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Abstract
Acidocalcisomes are acidic organelles rich in calcium and phosphorus that have been conserved from
bacteria to man. In parasitic protozoa acidocalcisomes possess enzymes that are absent or different
from their mammalian counterparts and could be potential targets for chemotherapy, such as the
vacuolar proton translocating pyrophosphatase, and the soluble inorganic pyrophosphatase, both of
which are inhibited by pyrophosphate analogs (bisphosphonates). In addition, a number of drugs,
including bisphosphonates, and diamidines appear to accumulate in these organelles and/or induce
an increase in their numbers, potentially enhancing their toxicity. Bisphosphonates mechanism of
action, however, is by inhibition of the isoprenoid pathway and more specifically the prenyl
diphosphate synthases.

INTRODUCTION
The acidocalcisome is a dense, acidic organelle (Fig. 1A) with a high concentration of
phosphorus present as pyrophosphate and polyphosphate (poly P) complexed with calcium,
and other cations. The acidocalcisome membrane contains a number of pumps (Ca2+-ATPase,
V-H+-ATPase, H+-PPase), exchangers (Na+/H+, Ca2+/H+), and channels (aquaporins), while
its matrix contains enzymes related to pyrophosphate and poly P metabolism [1] (Fig. 1B).
Acidocalcisomes have been found in several pathogenic microorganisms [2] as well as in the
green alga Chlamydomonas reinhardtii [3], and the slime mold Dictyostelium discoideum
[4]. The identification of acidocalcisomes in bacteria [5,6] and the finding that human platelet
dense granules are similar to acidocalcisomes [7,8], indicated that these are organelles have
been conserved from bacteria to humans. Some of the potential functions of the acidocalcisome
are the storage of cations and phosphorus, and its participation in pyrophosphate and
polyphosphate metabolism, calcium homeostasis, maintenance of intracellular pH
homeostasis, and osmoregulation [1]. The discovery of novel enzymes in this organelle that
are absent from mammalian cells led to the finding of compounds (bisphosphonates) that
produced radical cures in animal models of diseases caused by several parasites [9]. Further
exploration of the structure and function of acidocalcisomes in protozoan parasite could lead
to the identification of new targets for drug action.

POTENTIAL TARGET ENZYMES LOCATED IN THE ACIDOCALCISOME
Of the enzymes present in the acidocalcisomes, two have been found to be targets for drugs
with in vitro and/or in vivo activity against different protozoan parasites: a vacuolar proton
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translocating pyrophosphatase (V-H+-PPase) and a soluble inorganic pyrophosphatase
(PPase).

The V-H+-PPase activity has been detected in the following parasitic protozoa: Trypanosoma
cruzi [10], T. brucei [11,12], Leishmania donovani [13], L. amazonensis [14], Phytomonas
françai [15], Leptomonas wallacei [16], Herpetomonas spp. [16,17], Plasmodium spp. [18,
19], and Toxoplasma gondii [20,21]. This enzyme also localizes to acidocalcisomes in all these
species (Fig. 1B). The V-H+-PPase from T. cruzi functions in yeast [22]. The acidocalcisomal
V-H+-PPase is K+-stimulated (type I), and can be used as a marker for acidocalcisome
purification [3,4,10–13,23]. Although it is not restricted to the acidocalcisome it is concentrated
in this organelle. The T. cruzi V-H+-PPase is also found in the Golgi complex and in the plasma
membrane [24]. The Plasmodium spp. V-H+-PPase is also localized in the digestive vacuole
[19,25,26].

In earlier work, it was found that some pyrophosphate analogs, bisphosphonates (containing a
non-hydrolyzable P-C-P, rather that a P-O-P, backbone) as well as imidodiphosphate
(containing a non-hydrolyzable P-N-P group), were inhibitors of a plant (mung bean, Vigna
radiata L.) V-H+-PPase [27]. A more extensive investigation of the structural aspects of the
effectiveness of bisphosphonates as competitive inhibitors of this enzyme was reported later
[28]. More recently the results of a three-dimensional quantitative structure-activity
relationship (3D-QSAR) comparative molecular field analysis (ConMFA) of the activity of 18
bisphosphonates and imidodiphosphate in the inhibition of a mung beam (Vigna radiata L.)
V-H+-PPase was reported [29], and it was shown that the activities of the V-H+-PPase inhibitors
could be predicted to within about a factor of two. Several of the compounds investigated were
active against the parasite enzymes [10,11,13,20,30]. One of the best known inhibitors of the
V-H+-PPase, aminomethylenediphosphonate (AMDP) [31], was able to impair intracellular
replication of T. gondii in tissue culture cells exerting little or no effect on host cell invasion
[20,30]. Some of the treated parasites had ultrastructural alterations compatible with
acidocalcisome disruption [30].

The vacuolar soluble pyrophosphatase (VSP1) present in Trypanosoma brucei, is essential for
growth of bloodstream forms in their mammalian host and is located in acidocalcisomes [32]
(Fig. 1B). Depending on the nature of its divalent metal ion cofactor, this soluble enzyme can
act either as a pyrophosphatase (PPase; with +Mg2+) or as a short-chain polyphosphatase (PPX;
with +Zn2+). It was found that the exopolyphosphatase (tripolyphosphatase) activity (in the
presence of Zn2+, which is abundant in acidocalcisomes) of TbVSP1 was inhibited by
bisphosphonates [33]. The inhibition of the recombinant TbVSP1 by a panel of 81
bisphosphonates was reported [33]. The IC50 values for enzyme inhibition were found to vary
from 2 to 850 μM. In general the most active compounds contained both a single aromatic ring
and a hydrogen bond donor feature. Thirteen of the most potent compounds were tested in
vivo in a mouse model of T. brucei infection. The most active compound in vivo provided a
40% protection from death with no apparent side effects, suggesting that further development
of such compounds might be of interest [33].

ROLE OF THE ACIDOCALCISOME IN THE MECHANISM OF ACTION OF
BISPHOSPHONATES

Bisphosphonates are used to treat a variety of bone resorption diseases including osteoporosis,
Paget’s disease, hypercalcemia caused by malignancy, and tumor metastases in bone [34].
Bisphosphonates have also been shown to have activity against different protozoan parasites
in vitro and in vivo [9].
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Selective action on bone is based on the binding of the bisphosphonate moiety to the bone
mineral [34]. It has been postulated that the acidocalcisomes are equivalent in composition to
the bone mineral and that accumulation of bisphosphonates in these organelles, as they do in
bone mineral, facilitates their antiparasitic action [35].

The primary target for the nitrogen-containing or amino-bisphosphonates is though to be the
isoprenoid pathway at the level of the enzyme farnesyl diphosphate synthase (FPPS) [36–41]
(Fig. 2). By inhibiting this enzyme, bisphosphonates inhibit the formation of farnesyl
diphosphate (FPP), a compound used in protein prenylation of proteins like Ras, Rho and Rap
[42–44], and in the production of dolichols, ubiquinones, heme a, and sterols. FPPS inhibition
results, in addition to decreased prenylation of proteins and generation of FPP derivatives, in
the accumulation of isopentenyl diphosphate (IPP), a known γδ Tcell activator [45]. These
alterations lead to apoptotic cell death [46–48]. Recent work has shown that bisphosphonates
can also target other enzymes of the isoprenoid pathway, like for example geranylgeranyl
diphosphate synthase (GGPPS) [49] (Fig. 2) and that they can target multiple sites in
prenyltransferases [50]. Interestingly, some bisphosphonates are also able to inhibit the activity
of T. cruzi hexokinase, an enzyme that in contrast to the mammalian enzyme, is inhibited by
PPi [51,52]

Nitrogen-containing bisphosphonates (Fig. 3) were first found to be effective in the inhibition
of T. cruzi in vitro and in vivo without toxicity to the host cell [53]. Later, a series of
bisphosphonates was tested on the growth of T. gondii, T. b. rhodesiense, L. donovani and P.
falciparum in vitro showing that bisphosphonates could effectively inhibit the growth of these
parasites [35]. The bisphosphonate risedronate (Fig. 3) was shown to inhibit Cryptosporidium
parvum growth in vivo using a xenograft model [54].

The use of another bisphosphonate, pamidronate (Fig. 3), resulted in the radical cure of
experimental cutaneous leishmaniasis in mice [55]. Pamidronate was also active in vivo against
L. donovani by intravenous administration [56]. Risedronate (Fig. 3) had a 50% effective
dosage of five 2.6 mg/kg of body weight intraperitoneal doses against L. donovani-infected
mice.

In vivo testing against T. gondii in mice showed that risedronate can significantly increase the
survival of mice infected by this parasite [57]. In vitro testing of risedronate in T. cruzi showed
that it had selective antiproliferative effects against the intracellular amastigotes, and at 100
μM, was able to prevent completely the development of T. cruzi infection of murine muscle
heart or Vero cells, and to cure cultures which were already infected [58]. In vivo testing of
bisphosphonates against T. cruzi has shown that risedronate can significantly increase the
survival of mice infected by T. cruzi [57,59].

The effect of a series of 102 bisphosphonates on the inhibition of growth of Entamoeba
histolytica and Plasmodium falciparum in vitro was also determined [60]. The most active
compounds (IC50 4–9 μM) against E. histolytica were nitrogen-containing bisphosphonates
with relatively large aromatic side chains. Five bisphosphonates were selected and screened
for their ability to delay the development of amebic liver abscess formation in an E.
histolytica infected hamster model and 2 compounds were found to decrease liver abscess
formation at 10 mg/kg ip with little or no effect on normal liver mass [60]. With P.
falciparum, the most active compounds were n-alkyl bisphosphonates (Fig. 4). Five
compounds were selected for in vivo investigation in a Plasmodium berghei ANKA Balb/c
mouse suppressive test. The most active compound caused an 80% reduction in parasitemia
with no overt toxicity [60].

The activity of 60 bisphosphonates against the replication of T. gondii in vitro and of three of
the most active compounds, in vivo has been investigated [61]. The two most active compounds
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found were n-alkyl bisphosphonates containing long (n = 9 or 10) hydrocarbon chains (Fig.
4), not the nitrogen-containing species used in bone resorption therapy. The three most active
compounds found in vitro were tested in vivo in a Smith-Webster mouse model and the two
most active bisphosphonates were found to provide up to an 80% protection from death, a
considerable improvement over that found previously with nitrogen-containing
bisphosphonates [61]. This effect may originate in the much higher therapeutic indices of these
alkyl bisphosphonates, as deduced from in vitro assays using LD50 values for growth inhibition
of a human cell line.

Alkyl bisphosphonates (Fig. 4) were also shown to be potent inhibitors of T. cruzi amastigotes
growth in vitro [62]. Overall, these results indicate that alkyl bisphosphonates are promising
compounds for further development as agents against parasite growth, in vivo [61,62],
especially against Apicomplexan parasites [60,61].

There is strong evidence that the main target of the most active bisphosphonates in protozoan
parasites is the isoprenoid biosynthesis pathway enzyme farnesyl diphosphate synthase
(FPPS): (1) There is excellent correlation between inhibition of the enzyme in T. cruzi [63],
T. brucei [65], T. gondii [65], and L. major [66] and growth of these parasites in vitro; (2) In
vitro “rescue’ experiments showed reversal of risedronate-induced growth inhibition of T. b.
rhodesiense by GGPP, FPP, or farnesol [67]; (3) Molecular modeling and structure-activity
investigations of enzyme and in vitro growth inhibition data in T. brucei resulted in similar
pharmacophores [64]; (4) a T. gondii strain engineered to overexpress FPPS required
considerably higher levels of bisphosphonates to achieve 50% growth inhibition, while the
IC50 for atovaquone (which does not inhibit FPPS) remained the same in the overexpressing
strain [65]; (5) Promastigotes of L. major overexpressing FPPS were highly resistant to
risedronate and the degree of resistance correlated with the increase in enzyme activity [68];
(7) RNAi experiments in T. brucei has shown that FPPS is an essential enzyme thus validating
it as a target for chemotherapeutic agents [65].

The farnesyl diphosphate synthase genes from T. cruzi [63], T. brucei [64], L. major [68], and
T. gondii [65] have been cloned and their protein products purified and characterized
biochemically. The tridimensional structures of T. brucei [69,70], T. cruzi [71], P. berghei,
and C. parvum [72] FPPSs have been solved, providing mechanistic insights that will have
important implications for future drug design.

The reasons why alkyl-bisphosphonates have higher activity than nitrogen-containing
bisphosphonates in Apicomplexan parasites is now becoming clear. In the Apicomplexans, the
putative “FPPS” enzymes actually produce not only FPP, but much longer (C20, C25 and up)
prenyl diphosphates [65]. Long chain bisphosphonates are able to block the TgFPPS active
site (since it is bifunctional). Moreover, the availability of the closely related P. berghei and
C. parvum X-ray structures [72] strongly suggests a structural explanation in that the
Apicomplexans have a F to C, S substitution in the fifth aminoacid upstream of the first
aspartate rich domain (FARM) region, enabling longer chain inhibitors to bind in the active
site [65]. However, these inhibitors are expected to have a steric clash with the FF groups in
the host cell FPPS, resulting in no FPPS inhibition [70]. Interestingly, it has been shown that
inhibition of TgFPPS, which is a bifunctional enzyme generating longer chain isoprenoids
(GGPP) [65], correlates better with inhibition of solanesyl diphosphate synthase from T.
cruzi (TcSPPS), which is an enzyme that generates the 45-carbon solanesyl diphosphate (SPP,
[73a]) than with inhibition of other FPPSs, that generate only FPP [73b).

In summary, there are several reasons for bisphosphonates to be good candidate drugs for
treatment of parasitic disease. First, they have already been developed to treat other diseases
and consequently have low toxicity; second, their structures are simple, so they are easy to
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synthesize; third, experimental results have shown that several bisphosphonates have excellent
inhibitory activity against different parasites in vitro and in vivo.

OTHER DRUGS TARGETING THE ACIDOCALCISOME
Acidocalcisomes are also known by the names ‘volutin granules’ or ‘polyphosphate
granules’ [1], and early work by Ormerod [74] proposed that they become more visible under
light microscopy when cells are treated with drugs. For this reason they were also named as
‘chemotherapy granules’ [75]. Hawkins and Smiles in 1941 [76] were able to show
accumulation of the fluorescent drug stilbamidine in trypanosome granules. Other drugs, like
quinapyramine, suramin, hydroxystilbaminine [77], and acriflavine [76] were also found to
concentrate in these granules. Interestingly, some of these drugs are first concentrated in the
kinetoplast and nucleus, then diffuse to the cytosol, and finally concentrate in granules [76,
77]. Recent work on other diamidines such as DB75 (furamidine) and DB820, which are in
phase III clinical trials against human African trypanosomiasis, revealed a similar pattern of
accumulation, first in DNA-containing regions such as the nucleus and kinetoplast and later in
acidocalcisomes [78]. However, the impact that acidocalcisome accumulation has on the
mechanism of action of these compounds in not known [79].

Ketoconazole and terbinafine, two sterol biosynthesis inhibitors, were shown to induce the
formation of numerous and diverse acidocalcisomes in promastigotes and amastigotes of L.
amazonensis, which were enclosed by in larger compartments with access to endocytic tracers
[80]. Naphthoimidazole compounds were found to decrease the electron density of
acidocalcisomes of T. cruzi [81].

Azithromicin, a drug used against toxoplasmosis has also been shown to accumulate in acidic
compartments within T. gondii tachyzoites [82]. Other chemotherapeutic agents used against
malaria (e.g. chloroquine) have also been shown to accumulate in acidic compartments [83]
and Na+/H+ exchangers such as monensin are used in the treatment of coccidiosis. Chloroquine
accumulates in the acidocalcisomes of T. brucei, slows down growth in vivo and prolongs the
survival time of infected mice [83].

CONCLUSIONS
In conclusion, acidocalcisomes are potential targets for the chemotherapy of protozoan
parasitic diseases not only because they possess enzymes that are absent or different from their
mammalian counterparts, but also because of their acidic characteristics, which allow them to
accumulate basic drugs, potentially enhancing their toxicity.
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Figure 1. Ultrastructure and composition of acidocalcisomes
A. Transmission electron microscopy of a procyclic stage of Trypanosoma brucei showing the
acidocalcisomes (dark granules). Bar = 3 μm. Reprinted with permission from ref. [87]. B.
Schematic representation of an acidocalcisome. A H+ gradient is established by a vacuolar
ATPase (V-H+-ATPase) and a vacuolar pyrophosphatase (V-H+-PPase). Ca2+ transport is
driven by a Ca2+-ATPase. Other transporters include Na+/H+, and Ca2+/H+ exchangers, a
Cl− channel, and a water channel or aquaporin. Transporters for basic amino acids, Pi, PPi, and
cations are potentially present. The matrix is rich in PPi and polyphosphate (poly P) and
enzymes involved in their metabolism (poly P kinase (PPK), exopolyphosphatase (PPX), and
pyrophosphatase (PPase). Not all the enzymes and transporters are present in all
acidocalcisomes.
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Figure 2. Overview of the pathway for isoprenoid synthesis
The DOXP/MEP pathway, present in higher plants, green algae, some bacteria, Plasmodium
spp. and yeast as well as the Mevalonate pathway, present in mammals, higher plants, some
bacteria, trypanosomatids, and yeast, generate isopentenyl diphosphate (IPP), which
isomerizes to dimethylallyl diphosphate (DMAPP). The farnesyl diphosphate synthase (FPPS)
catalizes the reaction of DMAPP with IPP to generate geranyl diphosphate (GPP), which
incorporates another IPP to generate farnesyl diphosphate (FPP). FPP is the precursor for
ubiquinones, heme a, sterols, dolichols and geranylgeranyl diphosphate (GGPP) through the
action of GGPP synthase. Bisphosphonates (BP) inhibit the short chain prenyl transferases
(FPPS and GGPPS).

Docampo and Moreno Page 13

Curr Pharm Des. Author manuscript; available in PMC 2009 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3. Structure of GPP, FPP, and different bisphosphonates commercially available for the
treatment of bone resorption diseases
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Figure 4. Structure of n-alkyl bisphosphonates effective against Apicomplexan parasites
The figure shows the structure of compounds with 9 and 10-carbon chain.
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