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Abstract

The effect of nucleophile strength on diastereoselectivity in the nucleophilic substitution of cyclic
acetals was explored. Stereoselectivity remained constant and high as nucleophilicity increased until
a threshold value was reached. Beyond this point, however, selection of Lewis acid determined
whether stereochemical inversion or erosion was observed.

The development of stereocontrolled glycosylation reactions is complicated by the fact that
these processes may proceed via SN1-like1-3 or SN2-like4-10 mechanisms. Changes in the
glycosyl donor,11,12 nucleophile,13,14 activator,15 and solvent16 can alter selectivity
unpredictably. This report documents the relationship between nucleophile strength and
stereoselectivity for the substitution reactions of cyclic acetals; we describe dramatic changes
in stereoselectivity and provide mechanistic rationales for these findings. This study provides
insight applicable to the development of new stereoselective glycosylation reactions.

Acetal 1 was treated with a panel of nucleophiles having known nucleophilicity parameters
(N)17 in the presence of Me3SiOTf (Table 1). A nucleophile's N value is a direct measure of
reactivity: it correlates logarithmically with its rate of reaction with carbocationic electrophiles.
17 Reactions with π-nucleophiles spanning more than four orders of magnitude of
nucleophilicity led to selective formation of 1,4-trans products (entries 1 and 2). A roughly
one hundred-fold further increase in N, however, associated with application of silylketene
acetal nucleophiles 9–11, resulted in reversal of diastereoselectivity: 1,4-cis products were
formed selectively (entries 3–5). This dichotomy in stereochemical outcomes suggests a
change in reaction mechanism.18

We have reported previously an electrostatic model to explain the trans selectivities observed
in the reactions of acetal 1 with weak nuceophiles (e.g., 7 and 8).19,20 These reactions occur
by SN1-type mechanisms involving oxocarbenium ion intermediate I (Scheme 1).21 Axial
attack on the electrostatically preferred axial conformer Iax affords trans products via a chair-
like transition state. This model, however, does not account for the cis selectivities observed
when strong nucleophiles 9–11 react with 1. It is unlikely that the 1,4-cis ester products cis-
(4–6) arise from disfavored equatorial conformer Ieq because increased nucleophile strength
should not alter the conformational equilibrium of the oxocarbenium ion. Moreover, the
selectivities of reactions of Iax and Ieq should be independent of nucleophile reactivity unless
reaction rates approach the diffusion limit.22
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The stereochemical inversion observed in Me3SiOTf-activated reactions of electrophile 1 with
silylketene acetals 9–11 can be explained by SN2-like substitutions23-27 of triflate-trapped
contact ion-pairs28 II via transition state III (Scheme 2). Transition state III is consistent with
the electrostatic model. As the triflate group departs from the axial orientation, the transition
state (III) would develop significant carbocationic character at C1.9,10 This accumulation of
charge would cause the C4-benzyloxy group to adopt an axial orientation to stabilize the charge.
19,20 Together, these explanations account for the observed selectivity.29

In contrast to the results activated by Me3SiOTf, nucleophilic substitution reactions of acetal
1 mediated by BF3•OEt2 appeared to proceed via SN1-like mechanisms regardless of
nucleophile strength (Table 2). As observed with Me3SiOTf, reactions of relatively weak π-
nucleophiles 7 and 8 led to selective formation of 1,4-trans products with BF3•OEt2 (entries
1 and 2). Application of silylketene acetal nucleophiles 9–11 to the BF3•OEt2-mediated
reactions of 1, however, led to loss of stereoselectivity (entries 3–5). It is possible that these
low selectivities reflect competition between SN2-like and SN1-like reaction mechanisms. The
borate anions formed in the BF3•OEt2-mediated reactions, however, are likely to coordinate
quite poorly, disfavoring SN2-like processes.30 Further, unselective reactions were obtained
with all three silylketene acetal nucleophiles (9–11) despite differences in steric bulk and
nucleophilicity; this finding suggests a statistical process.31

The loss of stereoselectivity in BF3•OEt2-mediated reactions of 1 with silylketene acetal
nucleophiles 9–11 can be explained by SN1-like nucleophilic attack at the diffusion limit
(Scheme 3).22,32 Encounter complexes24 IV and V are expected to form with no facial
selectivity. If the rates of nucleophilic attack on the encounter complexes IV and V (k2 and
k3) approach the rate of diffusion (k1 = k-1 ∼109 M−1s−1),17,33 product ratios will reflect the
initial statistical mixture of IV and V.22,32 In this scenario, every nucleophile-electrophile
collision will lead to product, so no selectivity is observed.34

The model for loss of stereoselectivity depicted in Scheme 3 requires reaction via twist-boat
intermediate VII. To test the viability of this intermediate, C3-tert-butyl acetal 12 was prepared
and treated with a panel of nucleophiles under BF3•OEt2 activation (Table 3). As observed for
acetal 1, stereoselectivities were high for relatively weak nucleophiles 7 and 8, but eroded with
silylketene acetal nucleophiles 9 and 11.35

The results in Table 3 are consistent with reaction via a twist-boat intermediate. Formation of
the major 1,3-trans products arises from axial attack on equatorial conformer VIIIeq through
a chair-like transition state (path a, Scheme 4). The minor 1,3-cis product is unlikely to arise
by axial attack on minor conformer VIIIax through a chair-like transition state (path c). Not
only should the VIIIax/VIIIeq conformational equilibrium favor equatorial conformer
VIIIeq,36 but developing 1,3-diaxial interactions between the incoming nucleophile and the
axial C3-tert-butyl group of VIIIax should also block substitution by path c. Consequently,
cis products are more likely formed by path b, which involves a twist-boat intermediate.

We next sought further evidence to support the stereochemical models developed for C4-
benzyloxy acetal 1. A series of competition experiments between nucleophiles was used to
probe both the diffusion-limited rate hypothesis developed for reactions involving BF3•OEt2
(Scheme 3) and the SN2-like pathway invoked in the case of Me3SiOTf (Scheme 2). If at least
one of the two nucleophiles involved in a competition experiment reacts with a rate below the
diffusion limit, chemoselectivity should be observed.22 This condition should obtain for all
reactions of nucleophiles 7 and 8 and for the reactions that proceed by SN2-like reaction paths.
Conversely, if both nucleophiles in a competition experiment react with rates at or near the
diffusion limit, as proposed in the case of 9–11 with BF3•OEt2, no chemoselectivity should be
observed.22

Krumper et al. Page 2

Org Lett. Author manuscript; available in PMC 2009 November 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



As a control experiment, acetal 1 was treated with an equimolar mixture of enoxysilane
nucleophile 8 (N = 6.2) and silylketene acetal 11 (N = 10.2) in the presence of BF3•OEt2 (Table
4, entry 1).37 As expected, a small fraction of 3 was formed, indicating that the enoxysilane
8 did not react with the electrophile at a rate near the diffusion limit.

The chemoselectivity observed when silylketene acetals 9 (N = 8.2) and 11 (N = 10.2) reacted
with 1 in the presence of Me3SiOTf (Table 4, entry 3) also implies non-diffusion-limited rates
of nucleophilic attack. Triflate-trapped species II should be less electrophilic than
oxocarbenium ion encounter complexes IV/V.9,10 Consequently, SN2-type nucleophilic
substitution reactions in the presence of triflate anion should occur with rates below the
diffusion limit. As noted previously, the stereochemical results with these nucleophiles (Table
1, entries 3 and 5) are consistent with reaction through transition state III (vide supra).

The results of treatment of 1 with silylketene acetals 9 and 11 in the presence of BF3•OEt2
suggested simultaneous operation of both SN2-type and diffusion-limited SN1-type paths. In
this reaction, products 4 and 6 were formed in a 25:75 ratio (Table 2, entry 2), suggesting
participation of a [BF3-OAc]− counterion in the reaction with 11.

To eliminate the potential for ion pairing, acetal 17, bearing a pivaloate group, was examined.
The steric bulk of the pivaloate group should decrease its ability to coordinate, thereby pushing
the reaction completely to an SN1-type mechanism. The reaction of 17 with 9 and 11 was
unselective: a 56:44 ratio of 4 to 6 (eq 1) was obtained.38 This result confirms the exclusive
operation of a diffusion-limited SN1-type mechanism when 9 and 11 react with the free
oxocarbenium ion IV/V derived from pivaloate 17.

(1)

We have described the effects of varying nucleophile strength on the stereochemical outcomes
of acetal substitution reactions. Stereoselective SN1-type mechanisms occur with weak and
moderate nucleophiles and poor leaving groups, and unselective diffusion-limited SN1
mechanisms and stereoselective SN2 reaction pathways emerge with strong nucleophiles.
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Scheme 1.
Electrostatic Stereochemical Model
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Scheme 2.
Proposed Transition State for SN2-like Pathway
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Scheme 3.
Diffusion Limit Model
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Scheme 4.
C3 t-Bu Stereochemical Model
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Table 4
Effect of Nucleophile on Chemoselectivity

entry Nu1–SiMe3
a Nu2–SiMe3

a Lewis acid product ratiob

1 BF3•OEt2 3(4):6(96)

2 BF3•OEt2 4(25):6(75)

3 Me3SiOTf 4(13):6(87)

a
Five equivalents of nucleophile.

b
Determined by GC spectroscopic analysis of the unpurified reaction mixture
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