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Abstract
Recent studies implicate specific PKC isoforms in the insulin-signaling cascade. Insulin activates
PKCsα, βII, δ and ζ in several cell types. In addition, as will be documented in this review, certain
members of the PKC family may also be activated and act upstream of PI3 and MAP kinases. Each
of these isoforms has been shown one way or another either to mimic or to modify insulin-stimulated
effects in one or all of the insulin-responsive tissues. Moreover, each of the isoforms has been shown
to be activated by insulin stimulation or conditions important for effective insulin stimulation. Studies
attempting to demonstrate a definitive role for any of the isoforms have been performed on different
cells, ranging from appropriate model systems for skeletal muscle, liver and fat, such as primary
cultures, and cell lines and even in vivo studies, including transgenic mice with selective deletion of
specific PKC isoforms. In addition, studies have been done on certain expression systems such as
CHO or HEK293 cells, which are far removed from the tissues themselves and serve mainly as vessels
for potential protein–protein interactions. Thus, a clear picture for many of the isoforms remains
elusive in spite of over two decades of intensive research. The recent intrusion of transgenic and
precise molecular biology technologies into the research armamentarium has opened a wide range
of additional possibilities for direct involvement of individual isoforms in the insulin signaling
cascade. As we hope to discuss within the context of this review, whereas many of the long sought-
after answers to specific questions are not yet clear, major advances have been made in our
understanding of precise roles for individual PKC isoforms in mediation of insulin effects. In this
review, in which we shall focus our attention on isoforms in the conventional and novel categories,
a clear case will be made to show that these isoforms are not only expressed but are importantly
involved in regulation of insulin metabolic effects.
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Introduction
The binding of insulin to its receptor initiates a cascade of events leading to its many biological
effects. The first step in this cascade is activation of the insulin receptor intrinsic tyrosine
kinase, which phosphorylates endogenous substrate proteins, primarily members of the insulin
receptor substrate (IRS) family [1]. Tyrosine phosphorylated motifs in these substrates serve
as docking sites for the recruitment and activation of a number of signaling proteins, including
phosphatidylinositol 3 (PI3) kinase and mitogen activated protein (MAP) kinase. Activation
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of these elements may then lead to stimulation of additional enzymes, among which are certain
members of the protein kinase C (PKC) family of serine–threonine kinases. Recent studies
implicate specific PKC isoforms in the insulin-signaling cascade [2–14]. Insulin activates
PKCs α, βII, δ and ζ in several cell types including cell lines of skeletal muscle [11,12,15]. In
addition, as will be documented in this review, certain members of the PKC family may also
be activated and act upstream of PI3 and MAP kinases.

The PKC family plays important roles many intracellular signaling events, cell growth and
differentiation [16–20]. It is composed of a number of individual isoforms which belong to
three distinct categories-conventional, novel and atypical- based upon their structurally distinct
N-terminal regulatory domains. The basic PKC structure of the conventional and novel
categories is composed of the N-terminal regulatory domains (that contain an autoinhibitory
pseudosubstrate domain and two membrane-targeting modules termed C1 and C2), and a
highly conserved C-terminal catalytic domain (that contains the C3 and C4 motifs required for
ATP/substrate binding and catalytic activity). The conventional isoforms (cPKCs—α, βI, βII,
γ) contain two membrane-targeting regions, designated C1 and C2. The C1 domain can bind
PMA (or endogenously generated DAG). The interfacing of the C1 region with PMA or DAG
promotes PKC binding to membranes [21,22]. The C2 domain contains a motif found in many
proteins that participate in membrane trafficking and signal transduction. C2 domains of cPKC
isoforms bind anionic phospholipids in a calcium-dependent manner due to the presence of
several calcium-binding residues. The novel isoforms (nPKCs—δ, ε, η and θ) also have similar
N-terminal regulatory regions but differ in that the C2 domain lacks the calcium-binding side
chains. Hence, nPKCs are maximally activated by DAG/PMA independent of calcium. It was
recently reported the C2 domain of PKCδ (a novel PKC) possesses a phosphotyrosine binding
motif [14], a finding of especial significance regarding activation of certain PKCs (as described
below). The atypical isoforms (aPKCs—ζ and ι/λ) are the third PKC isoform subfamily. aPKCs
lack a calcium-sensitive C2 domain and also do not bind DAG or PMA. Consequently, aPKCs
are activated by a distinct set of phospholipid cofactors as well as by stimulus-induced
phosphorylation events (described in recent reviews [23,24]).

Several of the PKC isoforms are alternatively spliced in addition to PKCβI and βII, where
splicing is regulated by insulin [3]. There are alternatively spliced isoforms of PKCδ, θ, η and
ς predicted from EST databases [25–27]. The importance of these more recently described
isoforms in insulin action has not been described, to date, but the fact that some of the isoforms
can encode up to 12 different splice variants with potentially unique cell functions opens new
options for PKC in signaling pathways.

The major insulin-responsive tissues-skeletal muscle, liver and adipose tissue—express PKC
isoforms from each of the categories, and the total number in each of these cells is in the range
of 6–8 isoforms. These include conventional PKCs α, βI and βII, novel PKCs δ, ε and θ, and
atypical ζ or λ. Each of these isoforms has been shown one way or another either to mimic or
to modify insulin-stimulated effects in one or all of the insulin-responsive tissues. Moreover,
each of the isoforms has been shown to be activated by insulin stimulation or conditions
important for effective insulin stimulation. Studies attempting to demonstrate a definitive role
for any of the isoforms have been performed on different cells, ranging from appropriate model
systems for skeletal muscle, liver and fat, such as primary cultures, and cell lines and even in
vivo studies, including transgenic mice with selective deletion of specific PKC isoforms, to
certain expression systems such as CHO or HEK293 cells, which are far removed from the
tissues themselves and serve mainly as vessels for potential protein–protein interactions. Thus,
a clear picture for many of the isoforms remains elusive in spite of over two decades of intensive
research. The recent intrusion of transgenic and precise molecular biology technologies into
the research armamentarium has opened a wide range of additional possibilities for direct
involvement of individual isoforms in the insulin signaling cascade. As we hope to discuss
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within the context of this review, whereas many of the long sought-after answers to specific
questions are not yet clear, major advances have been made in our understanding of precise
roles for individual PKC isoforms in mediation of insulin effects. We hope that this review, in
which we shall focus our attention on isoforms in the conventional and novel categories, a
clear case will be made to show that these isoforms are importantly involved in regulation of
insulin metabolic effects. The readers are referred to recent reviews regarding the atypical
isoforms for a different perspective from that which we will offer here [23,24].

Mechanisms of activation
Intracellular Ca2+—The conventional and novel PKC isoforms (α, βII, δ, ε and θ) are
expressed in each of the insulin-responsive tissues and the presence of binding sites for Ca2+

(conventional), DAG and phosphatidyl serine and fatty acids makes their activation by insulin,
through its ability to liberate DAG and Ca2+, a virtual certainty. As pointed out in an earlier
review [28], PKC was initially defined as a proteolytically activated kinase and was
subsequently found to be dependent on Ca2+ and phospholipids in vitro. Indeed, in the presence
of DAG, the concentration of Ca2+ necessary for activation of cPKCs is in the physiological
range. There is evidence for and against the possibility that insulin induces an increase in
intracellular [Ca2+] [29–33]. In newborn rat brown adipocytes it was shown that the insulin-
induced elevation of intracellular [Ca2+] was PI3 kinase dependent [34]. On the other hand, it
was shown that glucose transport induced by means other than insulin appeared to involve
Ca2+ activation of cPKC [35]. It has been noted that insulin resistance appears to be associated
with increased levels of intracellular Ca2+, and that measures that increase intracellular Ca2+,
thereby presumably increasing cPKC activity, in adipocytes and skeletal muscle can down-
regulate insulin-stimulated glucose transport (see review [36]). The extent to which
intracellularly released Ca2+ may be an independent means of PKC activation or an important
co-factor requires additional study and evaluation. cPKC are activated by localized membrane
changes in Ca2+ concentration [28], hence, large increases in intracellular Ca2+ are not
necessary for their activation in vivo.

Serine phosphorylation by PDK—All of the kinases require prior phosphorylation by the
phosphoinositide dependent kinase 1, PDK1 [37], and PKCβII has been shown to act as a PDK2
activity in some cases [38]. This phosphorylation occurs on the catalytic domain or activation
loop. There is the potential for two other auto-phosphorylations in the C-terminal domain that
are required for intracellular targeting of the kinases [37].

Whereas these isoforms have been shown by numerous groups to be activated by insulin [6,
12,15,39–42], certain considerations have restricted recognition of their role as mediators of
insulin action. A major impediment has been the assumption that these isoforms are almost
exclusively activated by endogenously generated DAG. As DAG is released in large part by
products of Phospholipase C activity, it is further assumed that these isoforms, in particular
PKCα and PKCδ, are not activated by insulin by pathways other than via Phospholipase C.
And, as especially the conventional and novel PKC isoforms expressed in a given tissue can
be stimulated by each of the various co-factors, it has been difficult to evaluate selective
involvement of a given isoform in a specific process.

The conventional concept of PKC activation is that the enzymes, when quiescent, are located
in the cytoplasm and upon activation are translocated to their sites of action, such as the plasma
membrane, nucleus or other cell organelles. As pointed out in a recent superb review on
PKCδ activation [43], “the receptor-driven, lipid cofactor-dependent mechanism for PKC
activation involving membrane-associated anchoring proteins does not adequately explain the
PKC-dependent phosphorylation of proteins in non-membrane compartments”. There is now
a body of evidence that certain PKC isoforms may act as lipid-independent enzymes when

Sampson and Cooper Page 3

Mol Genet Metab. Author manuscript; available in PMC 2009 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



tyrosine-phosphorylated (probably by members of the Src family of tyrosine kinases). Thus,
as stated in the Steinberg review, the model for activation of certain conventional and novel
PKC isoforms must be broadened to include additional factors that influence PKCδ
enzymology. The review by Steinberg presents a detailed and comprehensive discussion the
sequential serine–threonine phosphorylations that prime and regulate the activation sequence
and trafficking of PKC isoforms. In addition, the importance and potential role of tyrosine
phosphorylation at various sites is analyzed in the context of the description of a modification
of the current thinking of PKC activation. As it is beyond the scope of the current review to
discuss these points in detail, we strongly recommend the Steinberg review for a comprehensive
analysis of PKC activation. In brief, the conventional concept is derived from studies on cPKC
isoforms (which reside in a closed/inactive conformation, with the autoinhibitory
pseudosubstrate domain occluding the substrate-binding pocket) in the soluble fraction of
quiescent cells. cPKCs poorly interact with membranes in the “resting state” (i.e., in the absence
of calcium or DAG). With promotion of phosphoinositide hydrolysis and Ins(1,4,5)P3
generation by specific agonists, intracellular calcium is mobilized and binds to the C2 domain
and increases its affinity for membranes. This initial association of cPKC with membranes
facilitates the interaction of the C1 domain with DAG (the other product of phosphoinositide
hydrolysis). C1/C2 domain engagement with membranes promotes a conformational change
that expels the autoinhibitory pseudosubstrate domain from the substrate-binding pocket and
facilitates the PKC-mediated phosphorylation of membrane substrates. With the exception of
the C2 domain-mediated effects of calcium, nPKC isoform activation for the most part follows
a similar mechanism. For cPKC and nPKC isoforms, translocation to membranes generally is
considered the major criterion for activation.

Tyrosine phosphorylation as a means of activation—Steinberg summarizes the data
pertaining to the importance of tyrosine phosphorylation of PKCδ in its activation and substrate
targeting. Tyrosine phosphorylation of PKCδ has been reported for responses of salivary gland
cells in response to carbachol [44,45], COS-7 cells in response to H2O2 [46,47], and, in
addition, skeletal muscle cells in response to insulin [12]. Mouse, rat and human PKCδ contain
19, 21 and 20 tyrosine residues respectively. Multiple sites for tyrosine phosphorylation of
PKCδ have been identified in its catalytic and regulatory domains as well as in the hinge region.
In contrast with the sites for Ser/Thr phosphorylation, these tyrosine residues are not conserved
across PKC family members. Tyrosine phosphorylation, while thought to be a relatively
specific regulatory mechanism for PKCδ [48], may be a common regulatory mechanism for
the entire family of PKC enzymes. No uniform pattern or consequence of PKCδ tyrosine
phosphorylation can be extracted from the published literature, since the catalytic activity of
tyrosine-phosphorylated PKCδ is variably described as decreased, increased, or even altered
with regard to substrate specificity and cofactor requirements [45,46,49–51]. In fact, the precise
configuration of tyrosine residues phosphorylated on PKCδ depends upon the nature of the
particular stimulus and dictates the functional properties of the enzyme. For example, tyrosine
phosphorylation of the catalytic domain (in cells treated with H2O2) increases the kinase
activity of PKCδ, whereas phosphotyrosines in its regulatory domain (in cells treated with
PMA or PDGF) influence the cellular actions of PKCδ without influencing kinase activity.

Tyrosine phosphorylation of certain other PKC isoforms in response to insulin may play an
important role in both regulation of the activity state and their targeting to specific substrates.
The lack of understanding and knowledge of this mechanism could be responsible for the
controversy regarding the involvement of so-called “DAG sensitive” PKCs in insulin signaling
[23,24]. It has been shown in several models of skeletal muscle that an insulin-induced increase
in activity of PKCs α, βII, δ and ς is associated with phosphorylation on tyrosine [12,15]. In
current studies, we (unpublished) have found that PKCε is also tyrosine phosphorylated and
activated in response to insulin. Src tyrosine kinase has been shown to be involved in insulin
and other growth factor signaling in several cell types, including skeletal muscle [52–60,42–
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49]. Moreover, in the case of PKCs α and δ, insulin-induced tyrosine phosphorylation is
apparently mediated by the Src family of tyrosine kinases, if not Src tyrosine kinase itself
([31] and unpublished). Currently, the level of knowledge of potential tyrosine phosphorylation
sites in PKCα and other PKC isoforms is quite limited, and to our knowledge, studies on their
importance have yet to be performed. Hence, the identification of the tyrosine residues and the
mechanisms underlying their phosphorylation by insulin may help to shed more light on the
role of the different isoforms in insulin signaling.

With this background, we shall proceed to review the literature with regard to the possible roles
of specific PKC isoforms in various stages of insulin signaling in skeletal muscle, liver and fat
tissues. In the discussion that follows, we will attempt as well to differentiate between studies
performed on cells that represent model systems for insulin signaling (skeletal muscle cells,
hepatocytes, fat cells) in vivo and in vitro, and those cells or systems utilized primarily for
“protein–protein interactions” and various molecular perturbations. We will first discuss the
relevant conventional and then the novel isoforms.

Conventional PKC isoforms
PKCα

A number of studies have shown that insulin stimulates PKCα in insulin-responsive cells such
as skeletal muscle, liver and fat [41,61,15,62–64]. The clarification of the relation between
stimulation by insulin and a role in the insulin cascade leading to glucose regulation, however,
has been more elusive. Investigators have utilized approaches and cell systems that provide
means to attribute a definitive role for PKCα in insulin signaling. As the PKCs are serine–
threonine kinases, and phosphorylation of serine and threonine residues on IR and IRS1 are
known mechanisms for down-regulation of these proteins, it is not surprising that IR and IRS1
were among the first sites for investigation. Equally not surprising were findings that PKCα
expressed in cells co-expressing either IR or IRS1 (3T3ir, HEK293, COSIR) induced their
phosphorylation. Thus, the idea has developed and persisted that PKCα might in fact play a
role in development of insulin resistance [64–69,54–58]. Nonetheless, a role in insulin-induced
effects has not been verified.

A possible role for insulin-stimulated PKCα in insulin effects was suggested in a study on the
possible role of PKC isoforms in TNF-α regulation of insulin effects in mouse skeletal muscle
in primary culture [15]. PKCα was found to be constitutively associated with IRS1 but not IR.
Insulin stimulation induced tyrosine phosphorylation associated with an increase in activity of
PKCα, and caused PKCα to dissociate from IRS1. (Opposite effects were obtained with regard
to PKCδ. This will be discussed subsequently.) Effects of insulin on PKCα were independent
of PI3K. Interestingly, TNF-α also induced tyrosine phosphorylation and an increase in activity
of PKCα. However, association of PKCα with IRS1 was increased over basal levels, and the
insulin effects to induce tyrosine phosphorylation and stimulation of PKCα and its dissociation
from IRS1 were abrogated by TNF-α. The findings that both insulin and TNF-α induced
phosphorylation of tyrosine and yet caused opposite effects suggest that a different tyrosine
site may be involved.

These results are consistent with a study on skeletal muscles and adipocytes in transgenic mice
in which the PKCα gene was deleted [70]. Here, it was found that insulin signaling to IRS1-
dependent PI3K, PKB and downstream processes, glucose transport and activation of ERK,
were enhanced in tissues from PKCα KO mice. In adipocytes and skeletal muscles of wild-
type mice and rats, insulin increased PKCα activity independent of PI3K. Thus, whereas
PKCα is not required for insulin-stimulated glucose transport, PKCα is activated by insulin at
least partly independently of PI3K and serves mainly as a physiological feedback inhibitor of
insulin signaling. The mechanism of this feedback inhibition was not speculated upon.
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In a recent study [64] on 3T3 fibroblasts overexpressing human insulin receptor (3T3-hIR), it
was shown that insulin increased association of PKCα with IRS-1, along with an a 30 kDa
protein (called 14-3-3 epsilon). Overexpression of this 14-3-3 epsilon reduced “IRS-1-bound
PKCα activity” but not the amount of IRS-1-PKCα co-precipitate and increased IR and IRS-1
tyrosine phosphorylation. Conversely, knockdown of 14-3-3 epsilon produced the opposite
effects. The authors suggested that the presence of 14-3-3 epsilon modulates PKCα activity.
While not yet confirmed for classical insulin responsive tissues, these observations appear to
support a role for PKCα as a negative regulator of IR signaling.

We suggest the following concept regarding the role of PKCα in insulin signaling. PKCα serves
as a constitutively active inhibitory regulator of the insulin cascade through its association with
IRS1. On stimulation with insulin, PKCα is dissociated from IRS1, thus releasing this protein
from its down-regulated state. This, in a sense, opens the “gate” for transmission of the insulin
signal. After about 10 min, PKCα re-associates with IRS1 to restore down-regulation of IRS1.
Conditions that maintain or strengthen the PKCα-IRS1 association (such as TNF-α) reduce or
inhibit insulin signaling via IRS1 and could account for certain aspects of insulin resistance.
The ultimate effect of PKCα will depend on the sites of tyrosine phosphorylation in response
to the various conditions and its modulation by TNFalpha/ceramide activated protein
phosphatase activated protein phosphatases [71].

PKCβII
PKCβ was one of the earliest isoforms recognized in insulin signaling [5,72]. These early
studies relied upon chromatographic elution profiles and specific activation by phospholipids,
diacylglycerol and calcium [72–75]. In some cases, phorbol ester desensitization was taken as
an indication of a role for specific PKC isoforms in insulin action [76]. We now know that this
paradigm is difficult, at best, to use for a variety of factors. The primary one is that only the
protein is temporarily down-regulated and its resynthesis occurs within minutes of insulin
treatment. Also, subcellular localization of cPKC’s is important for their activity and phorbol
esters target specific pools of the enzyme to unphysiological sites as suggested [72]. The
activation of PKCβ isoforms is regulated by phospholipids, diacylglycerol, calcium,
phospholipids and phosphoinositides as well as phorbol esters and they translocate to unique
subcellular sites following activation. As mentioned earlier, all of the kinases require prior
phosphorylation by the phosphoinositide dependent kinase 1, PDK1 [77], and PKCβII has been
shown to act as a PDK2 activity in some cases [38] for activation of the catalytic domain. This
phosphorylation is followed by two autophosphorylations within the C-terminal domain on
most isoforms. When objective sequence alignments are carried out, five variable regions
within the conventional PKC gene encode isoform specificity [78,79]. The last variable region
(V5) of PKCβ consists of 50–52 amino acids that are alternatively spliced and results in
transcripts encoding two proteins [74,80]. The regulation of exon inclusion by insulin produces
PKCβII which further contributes to full effects on insulin signaling as shown with experiments
that alter splicing, inhibit PKCβII activity, down-regulate PKCβII levels and overexpression
of the active isoform [42,81,82].

Although there is a great deal of redundancy in PKC isoform function as demonstrated by the
knockout animal studies [83], more refined experimental approaches have demonstrated that
PKCβII has distinct functions from PKCβI. For example, the insulin receptor is phosphorylated
by PKCβII in an IRS-1-dependent manner [84]. This results in down-regulation of the receptor
tyrosine kinase activity. The functional involvement of this interaction is unknown but thought
to be important with regard to the development of insulin resistance. PKCβII contains a unique
instability element that destabilizes βII but not βI mRNA in the presence of high extracellular
glucose [85–87]. Thus, the splicing of PKCβII may represent the active form of an alternatively
spliced protein with its default product, PKCβI, acting in a permissive or non-specific manner.
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Early studies focused on the role of PKCβII activity in L6 myotubes. A dominant-negative
acting PKCβII construct was developed to show that PKCβII but not βI was required for glucose
uptake [4]. The specific PKβII inhibitor, CG53353 supports this conclusion. Demonstrating a
role for PKCβII in cultured myotubes (both primary and cell line) insulin responsiveness was
confirmed by other laboratories [12] including Sampson’s lab, Formisano’s lab (personal
communication) and laboratories working on intact muscle showing a requirement for
PKCβII in insulin stimulated glucose uptake [88,89].

This difference in function between the two isoforms is critical for demonstrating the
importance of splicing regulation and it exists for a number of other functions of PKCβII
including the fact that PKCβII binds specifically to β-actin [90]. Additionally, PKCβII was
found at different subcellular locations in cardiac myocytes [91], Stebbins and Mochly-Rosen
found that it binds specifically to RACK1 in vitro through the V5 region [92]. It is also known
to impact signaling pathways in a specific manner as shown with its specific activation of the
MAPK pathway [93]. The phosphorylation of TLS-FUS, a nuclear transcription factor that
also functions in splicing, demonstrates the versatility of PKCβII functions [94,95]. The
observation that PKCβII acts to phosphorylate Akt on Ser473 and acts as a PDK2
(phosphoinositide dependent kinase type 2) activity [96], underscores the role of PKCβII in
signaling pathways.

The discovery that insulin regulated the alternative splicing of PKCβII (see section on
Regulation of PKC below) was a serendipitous observation which resulted from the use of a
ribonuclease protection assay using a probe that crossed the exon–exon boundary between the
last common region the fifth variable variable region encoding PKCβI [81].

The original rationale for the design was to determine which isoform predominated in muscle
cells. Thus, the protected fragment could distinguish either PKCβI or PKCβII. Insulin time
courses in BC3H1 myocytes and later in L6 cells demonstrated that the switch from PKCβI to
PKCβII isoforms was rapidly regulated within 10–15 min with protein synthesis accompanying
this. The switch to PKCβII has now bee observed in virtually every cell type that responds to
insulin including hepatocytes, adipocytes, brain and fibroblasts. This suggested an additional
signaling pathway to the nucleus to regulate alternative splicing was functioning to replenish
the enzyme which turned over fairly rapidly during insulin action. The involvement of a PI3-
kinase dependent pathway was hypothesized using the specific inhibitor, LY294002, and
overexpression of the p85 dominant negative regulatory subunit to block alternative splicing
[10,86].

It is common knowledge that these tools also block insulin effects on glucose transport [97,
98], but the link to PKCβII splicing was not easily bridged as PKCβII activity is required for
full insulin effects on glucose uptake [4]. However, we (D.R.C. lab) were able to identify a
splicing protein that was potentially involved in insulin action, SRp40, and show that it also
mediated insulin effects on splicing via this pathway. This was the first time that the
phosphorylation of a splicing factor by a signaling cascade had been identified. Since then,
activation of the MAPK pathway, stress pathways and activation of the CaMkinase have been
linked to splicing events.

PI3-kinase also modulates the activity of newly synthesized PKCβII via PDK1. The
phosphorylation of PKCβII at Serine residues in its activation loop are crucial for its activity
[99]. This phosphorylation has been demonstrated in intact skeletal muscle following insulin
stimulation [89]. The kinase is also phosphorylated on tyrosine residues [12]. This has the
potential for recruiting proteins with phosphotyrosine binding domains, but this has not yet
been demonstrated. Thus, like PKCδ, PKCβII may have scaffold functions in insulin signaling.
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The knockout animals for PKCβ are an interesting contrast. Like other PKC knockout models
they do not demonstrate a phenotype that is diabetic or insulin resistant which may underscore
the redundancy of PKC functions in vivo [83]. However, skeletal muscle overexpresses novel
glucose transporters that may bypass normal PKCβII functions in regard to trafficking/sorting/
docking of the Glut4 vesicles (Cooper, D.R., unpublished observation) and they may
demonstrate increased insulin sensitivity, reflecting the effect of both PKCβI + II on feedback
to the IR or SHP2 [83,100]. The PKCβ knockout mouse was developed on a C57Bl/6
background which is prone to obesity and insulin resistance as it ages. The fact that these
animals do not develop diabetes is interesting since they are smaller and leaner than their
controls (Cooper, D.R., unpublished observation) [101].

Novel PKC isoforms
PKCδ

As mentioned in the Introduction, PKCδ is one of the most widely studied of the PKC isoforms,
particularly with regard to the importance of tyrosine phosphorylation in response to diFFerent
stimuli and ligands in a wide variety of cells. A role for this isoform in insulin signaling,
however, has only recently begun to be defined. Whereas, there is ample evidence that insulin
stimulates PKCδ, the conventional concept that activation of this isoform (as well as others of
the conventional and novel categories) is dependent on DAG released via phospholipase C has
hindered understanding of its possible function. In addition, investigators have relied on
translocation of PKCδ from cytosolic to membrane fractions as the major indication of
PKCδ stimulation (see [102]). This approach overlooks the possibilities of translocation of
PKCδ to specific substrates rather than simply to the plasma membrane. Moreover, it does not
take into account either the frequently reported high levels of PKCδ in the plasma membrane
under basal or “resting (i.e., non-insulin stimulated) conditions or the alterations in activation
state as a consequence of insulin-induced PKCδ tyrosine phosphorylation.

As a serine–threonine kinase, PKCδ might be expected to function primarily as a negative
regulator of IR signaling, particularly in view of the role of serine phosphorylation on activities
of IR and IRS [103–105]. And, indeed, many studies have shown that activated PKCδ readily
serine phosphorylates these important proteins. Thus, PKCδ, although presumably requiring
co-expression of IRS-1, inhibits the tyrosine kinase activity of the insulin receptor in human
kidney embryonic cells [103]. In addition, PKCδ has been overexpressed in CHO cells and,
when activated by phorbol esters found to increase serine phosphorylation of IRS-1 [100,
106]. In the same report, it was shown in a study on H4IIE hepatoma cells that expression of
either constitutively active PKCδ, or of wild type PKCδ followed by phorbol ester stimulation,
inhibited tyrosine phosphorylation of IRS-1 in response to insulin.

We have recently found that insulin induces phosphorylation of IRS-1 on Ser 307 (Jacob, Zick,
Brodie and Sampson-submitted for publication), a suggested site for phosphorylation by PKCs
activated by phorbol esters [107,108]. These results support the notion that insulin-activated
PKCδ serves as a negative regulator of IR signaling. It would thus appear that the positive
regulation by PKCδ of IR signaling might involve the intervention of another protein. This
could be provided by Src tyrosine kinase, which is induced by insulin to associate with both
IR and PKCδ, and has been shown to up catalyze insulin-induced IR tyrosine phosphorylation
[60]. Cross-talk between PKCδ and STK has been reported in a number of systems, and it is
possible that a positive interaction between these two signaling proteins might increase IR
signaling.

Stimulation of PKCδ by insulin in adipocytes has been both affirmed [109–111], and denied
[102]. As these studies relied on insulin-induced translocation, the differences might best be
explained by the differences in cell type, the former being rat adipocytres and the latter 3T3-
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L1 adipocytes. On the other hand, a clear stimulation of PKCδ by insulin was reported in
NIH3T3 fibroblasts [62].

A possible role of PKCδ in insulin-induced gene transcription in hepatocytes was suggested
as a result of studies showing translocation of PKCδ from the cytosol to the membrane fraction
by insulin in H4IIE (H4) rat hepatoma cells, along with a reduction in gene transcription in
response to insulin in these cells that had been pre-treated with PMA to down-regulate PKCδ
[112].

The role of PKCδ in insulin signaling in hepatocytes is unclear. On the one hand, in a recent
report [113] it was concluded that PKCδ (as well as isoforms α, ε or ς) was not stimulated by
insulin and apparently not involved in insulin effects on primary rat hepatocytes. In this study,
the investigators relied on DAG release and translocation of PKC to the plasma membrane as
indicators of PKC stimulation. As we discussed these mechanisms may not be sufficient to
determine PKC stimulation. In current (unpublished) studies utilizing PKCδ tyrosine
phosphorylation levels and direct measurements of PKSδ activity, we have found evidence
that this isoform may play a critical role in insulin-induced glucogenesis in hepatocytes. The
possibility of PKCδ as a positive regulator of IR signaling was firmly introduced by several
studies. In one, performed on NIH3T3 fibroblasts, PKCδ (as well as other isoforms) was found
to be involved in insulin-induced internalization and transporting of IR [62]. In studies on
mammalian skeletal muscle cells in primary culture, it was shown that insulin induced tyrosine
phosphorylation of PKCδ via a PI3K-independent mechanism, thus obviating the dependence
of activation on released DAG [12]. This pathway was subsequently shown to involve
activation of Src tyrosine kinase [52]. It was also reported that insulin-induced GLUT4
translocation and glucose uptake was abrogated by inhibition of PKCδ, either
pharmacologically or by overexpression of a kinase dead dominant negative PKCδ [11].
Moreover, overexpression of WTPKCδ in the primary skeletal muscle cells increased GLUT4
translocation and glucose uptake in the absence of insulin stimulation. In another study, it was
reported that insulin induces PKCδ to associate directly with IR and that this isoform plays an
essential role in insulin-induced tyrosine phosphorylation and internalization of IR [13]. In all
of these and subsequent studies on skeletal muscle cells, interaction of IR occurred exclusively
with PKCδ and not with any other PKC isoform (α, βII, ε or ς). On the other hand, in HIRcB
cells, a rat fibroblast cell line overexpressing human IR, IR association with PKCβI and βII as
well as δ was reported [114].

PKCε
Protein kinase Cε, like PKC βII and δ has both transduction and modulating effects on insulin
action. Its activation by insulin was noted early on in rat skeletal muscle tissues and adipocytes,
as well as in HIRC-B cells and BC3H-1 myocytes [41,115–117]. Like PKCβII, PKCε is also
resistant to phorbol ester-induced down-regulation in HIRC-B fibroblasts, suggesting that
PKCε resides in a specialized compartment in cells. A potential role for PKCε as a transducer
of insulin action was shown by its overexpression in NIH-3T3 fibroblasts where the
translocation of GLUT1 transporters to plasma membrane was greatly enhanced compared to
(untransfected) cells where no translocation of GLUT1 was detected [42]. The expression of
PKCε was shown to be depressed in muscle from Zucker obese insulin resistant rats [118].
Ceramide, a product of TNF-α signaling, inhibits PKCε/ERK interactions, and it also blocks
IGF-1 induced PKCε association with RAF-1, an upstream kinase of ERK. This suggests that
the anti-mitogenic actions of ceramide could limit the ability of PKCε to form a signaling
complex with Raf-1 and ERK [119]. Ceramide also inhibited PKCδ translocation [120]. This
would further suggest that these PKCs acted as transducers of signaling.

As a modulator of insulin action, however, PKCε has been shown to increase the inhibitory
effect of TNF-α on insulin signaling [121]. This was supported by the observation that the
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inhibition of insulin receptor kinase was not increased by other PKC isoforms. The mechanism
is still unclear. A reduction of insulin sensitivity was also shown in rats fed a high fat diet which
is associated with translocation of PKCε [122]. Regarding effects of PKC on glycogen
synthesis, FFA treatment of C2C12 myotubes leads to inhibition of glycogen synthesis [122],
presumably through ceramide. This was attributed to PKCε translocation since the effects of
oleate treatment were most obvious on this isoform. However, overexpression of wild-type
PKCε had no significant effects on glycogen synthesis in untreated C2C12 myotubes in these
studies. This could be due to the isoform being expressed in the wrong subcellular
compartment. Other studies found that the inhibition of insulin-stimulated glycogen synthesis
correlated with changes in PKCε distribution in denervated rat soleus muscle [123].

In liver it has been shown that increased DAG appears to activate PKCε. This leads to reduced
insulin-stimulated tyrosine phosphorylation of IRS-2. Thus, as in skeletal muscle with regard
to PKCθ, there is reduced IRS-2 associated PI3-kinase activity as a result of which there is
decreased activation of hepatic glycogen synthase and reduced phosphorylation of foxo1
resulting in increased hepatic gluconeogenesis [124–126].

PKCθ
Although most PKC isoforms have a dual action in stimulating insulin signaling and feeding
back to induce insulin resistance in disease, the experimental evidence for PKCθ suggest that
it is a negative regulator of insulin signaling in both skeletal muscle and adipocytes. Early
reports suggested that PKCθ had a unique tissue distribution and it is the predominant isoform
in skeletal muscle [127], activated by insulin [41], but further studies on PKCθ have shown
that abundance of expression does not always correlate with a role in a specific tissue. The
physiological role of PKCθ is still being examined. Increases in PKC θ expression accompany
the differentiation of skeletal muscle cells to myotubes in culture [128]. This probably
correlates with the potential role for PKCθ in development and maturation of the neuromuscular
junctions [129]. This induction of PKCθ is not the case with human myoblasts derived from
diabetic subjects and expression of PKCθ is decreased in skeletal muscle myotubes from type
2 diabetics compared to non-diabetic subjects [61]. In rat L6 myotubes, the overexpression of
PKCθ was not associated with changes in glucose transport activity (basal or insulin
stimulated). The decrease in activity, however, was associated with decreased glycogen
synthase activity [128]. This association with glycogen synthesis was confirmed in C2C12
cells with fatty acids [130]. Other groups have reported that PKCθ immunoreactive protein
increased in white muscle (but not red muscle) in fructose-induced insulin resistant rats
[131]. This suggested that PKCθ activation acted as an inhibitor of insulin action. Other models
of insulin resistance and diabetes have agreed with the findings in human and diabetic cells.
In skeletal muscle from diabetic Goto-Kakazaki rats, acute hyperglycemia activated PDK-1,
PKCα/β, PKCδ and PKCς, but not PKCθ or Akt/PKB. In these studies, PKC phosphorylation
but not PKCθ levels was examined [132]. Thus, it is possible that PKCθ expression was
depressed in this model and would be in agreement with diabetic human skeletal muscle
[128]. In skeletal muscle from obese, insulin resistant patients, the decrease in PKCθ (as well
as PKCμ and −η) expression was also noted [133]. PKCς levels were not altered in these
patients.

Several studies indicate that intracellular accumulation of DAG in skeletal muscle activates
PKCθ, which can phosphorylate IRS-1 on serine307 residues. This leads to decreased insulin
stimulated tyrosine phosphorylation of IRS-1 and reduced IRS-1 that is associated with PI3-
kinase activation resulting in reduced insulin stimulated glucose transport [134,135]. In
contrast, PKC-θ inactivation prevented fat-induced defects in insulin signaling and glucose
transport in skeletal muscle [136]. In addition, free fatty acid (FFA) has the ability to activate
PKCθ which can further activate NF-κB [137]. There appear to be several mechanisms by
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which PKCθ could be inducing insulin resistance. In adipocytes, FFA activation of the isoform
was believed to activate IKK and JNK which mediate IRS-1 serine phosphorylation and
degradation [138]. This was demonstrated using a PKC inhibitor, however, and was inferred
indirectly in rats fed high fat diets. There were similar findings for PKCθ in insulin resistance
in this study. Further studies in skeletal muscle myotubes (C2C12) have shown that palmitate
activated PKCθ, and PKCθ was involved in activation of NF-κB [139]. Other PKC isoforms
such as βII, δ and ε were not activated. This links FFA and PKCθ with a proinflammatory state
since TNF-α expression was also increased.

Additional studies on animal models
Various animal models have been used to attempt to further clarify the role of certain PKC
isoforms in insulin-related events. In one study [132], normal or diabetic (Goto–Kakizaki–GK)
rats were infused with glucose followed by a continuous infusion of saline or insulin. Under
euglycemic and hyperglycemic conditions, basal and insulin-stimulated PKCς activity was not
altered. Interestingly, basal PKCς activity was increased under hyperglycemic conditions in
GK and Wistar rats. The glucose effects were not specific to PKCς, because an increase in
phosphorylation of PKCα/β and PKCδ, but not PKCθ, via a PI 3-kinase-protein kinase B/Akt-
independent mechanism was also observed.

Glucose uptake and oxidative stress were examined in adipocytes of type 2 diabetic animals
[140]. Adipocytes were isolated either from C57Bl/6J mice that were raised on a high-fat diet
(HF) and developed obesity and insulin resistance, or from control animals. The activity of
PKCδ increased twofold in HF adipocytes compared with control adipocytes and was further
activated by H2O2. The results indicated that increased glucose intake in HF adipocytes
increases oxidative stress, which in turn promotes the activation of PKCδ, and that these
consequential events may be responsible, at least in part, for development of HF diet-induced
insulin resistance in the fat tissue.

PKCδ has also been implicated in fatty acid induced hepatic insulin resistance [141]. Studies
were done on rats in the basal state and during hyperinsulinemic clamps. Free fatty acid infusion
induced hepatic PKCδ translocation from the cytosolic to membrane fraction of hepatic cells.
The authors concluded that the progressive insulin resistance induced by FFA in the liver is
associated with a progressive increase in hepatic PKCδ translocation.

In an early study on hepatocytes of both normal and streptozotocin-induced diabetic animals
[142], it was reported that streptozotocin increased levels of the PKCβII and α, with no change
in the level of PKCς. Diabetes induction also appeared to have elicited the translocation of
PKCβII and PKCα to the membrane fraction. The level of PKCε, which was noted only in
membrane fractions, was also increased upon induction of diabetes.

In another study on obese (fa/fa) Zucker rats [118], levels of PKC α, β and ε mRNA, protein,
and enzyme activity in soleus muscle were decreased compared to soleus from Zucker lean
control (fa/-) animals. Increases in membrane-associated PKCθ, PKCα, PKCβ and PKCε were
also observed in rat gastrocnemius muscles after insulin treatment in vivo [41]. In skeletal
muscles from the high-fat-fed rat, the ratio of particulate to cytosolic PKC ε in red muscles
from fat-fed rats was increased nearly sixfold, suggesting chronic activation. In contrast, the
amount of cytosolic PKCθ was down-regulated to 45% of control, while the ratio of particulate
to cytosolic levels increased, suggesting a combination of chronic activation and down-
regulation [143]. The link between insulin resistance and PKC was investigated further by
assessing the effects of the thiazolidinedione insulin-sensitizer BRL-49653 on PKC
isoenzymes in muscle. BRL-49653 increased the recovery of nPKC isoenzymes in cytosolic
fractions of red muscle from fat-fed rats, reducing their apparent activation and/or down-
regulation, whereas PKC in control rats was unaffected [143].
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The sand rat (Psammomys obesus) is an animal model of nutritionally induced diabetes. It was
reported that several PKC isoforms (α, ε and ς), representing all three subclasses of PKC, are
overexpressed in the skeletal muscle of diabetic animals of this species [144]. In diabetes prone
animals of this species, the number of insulin receptors was found to decrease. These data
suggest that overexpression of PKCε may be causally related to the development of insulin
resistance in these animals, possibly by increasing the degradation of IRs. Studies have also
been performed on this animal model of nutritionally induced type 2 diabetes mellitus, in which
physical exercise can prevent the progression of the disease [145]. It was reported that 4 weeks
of physical exercise improved insulin-signaling responses in these animals and that this was
associated with an increase in association of PKCδ with IR. The authors concluded that this
mechanism may be involved in the preventive effect of exercise on type 2 diabetes mellitus in
these animals.

A recent study detailed a number of specific genes that underwent changes in expression in fat
of the Fat-specific Insulin Receptor Knock-out (FIRKO) mouse [146]. Among the 48 affected
genes was PKCδ, which underwent down-regulation in fat from FIRKO mice, thus indicating
its possible involvement in insulin signaling in fat.

Regulation of PKC expression
Stimulation of conventional and novel PKCs by phorbol esters is known to induce their rapid
degradation. This has been studied for the fate of PKCδ, and it was shown that activation by
phorbol esters targets PKCδ for degradation by the ubiquitin–proteosome system [147]. The
rapid involvement of PKCδ in early upstream insulin signaling, and possibly downstream
events, suggests that there is high degree of utilization of this isoform and a potential
requirement for rapid regulation of expression and protein levels. A few studies have
investigated certain aspects of this problem. It was reported that insulin induces a rapid (5–20
min) increase in PKCα, β, ζ and ε RNA in 3T3 L1 adipocytes and B3CH1 myocytes, but the
mechanism—whether de novo transcription, translation, or decreased degradation—was not
elucidated [148,149]. Moreover, data on PKCδ RNA expression were not presented. In a recent
study on PKCδ expression in primary cultured mouse keratinocytes, it was shown that TNF-
α induces an increase in PKCδ mRNA within 30 min [150]. Thus, insulin might induce a rapid
increase in PKCδ gene transcription. In a recent study, we examined the effects of insulin on
PKCδ levels and expression in several model systems of skeletal muscle including primary
cultures of rat and mouse, L8 and L6 rat cell lines, C2C12 mouse cell line, and mouse skeletal
muscle in vivo [151]. Insulin stimulation increased PKCδ protein levels in whole cell lysates
of each of the model systems. This effect was not due to an inhibition by insulin of the rate of
PKCδ protein degradation. In fact, insulin increases the rate of degradation of PKCδ. Insulin
also increased 35S-methionine incorporation into PKCδ within 5–15 min. Pretreatment of cells
with transcription or translation inhibitors abrogated the insulin-induced increase in PKCδ
protein levels. We also found that insulin rapidly increased the level of PKCδ RNA, an effect
abolished by inhibitors of transcription. The insulin-induced increase in PKCδ expression was
not reduced by inhibition of either PI3 Kinase or MAP kinase, indicating that these signaling
mechanisms are not involved, consistent with insulin activation of PKCδ. Studies on cells
transfected with the PKCδ promoter demonstrate that insulin activated the promoter within 5
min. It appears, therefore, that the expression of PKCδ may be regulated in a rapid manner
during the course of insulin action in skeletal muscle and raise the possibility that PKCδ may
be an immediate early response gene activated by insulin. Interestingly, insulin also increases
PKCδ protein levels in rat and mouse hepatocytes, but the mechanism(s) are as yet not clear.
Whether other insulin-sensitive PKC isoforms are similarly regulated by insulin is not certain.
Unpublished studies suggest that fairly rapid insulin-induced increases in PKCα and PKCε
levels may also occur in skeletal muscle, but there may also be an eFFect of insulin to inhibit
their degradation as well to induce their de novo synthesis.
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The regulation of PKCβII by insulin is complex since both post-transcriptional and post-
translational regulation occurs via the PI3-kinase pathway. The regulation of the post-
transcriptional splicing involves insulin activation of PI3-kinase/Akt and the phosphorylation
of downstream splicing factors [10,152,153]. The involvement of additional splicing kinases
is also evolving since Akt appears to be a pivotal kinase in the regulation of serine-arginine
rich splicing factor phosphorylation (Jiang K, Corbin, K.D., Watson, J.E., Hagiwara, M., Patel,
N.A., Cooper, D.R. submitted for publication). The Akt-directed phosphorylation of splicing
factors can act in a dual manner. It can cause the factor to act as an enhancer of splicing as is
the case for SRp40 [153], or the possibility exists that phosphorylation of factors may cause
them to repress exon selection as might be the case with factors that repress selection of the
PKCβI exon.

Conclusions and future perspectives
In this survey of literature pertaining to the various conventional and novel PKC isoforms
expressed in insulin-responsive tissues, we have taken the approach that if a given protein is
expressed and if its activity is changed by insulin, then there is likely to be a chance that it may
“do something”. We have also attempted to broaden the concept of “activation” from the old
idea of translocation to the membrane, to include interaction with its putative substrate as well
as alteration in tyrosine phosphorylation state. This latter approach has been of great importance
in furthering the understanding of the role of PKCδ in numerous processes in a variety of cells
as recently reviewed in detail [43]. Tyrosine phosphorylation of PKC isoforms has the ability
to utilize the enzyme as a docking protein, like IRS, for various other proteins. This could be
especially important in the alternative signaling pathway involving c-cbl and TC10 [154] where
the caveolae contain multiple PKC binding proteins that have not been characterized [155].
These proteins could play some role in endocytosis/exocytosis or fatty acid transport. Utilizing
this approach, we can conclude that each of the PKC isoforms has one or more roles in the
insulin signaling cascade, if not via direct activation in response to insulin then by activation
via conditions that modify insulin-induced effects.

Several new themes are suggested. With the realization of alternative splicing as a means of
regulating signaling pathways it is possible that splice variants of the PKC isoforms will be
recognized in modulating certain compartment specific actions of insulin signaling. Moreover,
the findings that insulin may rapidly regulate the expression and abundance of these isoforms
at both the RNA and protein levels via pre- and post-transcription mechanisms as well as by
altering rates of degradation raise interesting possibilities regarding the mechanisms for
maintaining PKC availability in response to insulin release. Also, the importance of tyrosine
phosphorylation, particularly but not only of PKCδ, cannot be ignored. This brings into play
the importance of protein tyrosine phosphatases and their potential role in tissue insulin
resistance. It also reminds us of the importance of serine/threonine phosphatases modulated
by insulin that can potentially modulate the PKCs and their substrates.

The fact that so many substrates, such as Akt, transcription factors, structural proteins,
components of caveolae, IRS, IR, are phosphorylated by PKCs, and their ability to bind to
actin and regulate its association with the GLUT vesicles, points out the regulatory nature of
these kinases at the signaling level (Figs. 1 and 2).

The potential substrates for the various isoforms are summarized in Fig. 3 and Table 1.

Immediately obvious is the potential for a given isoform to interact with more than one substrate
and for a given potential substrate to be influenced by more than one PKC isoform. Moreover,
it is clear that, whereas the atypical PKC isoforms (λ/ς) have received major emphasis in the
insulin signaling literature, the remaining isoforms reviewed here appear to play no less an
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important role in various steps in the cascade. There thus remains a major challenge to be able
to define more precisely the mechanisms underlying the targeting of specific PKC isoforms to
specific substrates by insulin, or by conditions that may influence insulin action. As each of
the PKC isoforms is tyrosine phosphorylated by insulin stimulation ([12,52] and our
unpublished findings), it is not unreasonable to assume that, as is the case for PKCδ in other
systems in response to different stimuli, phosphorylation of specific tyrosine sites may play an
important role in this targeting. The use of different PKC isoforms with specific tyrosine site
mutations may provide a useful strategy for clarifying individual roles in insulin signaling.
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Fig. 1.
Schematic diagram of the different categories of PKC isoforms
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Fig. 2.
Schematic diagram of PKC isoforms expressed in insulin-responsive tissues and potential
substrates in the insulin signaling cascade.
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Fig. 3.
Summary diagram of PKC isoforms with their documented substrates in insulin-responsive
tissues. The documented relations of isoform–substrate interactions for the various isoforms
are: PKCα—IRS(−1); PKCβII—IR, PKB(Akt), MARCKS, GLUT4 transporter; PKCδ—IR,
IRS-1, PKB; PKCε—PKB, GSK3; PKCθ—IRS-1; (PKCς—glucose transporter).
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Table 1
Current studies addressing PKC isoforms in insulin action

PKC isoform
Potential substrate/
site of action Effect Linked to Reference

PKCα Insulin receptor IRS Insulin resistance,
▼glucose uptake

Mouse model,
cultured cells

[15,62,64,65,67–70,104,156,157]

PKCβ (I + II) MAPK, unknown Mitogenic effects, no
effect on ISGT,
insulin resistance

Cultured cells,
mouse model

[83,118,158,159]

PKCβI Insulin receptor Insulin resistance Mouse model,
cultured cells

[42,63,65,83,84]

PKCβII Cytoskeleton,
MARCKS, IR, glucose
transporter vesicle
trafficking

▲Glucose uptake Cultured cells,
rat models,
human muscle
cells

[3,10,12,35,42,81,82,160–162]

PKCδ Insulin receptor, IRS
signaling

▲ Glucose uptake,
IR endocytosis*

Skeletal muscle,
cultured cells

[13,42,62,104]

PKCε Unknown (GSK3) ▲ Glucose uptake,
insulin resistance

Cultured cells [42,143] (unpublished)

PKCθ Insulin receptor tissue
sensitivity

Insulin resistance Cultured cells,
human skeletal
muscle

[104,128,137,143,163–165]

PKCζ/λ IRS, ERC vesicles,
Akt, glucose
transporter vesicle

Insulin resistance, ▲
glucose uptake, no
effect on ISGT

Cultured cells [12,14,159,164,166,167]
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