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It is widely accepted that neurobiological abnormalities underlie the symptoms of psychiatric disorders such as schizophrenia and 
unipolar or bipolar affective disorders. New molecular methods, computer-assisted quantification techniques and neurobiological 
investigation methods that can be applied to the human brain are all used in post-mortem investigations of psychiatric disorders. The 
following article describes modern quantitative methods and recent post-mortem findings in schizophrenia and affective disorders. 
Using our brain bank as an example, necessary considerations of modern brain banking are addressed such as ethical considerations, 
clinical work-up, preparation techniques and the organization of a brain bank, the value of modern brain banking for investigations 
of psychiatric disorders is summarized.
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INTRODUCTION

There is currently a high demand for neuropsychiat-
ric brain banks to support neurobiological research with 
post-mortem tissue obtained from psychiatric patients with 
schizophrenia, bipolar disorder and depression. Based on a 
comprehensive literature search, we identified brain regions 
such as the hippocampus, prefrontal cortex and other hetero-
modal association cortices, which are presumably involved 
in the pathophysiology of psychiatric disorders. These inves-
tigations included functional and structural MRI studies as 
well as post-mortem studies of patients with schizophrenia 
and depression1,2, which pointed to neuronal regions and 
networks affected in psychiatric disorders. Modern structural 
and molecular biology techniques in post-mortem tissue 
allow for the identification of the affected regions. Moreo-
ver, these approaches reveal alterations on the cellular and 
molecular level, such as a decreased number or volume of 

different cell types (neurons and glial cells), and alterations 
of pathway-related genes and proteins. Since the brain tis-
sue consists of heterogenous cell types, further post-mortem 
investigations should differentiate between molecular altera-
tions in different cell populations in order to define more 
specific pathophysiological hypotheses. The psychiatric 
brain bank in Goettingen, Germany organized by Brain Net 
Europe II (www.brainnet-europe.org) may serve as an exam-
ple for brain bank organization, even though brain banks in 
other countries will have to comply with the requirements of 
their own national legal and ethical framework. 

In Europe, the Netherlands brain bank represents one 
such prospective collection of brain tissue from patients with 
psychiatric disorders.3,4 In Germany, the Brain Net provides 
researchers with brain tissue of psychiatric patients from 
several centers.5 The University of Magdeburg, for example, 
stores a collection of serially cut paraffin embedded and 
fresh frozen tissue samples from patients with schizophrenia 
and affective disorders, which facilitate stereology as well 
as gene and protein expression studies.6,7 Funded by the Eu-
ropean Commission, Brainnet Europe II provides formalin-
fixed and frozen brain tissue blocks from patients with ���Al-
zheimer’s disease, Parkinson’s disease, motoneuron disease, 
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prion diseases, multiple sclerosis, schizophrenia (brain bank 
Goettingen) and affective disorders.1,8 Examples of well run, 
large scale neuropsychiatric brain banks in the USA that ship 
tissue to many centers include the Stanley Foundation brain 
collection, which provides paraffin-embedded and frozen 
brain tissue blocks, and the Harvard Brain tissue resource 
center, comprising schizophrenic, major depressive and bi-
polar cases.9-11 The Mount Sinai School of Medicine Medical 
Center Brain Bank provides a large collection of fixed and 
frozen tissue from elderly schizophrenic patients,12 and the 
Autism brain tissue bank is collecting rare tissue from chil-
dren and adults with autism.13 In Brazil, there is a large brain 
bank situated in Sao Paulo.14 All these brain banks fulfill the 
modern criteria of brain banking such as ethical standards, 
proper collection of clinical data, and neuropathological 
investigations.

Early studies of histological abnormalities in the brains 
of schizophrenia patients revealed focal demyelination, neu-
ronal atrophy, metachromatic bodies and lacunae. However, 
fixation and staining techniques were not standardized and 
the analysis was only qualitative, as techniques for quanti-
fication were lacking.15-17 Accordingly, further studies were 
not able to confirm these findings.18-20 In 1952 during the first 
neuropathological conference in Rome, most neuropatholo-
gists agreed that no neuropathomorphology of schizophrenia 
exists. Thus, psychiatric disorders were considered to be 
functional psychoses with neurotransmitter changes and no 
neuropathological basis. In the 1970s, after the publication 
of enlarged ventricles in brains of schizophrenia patients by 
the first computer tomographic study,21 there was a revival of 
post-mortem studies in psychiatric disorders such as schizo-
phrenia and affective disorders.22,23 These data led to the 
conviction that psychiatric disorders are brain diseases. 

However, both the etiology and pathophysiology of 
psychiatric disorders are elusive and not well understood.24 
In-vivo MRI investigations of the brain point to dysfunction 
in distinct brain regions and neuronal networks, but cannot 
elucidate subtle neuropathological changes or alterations at 
the molecular level. Post-mortem research in recent decades 
using improved technology, such as statistical morphometric 
and molecular biology techniques25 as well as computer-
assisted quantification techniques which can be applied 
to the human brain, are causing an increased demand for 
post-mortem tissue for research. However, modern brain 
banks face the challenge of declining autopsy rates in all 
affluent countries.26,27 Additionally, such brain banks must 
meet certain criteria, such as standardized tissue handling 
and collection of clinical data, which again should enable the 
comparison of data from different laboratories.

The following paper presents modern techniques of 
post-mortem investigation in human brains, along with a 

selective literature review of recent post-mortem findings in 
psychiatric disorders of interest such as bipolar and unipolar 
affective disorders as well as schizophrenia. Studies were 
selected according to the primary field of relevance and 
whether the results were replicated elsewhere in the litera-
ture. Then, demands on modern brain banking are described, 
such as ethical considerations, clinical work-up, preparation 
techniques and the organization of a brain bank. Finally the 
value of modern brain banking for investigations of psychi-
atric disorders is assessed.

Frequently used standardized techniques in post-mor-
tem investigations

Structural methods
Stereological investigations represent some of the best 

validated morphological methods, and they allow for the as-
sessment of the area and volume of a defined brain structure 
such as different brain regions, subregions or cell types. 
Moreover, total cell numbers and volumes as well as their 
distance in a defined structure can be investigated. With the 
rater blinded to diagnosis, total counts are obtained by the 
optical fractionator method28 using a stereological worksta-
tion, consisting of a modified light microscope, Uplan Apo 
objectives (1,5x, 20x, 50x oil, 100x oil), a motorized speci-
men stage for automatic sampling, an electronic microca-
tor, a CCD color video camera, PCs with frame grabber 
boards, stereology software and a television screen monitor. 
Boundaries of layers and regions are traced on video images 
displayed on the computer and calculated using Cavalieri’s 
principle. Cell numbers are estimated with the optical frac-
tionator.28-30 In addition to histological staining methods, 
immunohistochemical staining of cellular proteins allows 
for quantitative differentiation of cellular subgroups. �������Differ-
ent cells (pyramidal neurons, interneurons, oligodendroglia, 
astrocytes) that come into focus within unbiased virtual 
counting spaces distributed in a systematic-random fashion 
throughout the brain regions of interest are counted. Estimat-
ed cell numbers per section and estimated total numbers per 
region are calculated from the numbers of counted cells per 
section and the corresponding sampling probabilities. Vol-
umes of pyramidal neurons and interneurons are estimated 
using the nucleator probe of the appropriate software.

Schizophrenia is a devastating brain disorder with 
unknown etiology. Meta-analyses of structural magnetic 
resonance imaging (MRI) studies reveal gray matter volume 
deficits in different brain regions in schizophrenic patients. 
The affected regions are structures within the medial tempo-
ral lobe such as the hippocampus and parahippocampal gyrus 
(limbic system), the heteromodal association cortices such as 
the prefrontal and parietal cortices, and the superior temporal 
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gyrus.31, 32 Atrophy rates up to 5-10% have been described in 
the frontotemporolimbic network. Moreover, the asymmetry 
of the temporal and prefrontal cortices has been reported to 
be disturbed in schizophrenia.33-35 In schizophrenic patients, 
positron emission tomography (PET) studies reveal dysfunc-
tion of the cortico-cerebellar-thalamic-cortical neuronal 
circuit which contributes to “cognitive dysmetria,” i.e., im-
paired cognition and other symptoms of the disease.36 The 
small amount of tissue volume reduction in schizophrenia 
patients suggests that some cellular subfractions within 
these structures might be lost, reduced in volume or have an 
altered ratio between different cell types (e.g., neuron to glia 
ratio). Only post-mortem studies at the microscopic level 
are able to clarify which cells are disturbed and contribute 
to the findings described above. Limbic structures may be 
disconnected from both the prefrontal and temporal cortices 
in schizophrenia. This may be due to disturbances of the 
microcircuitry in subsets of neurons and glial cells in the 
laminar organization of glutamatergic pyramidal neurons and 
GABAergic interneurons, in concert with oligodendroglia 
and astroglia in cortical and limbic regions. 

A recent post-mortem study of hippocampal grey matter 
using a gray-level-index (GLI) showed no cytoarchitectural 
alterations, suggesting no changes in the neuronal perikarya-
neuropil ratio.37 Earlier quantitative studies In the hippoc-
ampus and entorhinal cortex described reduced glial cells as 
well as unchanged neuron-glia ratios.38-40 According to these 
findings, astrogliosis has not been detected in schizophre-
nia.41,42 The entorhinal cortex is closely connected to the hip-
pocampal formation, linking cortical areas to the hippocam-
pus.43 In the entorhinal cortex, abnormalities in the position-
ing of neuronal clusters (pre-alpha-cells) have been reported 
and support the hypothesis of migrational disturbances in 
schizophrenia,6,44,45 while other studies have not confirmed 
these findings.46-48 Additionally, in the entorhinal cortex, an 
immunohistochemical study demonstrated decreased density 
of tyrosine-hydroxylase labelled axons, pointing to altera-
tions in the dopaminergic system47 However, the number and 
volume of neurons in pre-alpha-cell clusters or other lay-
ers of the entorhinal cortex remain unknown. The density 
of interneurons has also been reported to be decreased in 
CA2.49 Additionally, neurons have been shown to be smaller 
in schizophrenic patients.50 However, two-dimensional cell 
counting in only a few sections, without consideration of the 
total hippocampus volume, may have some methodological 
limitations through the influence of volume differences (e.g., 
mediated by neuropil degeneration) and tissue shrinkage due 
to fixation procedures. Two stereological estimates of total 
cell number reported no differences in the hippocampus of 
schizophrenic patients. However, one study investigated 
only the total numbers of neurons,51 whereas the subdivision 

of parvalbumin-positive interneurons has been reported to 
be decreased.52 The second study also did not differentiate 
between different cell types, and included schizophrenic as 
well as schizoaffective patients.53

In the prefrontal cortex BA (Brodmann area) 10 and BA 
9, no change and an increase of GLI, respectively, points to 
a circumscribed disturbance of cytoarchitecture was found 
in schizophrenia.54,55 Along these lines, neuronal density has 
been reported to be increased in BA9.56,57 In this region in 
layer III, pyramidal neurons and neuronal cells showed re-
duced somal size.58,59 Astrocyte density has been reported to 
be decreased in layer V.58 A stereological study of total cell 
numbers described decreased numbers of oligodendrocytes 
in layer III of BA9 in schizophrenia.60,61 Stereological studies 
of the anterior cingulate cortex (BA24) measuring the total 
number of neurons and glial cells reported a reduced number 
of glial cells and a reduced volume of pyramidal cells in 
schizophrenia.62,63

On the cellular level, the densities of parvalbumine-
immunoreactive varicosities in the middle layer of the 
prefrontal cortex in schizophrenia patients were lower, sug-

Figure 1- Dissection of the prefrontal cortex (BA46).

Figure 2 - Dissection of the thalamus (mediodorsal nucleus).
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gesting fewer projections from the thalamus to the prefrontal 
cortex.64 Post-mortem findings of reduced volume, neuron 
number, and size of the entire thalamus,65 mediodorsal nucle-
us and the pulvinar and ventral posterior thalamic nuclei66,67 
support the hypothesis of disturbed function and disconnec-
tion of different thalamic nuclei in schizophrenia. 

Most schizophrenia patients investigated in post-mortem 
studies were treated with antipsychotic medication such as 
haloperidol and clozapine for decades. In an animal study, we 
demonstrated that an increase of total hippocampal volume 
after chronic haloperidol treatment was not associated with 
alterations of stereologically measured neurogenesis.68 In the 
striatum of rats, haloperidol treatment induced larger volumes 
after one month of treatment. This enlargement was associated 
with vacuous chewing movements, an animal paradigm for 
tardive dyskinesia.69 Additionally, volumetric MRI studies in 
schizophrenic patients showed an enlargement of the nucleus 
caudatus after chronic haloperidol treatment and a subsequent 
volume reduction after treatment with clozapine.70 

The hippocampus is also a key structure affected in the 
neurobiology of depression.71-73 However, structural magnetic 
resonance imaging (MRI) studies of the hippocampus in pa-
tients with depression show conflicting results, probably due 
to antidepressant treatment. A recent MRI study of drug-free 
depressive patients showed a reduced hippocampal volume, 
especially on the left side.74 However, the hippocampus in af-
fective disorders has not yet been studied using stereological 
techniques. In the entorhinal cortex of patients with bipolar 
disorder, the total number of parvalbumin-immunoreactive 
interneurons was decreased.75 In major depression, the number 
of GABAergic neurons were reduced in the prefrontal cortex,76 
whereas in bipolar disorder, calretinin-stained neurons showed 
an increased density.77 In a densitometry study of the prefron-
tal cortex, neuronal and glial cell density as well as neuronal 
size were reduced in depression.78 In a stereological study of 
the orbitofrontal cortex, neuronal size was reduced in layer I 
in bipolar disorder and in layer 3 in major depressive disorder 
without an alteration of the cell number.79 In bipolar disorder, 
major depressive disorder and schizophrenia, neuronal density 
was increased while neuronal size was reduced in the anterior 
cingulate cortex, indicating similar pathophysiological condi-
tions between these mental illnesses.80 In the paraventricular 
nucleus of the hypothalamus, a stereological post-mortem 
study reported a significant reduction of neuronal number in 
major depression and bipolar disorder.81 Thus, further struc-
tural investigations in affective disorders are warranted to 
define the affected cell populations in these disorders.

Gene expression studies
Altered patterns of gene expression (mRNA) are impli-

cated in the pathophysiology of schizophrenia, depression and 

bipolar disorders.71,82,83 The advantage of cDNA microarrays is 
the ability to simultaneously examine thousands of expressed 
genes of potential interest, without a hypothesis. Other new 
molecular techniques include subtractive hybridization84, 
serial analysis of gene expression (SAGE)85 and differential 
display of mRNA.86 However, microarray data often require 
confirmation by other molecular biological techniques, such as 
reverse transcription-polymerase chain reaction (RT-PCR) and 
in-situ hybridization, which has the advantage of the ability to 
delineate anatomically defined structures.87 Since the brain is 
not only organized in functionally different regions and cir-
cuits, but also in a large variety of cell types (e.g., macro- and 
microneurons, oligodendrocytes, astrocytes and microglia), 
which express different fractions of the human transcriptome, 
large variations in mRNA expression levels are expected. New 
methods such as laser capture microdissection, fluorescence 
activated cell sorting (FACS) and single-cell RT-PCR with 
RNA amplification88-90 are promising in showing characteris-
tic alterations of small cell populations. In the thalamus, for 
example, laser capture dissection of subnuclei permitted the 
evaluation of gene expression differences in the thalamus of 
schizophrenic patients.91

The nosologic distinction between schizophrenia and 
bipolar disorder, which is also known as manic-depressive 
disorder, is an area of ongoing controversy, since both dis-
orders share psychotic and affective symptoms as well as 
response to antipsychotic treatment.92 Accordingly, DNA 
microarray studies show the same up- or downregulation 
of genes. Furthermore, mitochondrial dysfunction has been 
shown in the brain samples of schizophrenia93-97 and bipolar 
disorder patients.96,98,99 Mitochondria produce energy, and a 
failure in energy metabolism has been hypothesized in these 
disorders. Additionally, oligodendrocyte dysfunction has 
been hypothesized in schizophrenia,60 i.e., downregulation of 
oligodendrocyte-related mRNAs has been reported in schizo-
phrenia.96,100-104 In schizophrenia, downregulation of genes 
associated with neurite outgrowth, cytoskeletal proteins or 
synaptic plasticity are in accordance with the hypothesis of 
disturbances of microconnectivity.97 Apart from mitochondri-
al105 and oligodendrocyte dysfunction,96,106 downregulation of 
genes encoding calcium channels and neurotransmitter recep-
tors has been reported in bipolar disorder, while the expression 
of heat shock proteins was upregulated.104 In major depression, 
oligodendrocyte proteins,107 fibroblast growth factor related 
genes and glutamate transporters have all been reported to be 
downregulated.108-110 Finally, alterations of the GABAergic 
system were related to depression and suicide.111

Investigations of protein expression 
One limitation of gene expression approaches is their 

ability to study only the intermediate mRNA molecule�����. Ad-
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ditionally, protein expression should be examined. However, 
proteins are also vulnerable to degradation by enzymes during 
the agonal state and the post-mortem period. Moreover, the 
functions of gene products (proteins)������������������������� are often highly depend-
ent on posttranslational modifications such as phosphorylation 
or glycosylation.112 Standard techniques to determine protein 
levels include Western blotting, 2D polyacrylamide gel elec-
trophoresis (2D-PAGE), chromatographic separation, mass 
spectrometry and radioligand receptor binding, which also 
examines the functional state of neurotransmitter receptors. 
Immunohistochemical techniques using specific antibod-
ies in formalin-fixed, paraffin-embedded material are often 
performed for in-situ investigations of specific anatomical 
subregions. Proteomic analysis is performed by two-dimen-
sional gel electrophoresis (2DE) followed by MALDI-TOF/
TOF mass spectrometry. This combination is one of the most 
potent methods of analyzing the complete proteome; it allows 
a rapid view of changes in multiple protein extracts. Shotgun 
proteomics is a new method that can overcome some of the 
limitations of two-dimensional gel electrophoresis. This allows 
for the investigation of a greater fraction of expressed proteins 
and for the evaluation of differential protein expression with 
higher precision. Quantification of shotgun-generated data is 
improved by the use of stable isotope labeling of the proteins, 
which allows for more precise comparison and quantifica-
tion.113 Isotope-Coded Protein Labeling (ICPL) is a method 
for the accurate quantitative comparative analysis of protein 
regulation.113 ICPL is based on isotope labeling of free amino 
groups in intact proteins. After the modification, the heavy 
and light isotope labeled proteins are digested and analyzed 
by liquid chromatography (LC) followed by tandem mass 
spectrometry (MS/MS). Relative quantification of differential 
protein expression is based on the comparison of the peak 
intensities of the heavy- and light-labeled peptides from the 
mass spectra. 

In accordance with gene expression studies, proteins of 
the mitochondrial pathway have been shown to be altered in 
schizophrenia, bipolar and depressive disorders,95,114 while 
there is no consensus on the direction of the expression 
changes. In bipolar disorder and schizophrenia, reduced 
expression of cytoskeletal proteins has been reported.95,114 
In addition to these pathways, proteins related to oxida-
tive stress, synaptic function and signaling were altered.115 
Moreover, proteins involved in gene transcription, protein 
and RNA chaperoning and cellular homeostasis have been 
shown to be downregulated in schizophrenia and upregulated 
in bipolar disorder.116 Other immunohistochemical studies 
show downregulated oligodendrocyte-related proteins in 
the gray matter of patients with schizophrenia,117,118 as well 
as synaptic proteins in the frontal cortex and hippocampus 
in schizophrenia and affective disorder.119-122 Contrastingly, 

neural stem cell proliferation was reduced in the dentate 
gyrus of the hippocampus in schizophrenic but not ������in de-
pressive patients.123 Immunohistochemical investigation of 
the protein expression of the candidate gene neuregulin-1 in 
schizophrenia7 revealed a decreased density of neuregulin-
1-alpha splice variant expressing cells. Further proteomic 
and immunohistochemical studies are warranted to identify 
alterations of proteins which are related to specific metabolic 
pathways and cell systems in psychiatric disorders. 

Ethical issues and brain bank organization

There are a number of ethical issues involved in the 
implementation and ongoing activities of a brain bank. 
Patients with severe psychiatric illnesses such as chronic 
schizophrenia have caregivers and are not able to appreci-
ate all the consequences of consent in research purposes. 
For this reason, relatives should be informed if the patient 
gives his written consent before death in a donor program, 
and the caregiver should also provide his written consent. A 
physician should document that the patient has been able to 
understand the content of the agreement. Donor programs 
have the advantage of performing prospective standardized 
diagnostic tests, psychopathological and neuropsychological 
examinations and relating this information to data obtained 
from neurobiological measurements. 

To obtain the relatives’ consent, it is essential to provide 
them with an informational brochure about the research 
purposes of the brain bank as well as its organization. It 
is important that relatives are able to refuse consent at any 
time, that data protection and anonymization are declared, 
and that relatives are able to exempt the medical staff from 
professional discretion for the analysis of medical records 
and clinical data. If there are no relatives, autopsies for 
research purposes should not be carried out, since the legal 
position is not clear.

In our psychiatric institute, a psychiatrist is informed by 
the (neuro)-pathologist of an appropriate case before autop-
sy. He/she then calls the relatives and asks for oral consent 
and requests clinical information on the deceased. It is also 
important to organize a hotline where the coordinator of the 
brain bank can be reached at all times. Once informed of the 
autopsy, he should immediately try to get oral consent from 
the deceased’s relatives. Then, the brain can be prepared and 
written consent can be obtained. Brain banks need additional 
manpower for the distribution of the tissue to researchers and 
documentation.

Clinical data and data protection

Information about clinical data can be obtained from 
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relatives, general practitioners, psychiatrists and medical 
records. Clinical diagnosis should be standardized accord-
ing to DSM-IV/ICD-10 criteria. It is possible to reconstruct 
psychiatric diagnoses according to the information obtained 
using the DSM-IV checklists.124 Within Brainnet Europe II, 
our working group on neuropsychiatric brain banking has 
developed a consensus on clinical information.1 All tissue 
preparations and medical data will be analyzed using code 
numbers, which precludes associations between data and 
individuals. Only the written consent form contains personal 
data and the names of relatives, and these personal data 
are stored in a separate location. In case of cancellation of 
consent, the data are erased. The obtained data are included 
in a firewalled database with access only available to the 
authorized brain bank assistant. 

Regions of interest and neuropathological preparation

Most scientists prefer to use frozen tissue for studies 
of protein expression, RNA expression and receptor bind-
ing. However, post-mortem intervals (PMI) should not be 
longer than 48 hours for these studies. Therefore, in brains 
with PMI until 48 hours, we decided to collect two frozen 
samples from each brain region and one formalin-fixed and 
paraffin-embedded sample for immunohistochemistry and 
neuropathological staining to exclude Alzheimer-related pa-
thology. Brains with longer PMI should be totally formalin-
fixed and embedded for morphometry. An example for a neu-
ropathological preparation protocol is given in table 1. Freez-
ing of the samples is carried out in liquid nitrogen-cooled 
isopentane (n-heptane) to avoid freezing artifacts. Fixation 
is best in 4% buffered paraformaldehyde with consecutive 
paraffin-embedding after several hours. Brain sample pH is 
believed to be closely associated with the terminal condition 
of a patient, such as agonal state. Patients with low pH brain 
tissue exhibit a gene expression profile distinct from that 
seen in patients with higher pH.125 Thus, pH measurement 

Table 1 - Neuroanatomical preparation protocol in Brain Net Europe II, brain bank of psychiatric diseases, Göttingen

1. Collect the liquor cerebrospinalis after craniotomy.

2. Divide the fresh, unfixed brain into the two hemispheres, including the brain stem and cerebellum.

3. Put the hemispheres on the medial side to prepare the lateral samples A to L (see sample list table 2) from top to bottom according to the 
Brodmann-diagram.

4. Put the hemispheres on the lateral side to prepare the medial samples M to PP (table 2) according to the Brodmann-diagram.

5. Cut the brainstem with the cerebellum at the level of the mid brain 0.5 cm above the substantia nigra and place it aside

6. Cut the hemispheres frontally through the corpora mamillare into an anterior and a posterior part.

7. Take the posterior part and cut a frontal slice 2 cm behind the corpora mamillare.

8. From the anterior and posterior part as well as the 2 cm slice, prepare samples Q through TA (basal ganglia, thalamus, hippocampus, nucleus 
accumbens).

9. As a last step, the brain stem and cerebellar areas will be prepared (sample U until N. Dentatus, table 2).

10. Cut samples from the musculus psoas, m. quadriceps femoris, liver, and abdominal fat for analysis of metabolic syndrome, and take one blood 
sample for genetic analysis.

Table 2 - Definition of regions of interest in psychiatric 
disorders according to Brodmann. (Each region: 2 frozen 
samples and 1 formalin-fixed, paraffin-embedded sample). 
Numbers represent Brodmann Areas

A: 17, 18
B: 39
C: 10
D: 9
EE: 47
E: 11
F: 44, 45
G: 46
H: 38
I: 22 a = anterior
J: 22 p = posterior 
K: 21
L: 1, 2, 3, 4, 7

M: 32, 24 a = anterior 
N: 23, 31 p = posterior
O: Corpus callosum
P: 20
PP: 28 / 34
Q: Thalamus: mediodorsal 
QX: Thalamus: medial Pulvinar
QY: Thalamus anterior region
RX: N. caudatus dorsalis
RY: N. caudatus ventromedialis
S : Putamen
T: Globus pallidus
TT: Substantia Nigra
TX: Capsula interna ventralis
TY: Capsula interna dorsalis
TT: Hippocamus
TA: N. accumbens 
U: Pons-Basis rostral
V: Pons, caudal
W: Medulla oblongata rostral
X: Medulla oblongata caudal
Y: Spinal cord
Cerebellum-Vermis Lous. anterior
Cerebellum, Vermis, Lobus medialis
Cerebellum, Hemisphere, Lobus posterior

Cerebellum Nucleus dentatus
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is an important way to define this confounding variable in 
post-mortem tissue. Both hemispheres should be considered 
in psychiatric cases, because of laterality changes in several 
brain regions.35 A detailed list of regions according to the 
atlas of Brodmann126 is given in table 2.

Neuropathological findings in psychiatric cases such as 
plaques and tangles are common, and should be diagnosed 
carefully to eliminate confounding factors which may in-
fluence data related to the neuropathology of psychiatric 
disorders.127,128 Late-onset psychiatric symptoms such as 
depression, hallucinations and delusions are common even 
in patients at the early stages of Lewy body dementia, Al-
zheimer’s disease, Progressive Supranuclear Palsy and Cor-
ticobasal Degeneration,129-132 and may lead to misdiagnosed 
cases in a brain bank.133 International standard criteria should 
be followed regarding clinical and neuropathological diag-
nosis of these dementias.129,134 In addition to patients with 
clinically assessed dementia, patients with schizophrenia and 

depression may also exhibit Alzheimer’s and Parkinson’s re-
lated neuropathological alterations in their brains, since these 
changes may precede clinical symptoms by many years.135

In summary, modern brain banking is indispensable for 
neurobiological investigations on mechanisms on the struc-
tural, cellular and molecular (mRNA, protein) levels. How-
ever, the neurobiological origins of the detected alterations 
are undetermined. Further studies in post-mortem brains, 
animal models and cell cultures are required to elucidate 
the influence of candidate genes and environmental factors 
during brain development. A growing number of studies 
identifying candidate genes in mental disorders136,137 dem-
onstrate the necessity of genotyping brains of psychiatric 
patients in order to elucidate the relationship between gene 
and protein expression and risk genotypes. Finally, in animal 
models, the interaction between genetic and environmental 
risk factors, both of physical and psychological origin, must 
be investigated.
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