and diluted to
a final DMSO concentration of 1% v/v for measurement. Bis-ANS binding was conducted
using 10 μM protein, with excitation at 390 nm and detection at 505 nm. Congo Red binding
was assessed with an absorbance scan from 300–700 nm using 10 μM protein.
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Crystallization and structure determination of the 5-YY/LL PSAM
Crystallization conditions are listed in Table 1. X-ray diffraction data were collected using the
Advanced Photon Source at the Argonne National Laboratory. The 5-YY/LL structure was
determined by molecular replacement using Phaser 42 with 8-YY/KE (PDB 2OY7) as the
search model. Model building and refinement were performed in the same manner as the wild-
type (EK) PSAMs.25 Structures were analyzed using CCP4.43 Molecular graphics were
generated using PyMOL (http://www.pymol.org).

Circular dichroism spectroscopy
Measurements were performed using an Aviv CD spectrometer using a 1 mm path length
cuvette at 30 °C. The spectra of 0.5 mM ThT were measured with and without 0.5 mM of
PSAM. A spectrum of each 0.5 mM PSAM was used as a blank. Three separate reads were
averaged and then smoothed with a 9-nm window.
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Figure 1.
PSAM model for ThT binding. (a) Chemical structure of ThT. (b) Adjacent cross-strand side-
chain ladders of a self-assembled antiparallel β-sheet. The sheet backbone is depicted as lines
between α-carbons. Side-chains indicated circles inscribed with the letter R. (c) Scheme
illustrating the PSAM concept. A segment of peptide self-assembly is hypothetically excised,
linked, and capped. The crystal structure of the 8-EK/KE PSAM is shown as a cartoon model
on the right, with the N- and C-terminal caps colored black and the SLB colored grey. (d)
Amino acid sequence of the wild-type PSAM SLB shown according to the β-sheet topology.
The rectangles indicate β-strand residues. The side chains of the residues enclosed in the dashed
lines point toward the reader, and those of the other β-strand residues point away from the
reader. The designations of the four β-hairpin repeats (“0” – “3”) are shown. Hydrogen-bonding
partners are depicted with arrows pointing from donor to acceptor. Note that 3-, 4-, 5-, and 8-
YY/LL all contain a V201L mutation in a turn region of β-hairpin 0 (denoted with an asterisk),
which occurred as an unintended consequence of gene construction. Leu is present in the
homologous positions (L132, L155, and L178) of β-hairpins 1, 2 and 3, and therefore likely
has a negligible effect on the structure, stability, and dye-binding properties of the PSAM.
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Figure 2.
Design of single cross-strand ladders in the PSAM and their ThT binding properties. (a)
Schemes of single Tyr-ladders of different lengths used in this work. Note that the locations
of the Tyr ladder mutations were dictated by our limited ability to specifically introduce
mutations at certain positions due to the redundancy of the PSAM gene. (b) Fluorescence
emission spectra of 10 μM ThT in the absence and presence of 100 μM 8-YY/KE or 100 μM
8-EK/KE. (c) ThT fluorescence emission as a function of the number of contiguous cross-
strand Tyr residues. Fluorescence intensity at 485 nm is shown after subtracting a blank (no
protein) spectra of 10 μM ThT, and are normalized relative to the 8-YY/KE signal.
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Figure 3.
Design of side-by-side ladders and their ThT binding. (a) Schemes of the side-by-side ladders
used in this work. (b) ThT binding titrations measuring ThT fluorescence emission at 485 nm.
Protein concentrations were 10 μM. (c) Determination of the stoichiometry of ThT binding to
the PSAM by binding site titration. ThT fluorescence emission intensity at 485 nm is plotted
as a function of ThT concentration. The binding titration was performed with 25 μM 5-YY/
LL PSAM, i.e. a protein concentration much higher than the Kd of the binding reaction.
Extrapolation of the linear portion of the curve near the origin is shown as the black dashed
line. The gray horizontal dashed line is a saturation value of ThT fluorescence estimated at
~110 A.U. The intercept of the two lines indicates that the saturating ThT concentration is ~25
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μM, i.e. a 1:1 binding stoichiometry between ThT and the PSAM. (d) CD spectra of 0.5 mM
ThT in the presence of 0.5 mM of the PSAM variants. (e) Crystallization conditions impede
observation of bound ThT. ThT binding titrations to 10 μM 5-YY/LL in the presence (pink)
and absence (blue) of 10% v/v PEG-400. Note that a 40% v/v PEG-400 solution was used in
crystallization. (f) Schemes of point mutants of 5-YY/LL, termed –Y, –L, and YIYIY. On the
right are shown ThT binding titrations of these mutants, measured as described in (b).
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Figure 4.
Binding of other dyes to side-by-side ladders. (a) Structures of dyes used. (b) Bis-ANS titration
in the presence (solid circles) and absence (open circles) of 10 μM 5-YY/LL. Fluorescence
emission intensity at 505 nm is plotted as a function of bis-ANS concentration. Spectra of 1,
5, 10, 25 and 50 μM bis-ANS in the presence of 5-YY/LL are shown on the right. (c)
Competition of ThT binding by bis-ANS, conducted in the presence of 1 μM 5-YY/LL and 5
μM ThT. Fluorescence emission at 485 nm is plotted as a function of bis-ANS concentration.
Spectra from this competition experiment are shown on the right. The same concentrations of
bis-ANS were used as in (b). Note the gradual decrease in the ThT peak (maximum near 485
nm) and corresponding increase in the bis-ANS peak (maximum near 505 nm).
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Figure 5.
Crystal structures of ThT-binding PSAMs. (a) Packing of 5-YY/LL monomers in the crystal
creates large solvent-channels. The location of the designed ThT-binding site is shown as the
purple curves along the central β-sheet of two PSAMs. The N- and C-terminal caps are denoted.
(b) Structures of 5-YY/LL and 8-YY/KE. Only the central β-sheet of each PSAM is shown,
drawn to scale with ThT. The side chains of Ladder1 and Ladder2 are shown as sticks. The
ladder mutations and their solvent-exposed surfaces are colored blue for Tyr and green for Leu,
while wild-type side chains are in dark grey. The two PEG-400 molecules found near the
putative ThT-binding site on 5-YY/LL are shown as red sticks. (c) The side chain
conformations of the 5-YY/LL ladders. The ladders are shown looking down the long axis of
the PSAM from C- to N-terminus (top) and looking straight down on the SLB (bottom). The
backbone is depicted using ribbons, with turns omitted for clarity. At right, a model of ThT
bound to the Tyr surface in an orientation consistent with our results is shown using the same
depiction. The ThT ring conformation is derived from that observed in acetylcholinesterase.
(d) The ThT-binding pocket of acetylcholinesterase shown in orthogonal views (PDB 2J3Q).
24 All residues within 4 Å of ThT are shown as sticks, except for Tyr 121, which is omitted
for clarity. The Tyr and Trp residues forming the orthogonal binding motif similar to that
observed in 5-YY/LL are labeled (top). (e) The backbone conformations of PSAMs. The eight-
stranded β-sheet used as the host in this work is shown looking from the C- to N-terminus,
with turns omitted for clarity. The two ladders would be located above the β-sheet as shown.
(f) Values of the three parameters Twist, Bend, Bend’ describing the 3-dimensional rotations
of each β-hairpin in the SLB.25 The types of rotations are schematically shown above the
graphs. Zero values define a perfectly flat, rectangular β-sheet.
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Table 1
Statistics for crystal structure of 5-YY/LL (PDB 3EC5).

Data collection statistics

Space group P 1 21 1

Cell parameters a=53.073
b=35.876
c=92.606
β=105.85

Beamline APS 23-ID

Wavelength 0.9793

Resolution (Å) a) 20-1.75 (1.81–1.75)

Completeness(%) 99.8 (97.6)

I/σ(I) 14.81 (1.74)

Rmerge 
b) 0.087 (0.663)

Average redundancy 3.6 (3.5)

Refinement statistics

Resolution range (Å) 20.00-1.75

Reflections used (free) 30820 (3435)

R factor c) 0.22311

Rfree 
d) 0.27388

RMS deviations

Bonds (Å) 0.014

Angles (°) 1.504

No. protein residues 315

No. waters 249

Average B factor (Å2) 9.558

Ramachandran plot statistics

Most favored (%) 91.4

Additionally allowed (%)8.6

Generally allowed (%) 0.0

a)
Highest resolution shell is shown in parenthesis.

b)
R-merge = ShklSi| I(hkl)i − <I(hkl)> |/ShklSi<I(hkl)i> over i observations of a reflection hkl.

c)
R-factor = S ||F(obs)| − |F(calc)||/S|F(obs)|.

d)
Rfree is R with 10% of reflections sequestered before refinement.

e)
Crystals were obtained using the hanging-drop vapor diffusion method. A protein-ThT was first prepared in 10 mM Tris-Cl pH 8.0 to a final concentration

of 29 mg/mL protein and 2 mM ThT. One μL of the protein-ThT complex was mixed with 1 μL of a well solution containing 40% PEG-400, 2% glycerol,
0.85 M Tris-Cl pH 9.0, 0.25 M (NH4)2SO4, and inverted over the well. Crystals grew in 3–4 days, and the mother liquor was used as a cryo-protectant.

J Mol Biol. Author manuscript; available in PMC 2010 January 30.


