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Although physiological and biochemical data since long 
suggested that Na+/H+ and K+/H+ antiporters are involved in 
intracellular ion and pH regulation in plants, it has taken a long 
time to identify genes encoding antiporters that could fulfil 
these roles. Genome sequencing projects have now shown that 
plants contain a very large number of putative Cation/Proton 
antiporters, the function of which is only beginning to be 
studied. The intracellular NHX transporters constitute the first 
Cation/Proton exchanger family studied in plants. The founding 
member, AtNHX1, was identified as an important salt tolerance 
determinant and suggested to catalyze Na+ accumulation in vacu-
oles. It is, however, becoming increasingly clear, that this gene 
and other members of the family also play crucial roles in pH 
regulation and K+ homeostasis, regulating processes from vesicle 
trafficking and cell expansion to plant development.

Introduction

Potassium and Sodium, constituting the seventh and sixth 
most abundant elements on earth play essential roles for all living 
organisms. Inside living cells, potassium plays a key role in the 
maintenance of electrostatic balance and is essential for the activity 
of many enzymes.1 In plants, physiological studies and thermo-
dynamic considerations have indicated the presence of K+/H+ 
antiporter systems at the plasma membrane, tonoplast, mitochon-
drial and chloroplast membranes and intracellular membranes 
of the secretory pathway.2-4 K+/H+ antiporters are suggested to 
be responsible for the active accumulation of K+ inside vacuoles, 
essential to maintain turgor and drive cell expansion.1,2 At the 
same time, although high cytoplasmic Na+ concentrations are 
toxic, plants activate high affinity Na+ uptake mechanisms in 
conditions of K+ deficiency, indicating that the more ubiqui-
tous Na+ can to some extend functionally replace K+,5,6 at least 
as osmoticum inside the vacuole. Clearly in conditions of high 

salinity this becomes evident, as an important mechanism to 
survive salt stress relies on the accumulation of excess cytoplasmic 
Na+ in vacuoles, reducing the amount in the cytoplasm and 
providing osmotic pressure.7,8

Measurements of Na+/H+ and K+/H+ antiport activity in 
tonoplast vesicles represented one of the first demonstrations of 
secondary active transport in plants, and have been reported for 
many plant species.8-12 In spite of this early discovery, the genes 
encoding these intracellular Na+/H+ and K+/H+ antiport systems 
could not be identified by heterologous complementation or 
other approaches that were successful for many other transporters, 
and only the plasma membrane Na+/H+ antiporter SOS1 was 
identified by a mutant screen for salt sensitivity in Arabidopsis.13 
A gene, encoding a protein with homology to animal plasma 
membrane Na+/H+ antiporters of the NHE family and the yeast 
ScNHX1 gene was first identified in the, at that time, partially 
sequenced Arabidopsis genome and named AtNHX1.14 These 
proteins, together with the human NHE6 and NHE7 proteins 
were shown to constitute a new NHE subfamily of intracellular 
Na+/H+antiporters.15 Heterologous expression of AtNHX1 in 
yeast complemented the salt sensitivity caused by disruption of 
the corresponding yeast homolog ScNHX1.14,16 Overexpression 
of AtNHX1 was shown to confer salt tolerance to Arabidopsis 
plants17 and various other plant species.18,19 Subsequently, many 
more members of the intracellular NHE antiporters, now called 
NHX, were identified in plants, fungi and animals (see below).

Phylogenetic Analysis

According to the classification made by Saier et al.20 (http://
www.tcdb.org/index.php), Cation/Proton antiporters can be 
grouped into the CPA1 and CPA2 families. The CPA1 family 
has evolved from ancestral NhaP genes in prokaryotes15 (Fig. 1, 
Table 1). The Arabidopsis plasma membrane Na+/H+ antiporter 
AtSOS1 gene is related to the NhaP genes, and representative 
SOS or NhaP like sequences can be found in all phylae of the 
plant kingdom (SOS-Like). The most extensively studied family 
of the CPA1 proteins are the plasma membrane NHE antiporters 
present only in vertebrates (PM-NHE). Related sequences can 
also be found in other lower animals like C. elegans, but not in 
plants or fungi. The more recently discovered intracellular NHE/
NHX sequences that can be found in plants, animals and fungi, 
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have evolved separately from the plasma 
membrane NHE sequences, and constitute 
a very diverse group (IC-NHE/NHX). This 
family was subdivided into Class-I and 
Class-II sequences,21 that share only about 
20–25% identity, as well as the NHE8-like 
family found in animals only.15 Class-I 
sequences are very divergent from other 
IC-NHE/NHX sequences and have so far 
been identified in monocotyledonous and 
dicotyledonous angiosperms, gymnosperms 
as well as the moss Physcomitrella patens. 
Distantly related single sequences can be 
found in the green algae Chlamydomonas 
reinhardtii, Osteococcus lucimarinus and 
Osteococcus tauri, which might point to 
specialized function of the Class-I anti-
porters in land plants. The grouping of the 
green algal proteins might also have been 
affected by sequence errors, notably inser-
tions or deletions or erroneously predicted 
splice-sites, as they are predicted from trans-
lated genomic sequences that have not been 
experimentally verified, although resulting 
misaligned portions, characterized by gaps 
in the alignement, were removed from the 
analysis. The Studied Class-I NHX isoforms 
were shown to have a vacuolar membrane 
localization, which appears to be a unique 
feature of this Class. The most closely 
related non-plant sequences are found in the 
primitive parasitic eukaryotes Entamoeba 
histolytica and Entamoeba dispar. The related 
protein DdNHE1 of the NHE8-like family 
in the social amoeba Dictyostelium discoi-
deum has been shown to be involved in 
cell polarity and chemotaxis through cyto-
plasmic pH regulation, and was predicted to 
be a recycling plasma membrane protein like 
the other members of the NHE-8 family.22 
Plant Class-II sequences that constitute 
a separate subclade within the Class-II 
sequences, were identified in angiosperms 
and the gymnosperm Picea sitchensis with 
slightly more distant members in the moss 
Physcomitrella. Founding members of the 
IC-NHE/NHX family ScNHX1 and the 
human NHE6 and NHE7 group together with the plant Class-II 
sequences, but are still rather divergent in sequence, as are the 
sequences found in the green algae Ostreococcus lucimarinus and 
Chlamydomonas reinhardtii. Studied antiporters of this class were 
shown to be expressed in various endosomal compartments.

Localization and Gene Expression

The tonoplast localization of the plant Class-I NHX antiporters 
is well documented. Subcellular localization studies have been 
performed by immunoblotting using polyclonal antibodies against 
native proteins,17,23-27 by transitory expression of fluorescent 
fusion proteins in onion epidermal cells,27-29 by stable expression 
of fluorescent fusion protein in BY2 cells30 and by immunogold 

Figure 1. Phylogenetic tree of 79 proteins of the monovalent cation proton antiporter CPA1 family. 
Phylogeneitic relationships were inferred using the Neighbor-Joining method [Saitou N, Nei M. The 
neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 
4:406–25]. The bootstrap consensus tree inferred from 500 replicates [Felsenstein J. Confidence 
limits on phylogenies: An approach using the bootstrap. Evolution 1985; 39:783–91], is taken to 
represent the evolutionary history of the proteins analyzed [Felsenstein J. Confidence limits on phy-
logenies: An approach using the bootstrap. Evolution 1985; 39:783–91]. Branches corresponding 
to partitions reproduced in less than 50% bootstrap replicates are collapsed. The tree is drawn to 
scale, with branch lengths in the same units as those of the evolutionary distances used to infer the 
phylogenetic tree. The evolutionary distances were computed using the Poisson correction method 
[Zuckerkandl E, Pauling L. Evolutionary divergence and convergence in proteins. In: Bryson V and 
Vogel HJ, eds. Evolving Genes and Proteins. New York: Academic Press 1965; 97–166] and are in 
the units of the number of amino acid substitutions per site. All positions containing gaps and miss-
ing data were eliminated from the dataset. There were a total of 93 positions in the final dataset. 
Phylogenetic analyses were conducted in MEGA4 [Tamura K, Dudley J, Nei M, Kumar S. MEGA4: 
Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 2007; 
24:1596–9]. A list of included sequences is provided in Table 1.
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Table 1 � UniProtKB/TrEMBL accession numbers (www.uniprot.org/uniprot/) and length of the proteins shown in 
Figure 1

		  Length (AA)			   Length (AA) 
Bacteria			   Viridiplantae
VvNhaP	 Q8D8X5	 831	 AtNHX1	 Q68KI4	 538
Eucaryota			   AtNHX2	 Q56XP4	 546
Amoebozoa			   AtNHX3	 Q84WG1	 503
DdNHE1	 Q86IA5	 775	 AtNHX4	 Q8S397	 529
EhNHX(1)	 Q50XA0	 604	 AtNHX5	 Q8S396	 517
Eh(NHX(2)	 B0EJB5 	 561	 AtNHX6	 Q8RWU6	 535
EdNHX(1)	 B0E8R9	 328	 AtSOS1	 Q9LKW9	 1146
EdNHX(2)	 Q50XG9	 561	 LeNHX1	 Q93YH2	 534
Fungi			   LeNHX2	 Q93YH1	 531
ScNHX1	 Q04121		  LeNHX3	 Q1JRA3	 537
AcNHX1	 A1C9W3	 701	 LeNHX4	 Q1JRA2	 536
Viridiplantae			   SlSOS1	 Q4W3B5	 1151
CrNHX(1)	 A8J0T9	 497	 Animalia
CrNHX(2)	 A8J1K5	 297	 NvNHE	 A7S6K9	 554
CrNHX(3)	 A8J5G2	 589	 TahNHX	 B3S5H9	 493*
OlNHX(1)	 A4RQC8	 357*	 CeNHX1	 Q8T5S2	 497*
OlNHX(2)	 A4S1Z7	 427*	 CeNHX2	 Q8T5S1	 644
OtNHX1	 Q012P4	 292	 CeNHX3	 O16452	 670
OlSOS1	 A4RRY8	 1247	 CeNHX4a	 Q8T5R9	 749
PpNHX(1)	 A9SSI2	 563	 CeNHX4b	 Q19444	 684
PpNHX(2)	 A9T5K8	 561	 CeNHX5a	 Q20944	 630
PpNHX(3)	 A9THT5	 546	 CeNHX5b	 Q8T5R7	 611
PpNHX(4)	 A9RVH1	 545	 CeNHX6	 Q8T5R6	 533*
PpNHX(5)	 A9TD24	 534	 CeNHX7	 Q21386	 783
PpNHX(6)	  A9SH77	 479	 CeNHX8a	 Q8T5R4	 681
PpSOS1	 A9RIV6	 1161	 CeNHX8b	 Q8T5R3	 655
PsNHX	 A9NW71	 594	 CeNHX9a	 P35449	 667
PtNHX	 DR058123**	 280*	 CeNHX9b	 P35449-2	 667
ZmNHX1	 Q84MI0	 540	 DmNHE1	 Q8SZX8	 649
ZmNHX2	 Q84MH9	 540	 DmNHE2	 Q9VIF9	 1291
ZmNHX3	 Q7XYX3	 539	 DmNHE3	 Q8IPJ4	 751
ZmNHX4	 Q7XYX2	 538	 DmNHE8	 A2A465	 576
ZmNHX5	 Q7XYX1	 545	 AgNHE8	 Q7QKG3	 650
ZmNHX6	 Q7XYX0	 541	 MmNHE8	 A2A465	 576
OsNHX1	 Q9SXJ8	 535	 HsNHE1	 B1ALD6	 815
OsNHX2	 Q6UUW2	 544	 HsNHE2	 Q9UBY0	 812
OsNHX(3)	 Q0J2X1	 535	 HsNHE3	 P48764	 834
OsNHX(4)	 Q2R0E9	 545	 HsNHE4	 Q6AI14	 798
OsNHX(5)	 Q5ZA11	 528	 HsNHE5	 A5PKY7	 896
OsNHX(6)	 A2Z2G5	 383	 HsNHE6	 Q92581	 669
OsSOS1	 Q5ICN3	 1148	 HsNHE7	 Q96T83	 725
TaSOS1	 Q4L224	 1142	 HsNHE8	 Q9Y2E8	 577
			   HsNHE9	 Q8IVB4	 645

*Annotated as partial sequences. **genebank accession number for EST sequence. The used abreviations correspond to the following species: Vv, Vibrio vulnificus; Dd, Dictyostelium discoideum; Eh, Entamoeba Histolytica; Ed, 
Entamoeba dispar SAW760; Sc, Saccharomyces cerevisiae; Ac, Aspergillus clavatus; Cr, Chlamydomonas reinhardtii; Ol, Ostreococcus lucimarinus; Ot, Ostreococcus tauri; Pp, Physcomitrella patens; Ps, Picea sitchensis; Pt, Pinus 
taeda; Zm, Zea mays; Os, Oryza sativa; Ta, Triticum aestivum; At, Arabidopsis thaliana; Sl and Le, Solanum lycopersicon; Nv, Nematostella vectensis; Tah, Trichoplax adhaerens; Ce, Caenohabditis elegans; Dm, Drosophila mela-
nogaster; Ag, Anopheles gambiae; Mm, Mus musculus; Hs, Homo sapiens. The numbering of the sequences is according to published reports. Numbers in between brackets are used only to ditinguish the presented proteins.
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Information about gene expression can also be obtained by 
exploring microarray data available from high-throughput projects. 
User friendly interphases to these data are provided at for instance 
http://wardlab.cbs.umn.edu/arabidopsis/or http://bar.utoronto.ca/
efp/cgi-bin/efpWeb.cgi.49 These microarray data confirm the 
induction of Class-I AtNHX antiporters in leaves (AtNHX1, 2 and 
4) or roots (AtNHX3) by salt or osmotic stress. Like other tissue 
specific isoforms from Ipomea Nil, grape or tomato (see above), 
AtNHX4 expression is detected mainly in mature pollen and 
seeds. High levels of AtNHX1 are found in guard cells compared 
to surrounding mesophyl cells (http://www-biology.ucsd.edu/labs/
schroeder/index.html), in accordance with the promotor-GUS 
fusion experiments.45 Also AtNHX2, 5 and 6 show a high level 
of expression in guard cells as compared to surrounding mesophyl 
cells. Furthermore, AtNHX1 and AtNHX5 are induced by ABA 
in these cells.

It can also be observed that several NHX isoforms are induced 
or repressed by biotic stresses. The reason for this has not been 
investigated, but could be related to a role for these proteins in 
cytoplasmic pH regulation.21,50

Biochemical Properties

Detection of cation/proton antiport in vesicles. Measurements 
of acidification of isolated membrane vesicles or intact vacuoles 
have been fundamental to demonstrate primary active transport of 
protons by the plasma membrane or tonoplast proton ATPases or 
PPases.51-53 Inside acid pH gradients can be monitored following 
the accumulation of membrane permeant weak bases like amonia, 
immidazole, radioactive amines like [14C]methylamine or fluo-
rescent amines like quinacrine or acridine orange, that are freely 
permeant in the neutral form, but become trapped iside the 
vesicles in the protonated form.51 Fluorescence quenching of these 
dyes upon accumulation inside the vesicles offers a very sensitive 
measurement of vesicle acidification, even when using membrane 
vesicles in which only a small proportion consists of tight vesicles 
containing active ATPase enzymes. However, estimation of real pH 
gradients is normally not possible.54,55

As plant H+ pumps are electrogenic, the formation of the inside 
acid pH gradient also depends on the presence of permeant anions 
at the outside or permeant cations at the inside of the vesicles, 
to facilitate charge balance. For this reason, assays are normally 
performed in the presence of relatively permeant Cl- ions, or 
K+ ions plus the K+ ionophore valinomycin, facilitating electri-
cally coupled H+:Cl- cotransport, or H+:K+ antiport. Indications 
for the presence of Cation/Proton antiporter systems have been 
obtained by monitoring the effect of salts on the establishment 
or dissipation of such pH gradients. Cation/Proton antiporters 
are expected to diminish the establishment of a pH gradient by 
proton ATPases,9,10 or to induce dissipation of the gradient when 
the salt is added once a stable pH gradient is formed.8,56,57 The 
speed of pH gradient formation or dissipation is however also criti-
cally dependent on the relative conductivity of anions and cations. 
Since isolated membrane vesicles are relatively leaky to protons, 
it is often difficult to distinguish between electrically coupled or 
genuine enzymatic Cation/Proton antiport.

labelling.27 The only exception was found by Vera-Estrella et al.31 
who detected a 50 kDa protein that cross-reacted with a poly-
clonal antibody raised against the AtNHX1 protein in Plasma 
membranes but not in tonoplast from Thellungiella roots. For the 
Class-II antiporters, subcellular localization studies have only been 
reported for the tomato LeNHX2 and the Arabidopsis AtNHX5 
proteins.21,32 For both proteins, transitory expression in onion 
epidermal cells of fluorescent fusion proteins shows localization in 
small vesicles, indicative of a prevacuolar or endosomal localization 
clearly distinct from the central vacuole or ER/Golgi membranes, 
although the exact localization was not yet determined. The local-
ization is reminiscent of the prevacuolar localization of the yeast 
ScNHX1 protein which suggests similar functions for the yeast 
and plant proteins as opposed to the human isoforms found in 
recycling endosomes (NHE6, NHE9,15,33), and trans or mid-trans 
Golgi (NHE7, NHE8,33,34).

In all plants, several isoforms of NHX proteins are found. Most 
of the isoforms are expressed in the absence of stress throughout 
the plant,16,23,26,28,35,36 and induced by salt stress in leafs,16,37,38 
both roots and leafs,23,39-41 stems42 or roots.43,44 Some isoforms 
are also reported to be induced by ABA,28,38 KCl,14,26,35,40,44 
dehydration stress30 or hyper-osmotic stress.26,28,40,44 The 
AtNHX1 isoform was reported not to be induced by cold or 
drought.45 Finally, in Citrus, an isoform was discovered based on 
its induction by heat.46

In Arabidopsis, the expression of all 6 isoforms was studied 
in more detail.28 The predominant isoforms are AtNHX1 and 
AtNHX2, found in roots, shoots and seedlings.28,45,47 Expression 
levels of AtNHX3, 4 and 6 was much lower in these tissues. 
AtNHX1 expression was shown to be upregulated in leaves but 
not roots by NaCl or ABA.16 In seedlings, AtNHX1 and AtNHX2 
were shown to be induced by salt stress, hyper-osmotic shock 
and ABA treatment, whilst AtNHX5 was induced by salt stress 
only.8 AtNHX1 and AtNHX2 were not induced by NaCl in 
ABA deficient aba2-1 mutants, showing that NaCl induction of 
these isoforms is dependent on ABA signalling.28,45 The tissue 
distribution of AtNHX1 was further studied by promotor-GUS 
analysis in transgenic Arabidopsis45 and by in situ hybridization,47 
showing that the gene is expressed in all tissues except the root 
tip. Especially high expression levels were observed in guard cells 
suggesting a role for AtNHX1 in K+ accumulation in these cells.45 
High GUS activity was also induced in response to salt stress not 
only in leaves, but also in root hair cells, suggesting a role in Na+ 
accumulation in the enlarged vacuoles of these cells in response to 
salt stress.45 High levels of expression were also observed in floral 
tissues, and in cells closely associated to the vascular tissue in leaves 
and inflorescence stems.45,47

Some NHX isoforms have been shown to have a more specific 
expression pattern in flower or fruit, related to specific function. 
This is the case for the Ipomea Nil InNHX1 protein, found mainly 
in flower limbs where it determines flower colour through vacuolar 
pH changes29 and the grape berry VvNHX1 protein that is highly 
expressed in mature fruit where it is supposed to be involved in K+ 
accumulation and vacuolar expansion during ripening.48 Also in 
tomato, the expression of LeNHX4 is mostly detected in fruits and 
flowers (Gálvez FJ, Jiang XJ and Venema K, unpublished data).
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Oxonol V, and was shown to be sensitive to amiloride. Using a 
similar yeast strain, Yamaguchi et al.64 found that K+/H+ antiport 
activity was about two times higher than Na+/H+ antiport activity 
in vacuolar vesicles obtained from a yeast strain overexpressing 
the AtNHX1 protein, whilst Km values for K+ and Na+ where 
12 and 24 mM respectively. The discrepancies between specificity 
measurements in plant or yeast could be due to plant specific 
regulatory mechanisms not present in the heterologous system. 
In support of this observation it was found that, removal of the 
C-terminal domain increases the Na+/H+ antiport activity, whilst 
binding of the AtCaM15 protein has the opposite effect.64,65 It was 
proposed that in plants, in normal conditions AtNHX1 functions 
in K+ accumulation, but that salt stress would activate the Na+/H+ 
exchange mode, releasing interacting partners like CaM15 from 
the C-terminal domain. Overexpression of AtNHX1 would also 
induce mainly Na+/H+ antiporter mode due to lack of interacting 
partners. In yeast, the enzyme would be present in the unactivated 
K+/H+ antiporter mode. However, differences in expression levels 
for the mutant enzymes might also have affected the results.64 
More importantly, it was shown that the main contributor to 
Na+/H+ and K+/H+ antiport activity in the yeast vacuolar vesicles 
is the Vnx1 protein, a protein with homology to Ca2+/H+ and 
Ca2+/Na+ antiporters.66 The earlier reports describing AtNHX1 
activity in yeast should thus be reconsidered as they have been 
affected by this major background activity. Finally, ScNHX1 was 
shown to be involved in protein targeting and prevacuolar/vacuolar 
biogenesis67,68 which complicates the obtention of comparable 
vacuolar membrane preparations from wild type and ScNHX1 
null mutants.

For these reasons, the use of membrane vesicles or intact 
vacuoles in which many unidentified ion transporters are still 
functional is not ideal for structure function studies on the plant 
NHX antiporters. In this respect, heterologous expression in yeast 
also facilitates protein purification using suitable affinity tags. To 
avoid interference with other ion transporters such purified protein 
can be reconstituted in artificial liposomes. Finally, the encapsula-
tion of impermeant pH indicator dyes inside the proteoliposomes 
during reconstitution, permits real quantitative measurement 
of pH within the range of responsiveness of the dye. Using this 
approach it was shown that the AtNHX1 protein catalyzes both 
Na+/H+ and K+/H+ antiport with similar affinity of about 40 
mM.69 This antiport could be inhibited by the amiloride analogs 
EIPA and benzamil.

The only member of the plant Class-II NHX family that has 
been studied and for which activity measurements are available is 
de tomato protein LeNHX2. This protein was also purified and 
reconstituted into liposomes, showing that the protein catalyzes 
relatively specific K+/H+ antiport,38 coinciding with ion accumu-
lation studies in yeast.28,38 Unlike AtNHX1 activity, LeNHX2 
K+/H+ antiport can actually be blocked by low concentrations of 
Na+ (Venema K, et al. unpublished results). The activity appeared 
insensitive to amiloride or its derivatives, in spite of the conser-
vation of amino acids involved in drug sensitivity. Moreover, 
Arabidopsis plants expressing the tomato protein showed an 
increased K+/H+ antiport in a subcellular fraction corresponding 

First biochemical descriptions of cation/proton antiporter 
activity in membrane vesicles. Despite these difficulties, the 
kinetics of dissipation of a preestablished pH gradient in isolated 
vacuolar vesicles and intact vacuoles from red beet could be 
resolved in a saturable and amiloride sensitive electroneutral Na+/
H+ antiport component and electrically coupled non-saturable 
Na+/H+ or K+/H+ exchange.56,57 Similar tonoplast Na+/H+ anti-
port activity was detected afterwards in various plant species, with 
Km values for Na+ ranging from 2,4 to 51 mM.56-62 The activity 
was shown to be induced rapidly by growing plants in saline condi-
tions especially in glycophytes.58 Evidence for K+/H+ antiport 
activity was also obtained studying the effects of salts on proton 
gradient formation or dissipation in plasma membranes of tobacco 
callus,9 tonoplast and plasma membranes isolated from cotton and 
Atriplex roots12 and zucchini hypocotyls.10 The K+/H+ antiport 
activity appears to be much less selective for K+, exhibiting consid-
erable activity with other monovalent cations.

Measurement of the activity of the proteins of the NHX anti-
porter family. None of the biochemical approaches has lead to the 
identification of the proteins responsible for antiport activity. It is 
now clear that the situation is much more complex than originally 
anticipated, with a total of at least 44 sequences with homology to 
Na+/H+ or K+/H+ antiporters identified in the Arabidopsis genome, 
some of which are expressed in tonoplast, plasma membrane or 
internal membranes of the endosomal pathway.4

Sequence homology of AtNHX1 with amiloride sensitive 
animal NHE antiporters suggests that this is the protein respon-
sible for the amiloride sensitive and salt stress induced specific Na+/
H+ antiport found in tonoplast vesicles.17 The activity of AtNHX1 
was assayed in vacuolar membranes obtained from transgenic 
Arabidopsis overexpressing the protein.17 Na+/H+ antiport activity 
could be measured in the transgenic plants, showing a Km of 7 mM 
for Na+ whilst activity in wild type plants was very low. Disruption 
of AtNHX1 resulted in an even lower Na+/H+ exchange activity.47 
Although at first suggested to be specific for Na+, later studies have 
shown that AtNHX1 expressed in plants also catalyzes K+/H+ anti-
port, albeit with lower affinity.17,18,47 The fact that null mutants 
in AtNHX1 or lines overexpressing the gene have substantially 
altered total antiporter activity, indicate that AtNHX1 is the major 
contributor to vacuolar Na+/H+ or K+/H+ antiporter activity, in 
spite of the presence of 5 more NHX isoforms and other proteins 
of the CPA1 and CPA2 family in Arabidopsis.

To be able to evaluate the structure-function relationships of 
the plant NHX antiporters in more detail, avoiding interference 
with other plant antiporters, a more convenient system is provided 
by heterologous expression in yeast. Darley et al.63 showed that 
AtNHX1 activity could be measured in vacuolar membrane vesi-
cles obtained from a Saccharomyces cerevisiae yeast strain in which 
the only endogenous NHX isoform ScNHX1 gene was disrupted. 
The activity of the plant enzyme appeared to be slightly higher 
than that of the endogenous yeast protein, with Km values of 11 
and 16 mM for Na+ respectively, whilst no antiport activity could 
be detected in vesicles obtained from the strain not expressing 
yeast or plant antiporter. The antiport appeared also electroneutral 
as judged from experiments with the membrane potential probe 
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as a 3D homology model of NHE1 based on the crystal structure 
of NhaA gives slightly different results, notably concerning NHE1 
TM helix 9 and the intramembraneous loop H10.76

A different membrane topology for the Arabidopsis AtNHX1 
protein was found based on insertion mutagenesis with a 3xHA 
epitope.64 In this model the C-terminal domain would be exposed 
to the vacuolar lumen, whilst the N-terminus would be cytoplasmic. 
In accordance with this topology it was found that in the yeast 
ScNHX1 protein some amino acids in the C-terminal domain are 
N-glycosylated, which indicates that at least part of the C-terminal 
domain of ScNHX1 is exposed to the endosomal lumen at some 
stage.77 In this new topology model of AtNHX1, which predicts 
only 9 transmembrane helices, hydrophobic domain 3, containing 
the putative amiloride binding domain, and the hydrophobic 
domains 5 and 6, containing residues that are likely involved in 
Na+ or H+ binding and transport, would not cross the membrane. 
This would result in several transmembrane helices being inserted 
in the opposite direction in the membrane, which was related 
to the fact that plant NHX enzymes have an opposite transport 
direction as compared to the plamsa membrane located NHE 
proteins.64 Whilst animal plasma membrane NHE proteins are 
activated by cytoplasmic acidification, and normally catalyze entry 
of Na+ coupled to the extrusion of protons,76 the plant enzymes 
are suggested to be involved in extrusion (to the vacuole) of Na+ or 
K+, causing cytoplasmic acidification. The related bacterial (2H+/
Na+) NhaA protein is activated by internal alkalinization and 
catalyzes the entry of protons coupled to the extrusion of Na+.78 
Electroneutral 1:1 Cation/Proton exchangers could also be fully 
reversible, as was shown for instance for amiloride sensitive Na+/H+ 
exchange in mamalian cells79 and the Schizosaccharomyces pombe 
plasma membrane SOD2 Na+/H+ antiporter.80 Detailed mutagen-
esis studies for the human NHE1 protein and structural resolution 
of individual transmembrane helices, have pinpointed residues in 
transmembrane segments 4, 7 and 9 (corresponding to 3, 6 and 
8 in Arabidopsis AtNHX1) that could be directly involved in ion 
transport.81 These transmembrane regions are strongly conserved 
also in the intracellular NHX family. A mechanism for ion trans-
location in NHE1 was proposed, based on these mutagenesis data 
and an NHE1 homology model build according to the structure 
of the bacterial (2H+/Na+) antiporter NhaA.76 This model shows 
essential roles for P167, P168, E262, D267 and S351, which 
correspond to amino acids P88, P89, E179, D185 and S271 in the 
Arabidopsis AtNHX1 sequence, and that are conserved throughout 
the intracellular NHX family. Also most other residues in NHE 
that are important for drug binding or activity, are conserved in the 
NHX sequences. These data strengthen the idea that structure and 
functioning of the NHX and NHE families is very similar, and that 
the transport direction is imposed by regulatory domains.

The activity of animal NHE proteins can be regulated by a 
variety of regulatory mechanisms involving the long C-terminal 
tail. Preliminary experiments have indicated that removal of the last 
82 amino acids in the Arabidopsis AtNHX1 protein modifies the 
transport specificity of the protein, increasing especially Na+/H+ 
antiport activity but not K+/H+ antiport activity, indicating a regu-
latory role of this domain.64 Later it was shown, using a two-hybrid 

to internal membranes, coinciding with K+ accumulation and 
reduced Na+ content in these plants.32

Activity measurements of other NHX isoforms are scarce. 
Activity of the grape berry Class-I antiporter VvNHX1 was assayed 
in yeast vacuolar vesicles, indicating similar affinities for K+ and 
Na+.48 The overexpression of AtNHX3 in salt tolerant sugar 
beet enhanced above all K+/H+ antiport in tonoplast membrane 
vesicles and K+ accumulation,70 very similar to the results reported 
for LeNHX2 overexpression in Arabidopsis32 The purified and 
reconstituted human NHE8 protein, a mid/trans-Golgi expressed 
antiporter, somewhat similar to the plant vacuolar clade of anti-
porters, was also shown to catalyze above all K+/H+ and to a lesser 
extent Na+/H+ antiport.33 Similarly, the mosquito NHE8 isoform 
was shown to catalyze Na+/H+ and K+/H+ and Li+/H+ antiport 
in reconstituted vesicles, whilst 22Na+ uptake was sensitive to 
amiloride in NHE8 expressing NHE-deficient fibroblast cells.71 
Inhibition of Rb+ influx into endosomal compartments by K+, Na+ 
or Li+, indicates K+/H+ antiport activity and to a lesser extent Na+/
H+ and Li+/H+ antiport activity for the human protein NHE7.34 
In yeast, a rapid efflux of 22Na+,72 or 86Rb+,68 in plasma membrane 
permeabilized cells is observed in strains lacking NHX1, whilst a 
vacuolar pool of these ions remains present in the wild type strain, 
indicating that the yeast ScNHX1 protein also catalyzes Na+/H+ 
and K+/H+ exchange. Alltogether these data show that the intracel-
lular NHX family of proteins catalyze relatively non-specific K+/
H+ and Na+/H+ antiport, and are much less specific for Na+ than 
the plasma membrane NHE protein.

Structural Organization and Regulatory Properties

Topological analysis and structure-function studies have so 
far only been performed with the AtNHX1 protein. Hydropathy 
analysis of NHX indicates a domain organization similar to NHE 
isoforms, suggesting that structural features are conserved across the 
families. Typically, 12 hydrophobic regions that potentially constitute 
transmembrane helices are predicted in the conserved hydrophobic 
N-terminal domain, with a divergent hydrophilic C-terminal 
domain that would be involved in regulatory interactions. To 
date, two different topological models are proposed.64,73 Detailed 
in vitro translation experiments indicate that AtNHX1 topology 
closely resembles the model proposed for human NHE1,73,74 
with 11 transmembrane helices and an intramembraneous loop 
corresponding to hydrophobic region 9. The plant NHX isoforms, 
contrary to most intracellular NHX isoforms of other organisms 
lack the first H1 hydrophobic stretch that in NHE1 or NHE6 
were shown to represent an N-terminal signal peptide required for 
endoplasmic reticulum insertion.73 Even so, the first transmem-
brane helix of AtNHX1, corresponding to transmembrane helix 2 
in NHE1, is inserted in the same orientation into the membrane, 
whilst the C-terminus is exposed to the cytoplasm.73 Hydrophobic 
region 9 has a very similar topology as compared to the character-
istic H10 loop in the human NHE1 isoform, and wouldn’t cross 
the membrane completely.73,74 Mutagenesis of the corresponding 
region in the yeast ScNHX1 protein has revealed that several amino 
acids that are uniquely conserved amongst the intracellular NHX 
are essential for function.75 Still care has to be taken with these data, 
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Function of NHX Antiporters

Salt tolerance. When grown in saline environment all plants 
will accumulate Na+ ions to some extent, due to the strong driving 
force for its entry. Except for some halophytic species that are able 
to effectively maintain very low Na+ net influx,41,89,90 the accumu-
lation of Na+ inside vacuoles is a strategy used by many plants to 
survive salt stress.7,8,90 At the cellular level, Na+ accumulation in 
vacuoles will lower the amount of toxic Na+ ions in the cytoplasm, 
and lower osmotic potential in the vacuole to maintain turgor 
pressure and cell expansion in saline conditions. In this way, the 
translocation and storage of Na+ inside vacuoles in the shoot are 
suggested to be key factors for sustained growth during salt stress 
in some plant species.42,90,91 Other plant species tend to limit Na+ 
accumulation in shoots by reduced transport from root to shoot, 
recirculation of Na+ out of the shoots and storage in root or stem 
cell vacuoles.43,90,91 Involvement of NHX antiporters in these 
processes is indicated by the induction of Na+/H+ antiport activity 
or NHX gene expression in aerial parts or roots of many plant 
species when grown in saline environments (see above).

Information on the role of NHX antiporters in ion accumu-
lation and salt tolerance can be obtained by overexpression or 
silencing of the genes, or by comparison of NHX gene expression 
and ion accumulation in closely related species differing in salt 
tolerance. In this context, comparing Melilotus indicus, a halophyte 
growing up to 400 mM NaCl, with a glycophytic relative Medicago 
intertexta, it was found that the halophytic species accumulated 
much less Na+ and maintained higher levels of K+. Na+ accumula-
tion and induction of very similar NHX transcripts in response to 
salt stress could be found only in the glycophytic species, but not 
in the halophyte, indicating that NHX gene induction is related to 
the includer phenotype.41 Also comparing different maize varieties 
differing in salt tolerance, it was observed that NHX transcripts 
were only induced in roots of a variety known to exclude Na+ from 
the shoot.43 Similarly, it was observed that HvNHX1 was mostly 
induced in roots of the relatively salt tolerant monocot barley, 
whilst in rice, OsNHX1 induction is above all observed in shoots, 
suggesting that the high salt tolerance in barley is related to accu-
mulation of Na+ in root cell vacuoles in order to limit transport to 
the shoot.26,44 Expression pattern of other isoforms was however 
not studied and the result could thus also have been due to the fact 
that an isoform with a root specific induction pattern was studied 
in barley, whilst a shoot induced isoform was studied in rice.

Preliminary studies have shown that AtNHX1 null mutants, 
or tomato plants in which the antiporter LeNHX2 is silenced are 
more sensitive to salt stress, although no data on ion accumulation 
are available.32,47 Much more research is to be expected in the 
future studying individual Arabidopsis NHX knock-out mutants. 
Ectopic overexpression of NHX genes has however received by far 
the most attention, as it can be used as a biotechnological tool to 
improve crop salt tolerance. Care has to be taken however inter-
preting these data, as expression is no longer tissue specific or stress 
inducible, and regulatory properties and even cellular localization 
of the enzymes might be altered by the strong overexpression. 
Indeed, altered ion specificity was suggested for overexpressed 
AtNHX1 protein.64,65

screen and immuno precipitation assays, that the C-terminal 
domain interacts with a CaM-Like protein AtCaM15.65 AtCaM15 
was also found inside the vacuole of transiently transformed 
Arabidopsis protoplasts and in yeast cells expressing the protein. 
This localization would permit interaction with the C-terminal 
domain of AtNHX1 within the vacuoles. Activity measurements 
using yeast vacuoles obtained from cells expressing AtNHX1 and 
AtCaM15 indicated that the CaM15 binding inhibits Na+/H+ 
antiport by AtNHX1, without a significant effect on the Km of the 
transport reaction. Inhibition of K+/H+ antiport activity was less 
pronounced, resulting in an increased specificity for K+.

AtNHX1 activity is possibly also regulated through interaction 
with the protein kinase SOS2.82 SOS2 is the pivotal kinase of the 
SOS (Salt Overly Sensitive) pathway involved in regulation of ion 
transport under salt stress and in regulation of several other stress 
responses.83 It was reported that amiloride sensitive specific vacu-
olar Na+/H+ antiporter activity in Arabidopsis membrane vesicles 
was lower in vesicles obtained from sos2 knockout mutants, and 
that this activity could be stimulated in vitro by the addition of 
activated SOS2 protein.82 The activity was further inhibited by 
AtNHX1 antibodies. It was later shown by tandem affinity puri-
fication and yeast two-hybrid assays that SOS2 also interacts with 
several vacuolar V-ATPase subunits and that vesicles isolated from 
sos2 knockout mutants show considerably lower V-ATPase depen-
dent acidification.83 Comparison of antiport activity in vesicles 
obtained from wild-type and sos2 mutant plants is thus difficult, as 
the V-ATPase mediated vesicle acidification and thus driving force 
for the antiport is not the same in the two cases.

Structural or regulatory mechanisms have not been studied for 
other plant NHX isoforms. The C-terminus of the yeast NHX1 
protein was shown to interact with the small GTPase activating 
protein Gyp6.84 A model was proposed in which Gyp6 functions 
as a negative regulator of NHX. Inhibition of NHX1 would result 
in a more acidic endsosome/prevacuolar compartment limiting 
retrograde traffic from the prevacuolar compartment to the trans 
Golgi network or Golgi compartment. Such inhibition would be 
relieved upon delivery by anterograde traffic of the small GTPase 
protein GTP-Ypt6, as it will compete with NHX1 for Gyp6 
binding. This would result in endosome/prevacuolar alkaliniza-
tion and termination of the Ypt6 signal, stimulation of retrograde 
traffic permitting reactivation of Gyp6 by Ric1/Rgp1 in the trans 
Golgi network or Golgi.84 The C-terminus of the human trans 
Golgi network localized NHE7 protein was shown to interact with 
several SCAMP (secretory carrier membrane protein) proteins, 
which would affect shutteling of NHE7 between recycling vesicles 
and the trans Golgi network.85 The C-terminus of the NHE7 
isoform was also shown to interact with caveolins, facilitating asso-
ciation of NHE7 to caveole/lipd rafts.86 The C-terminal domains 
of the human isoforms NHE6, 7 and 9, but not NHE8 were found 
to interact with RACK1 (Receptor for activated C Kinase 1). This 
interaction was suggested to be important for luminal pH of endo-
cytic recycling compartments and distribution of NHE6 between 
endosomes and the plasma membrane.87 Rat NHE6 was further 
shown to interact with the G protein coupled receptor AT-2.88
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to osmotic adjustment by ion accumulation inside the vacuole 
or endosomal compartments. This is also apparent from the 
observation that the genes are equally induced by salt, KCl or 
osmotic treatments, and that plant and yeast NHX antiporters 
also confer resistance to high KCl or hyper-osmotic shock in yeast 
cells.14,26,105

K homeostasis. Apart from a role in osmotic adjustment by 
Na+ or K+ accumulation in conditions of salt stress, NHX proteins 
were suggested to fulfil a role in K+ homeostasis in normal growth 
conditions, based on their ion specificity and affinity.18,69 Most of 
the cellular K+ is present in the vacuole were it has a biophysical 
function to maintain turgor and drive cell expansion. The smaller 
cytoplasmic pool has both osmotic and biochemical functions. 
Whilst K+ is actively included in the vacuole in normal growth 
conditions, active export of K+ from the vacuole to the cytoplasm 
is necessary in severe K+ depletion to maintain adequate cytosolic 
K+ concentrations. An acidification of the cytoplasm is observed 
in these conditions that could serve as a signal to induce high 
affinity K+ uptake, or K+ efflux from the vacuole.2 A reduced pH 
gradient across the tonoplast membrane would also attenuate the 
driving force for vacuolar K+ accumulation by a K+/H+ antiporter 
mechanism. Thermodynamically, active K+ influx into the vacuole 
in K+ replete conditions can be mediated by the operation of a K+/
H+ antiporter, but active efflux was suggested to require a K+:H+ 
symport system,2 provided that the vacuole is more acidic than 
the cytoplasm, a condition that apparently not always applies.27 
Rodríguez-Rosales et al.32 observed that Arabidopsis plants that 
overexpress the tomato Class-II antiporter LeNHX2 are more 
sensitive to K+ deplete conditions, and it was hypothized that by 
strong overexpression of the NHX protein, the increased anti-
porter activity could counteract the vacuolar K+ efflux necessary 
in such conditions, decreasing cytoplasmic K+ concentrations and 
causing growth inhibition. Similarly, overexpression of AtNHX1 
in tomato was reported to provoke K+ deficiency symptoms in 
spite of increased K+ uptake and content.21,106 In this case, the 
decreased cytoplasmic K+ concentrations could trigger a K+ starva-
tion signal leading to higher K+ uptake.21 Arabidopsis nhx1 null 
mutants are reported to have smaller leaf area and epidermal cell 
size,47 which is possibly related to a vacuolar K+ deficit necessary 
for turgor generation and cell expansion. In accordance it was 
observed that nhx mutants exhibit lower root K+ uptake rates and 
shoot K+ content.21,106 The high expression level of some NHX 
proteins in stomatal guard cells also suggest that the proteins are 
essential for vacuolar K+ accumulation and rapid turgor changes 
that occur in these cells, although such effects were not reported 
for the studied nhx mutants.45,47,106 DNA array analysis of the 
nhx null mutants showed increased expression of the high affinity 
K+ uptake system KUP7/HAK7, and decreased expression of the 
putative K+ transport system AtKEA4, also pointing to a role 
for AtNHX1 in potassium homeostasis.107 The high expression 
level of some isoforms in known sinks for potassium like fruits 
or flowers, where growth is dependent on cell expansion, point 
to a role of these isoforms in vacuolar K+ accumulation. It this 
respect, it was suggested that the high expression level of VvNHX1 
protein in grape berries during ripening was related to vacuolar K+ 

Only Yang et al.93 claim that overexpression of AtNHX1 does 
not improve salt tolerance in transgenic Arabidopsis plants. All 
other published reports on overexpression of AtNHX1 or other 
plant NHX isoforms in a variety of plant species show substan-
tially increased salt tolerance.17-19,30,32,35,36,70,94-103 There is no 
clear difference in efficiency of the different isoforms, or whether 
they were obtained from glycophytes or halophytes,36,99 and both 
Class-I and Class-II antiporters seem to have a similar effect on 
salt tolerance.32,97 Differential salt tolerance appears thus to be 
related to regulation of NHX gene expression, and not to differ-
ential properties of the proteins. Increased salt tolerance is not 
always accompanied by increased vacuolar Na+ accumulation. 
In plants, all possible scenarios with respect to Na+ or K+ can be 
found (higher Na+, lower K+;17,100 higher Na+ and K+;94,96,97 
only marginal differences;26,99 higher K+ and lower Na+,32,36,71). 
As NHX transporters also transport K+, an effect on internal 
K+ concentrations is to be expected, especially for the more K+ 
specific Class-II antiporters. A decrease in Na+ content is more 
difficult to explain, but could result from secondary mechanisms 
triggered by the improved K+ homeostasis in transgenic plants.32 
Transgenic plants were also reported to have a lowered leaf water 
potential, allowing higher water uptake rates in saline or drought 
conditions.92

In yeast, disruption of ScNHX1 or overexpression of plant 
antiporters also affects intracellular Na+ and K+ concentrations. 
Especially yeast in which the main Na+ efflux system ENA1 is 
disrupted will accumulate large amounts of Na+ in response to 
salt stress, at the cost of internal K+.14 Disruption of ScNHX1 has 
some effect on internal Na+ content, but above all causes a further 
diminution of internal K+.16,38 Overexpression of AtNHX1 or 
AtNHX2 strongly increases intracellular K+ and Na+ in ENA and 
ScNHX1 disrupted yeast cells grown in the presence of NaCl.28 
Overexpression of the Class-II antiporters AtNHX5 and LeNHX2 
increases intracellular K+, but reduces intracellular Na+.28,38 In the 
case of the tomato antiporter, it was shown that K+ accumulates 
in internal stores.38 Also Gaxiola et al.14 showed that ScNHX1 
mainly affects intracellular K+ accumulation, as overexpression of 
the plant H+ pyrophosphatase, supposedly increasing the vacuolar/
prevacuolar pH gradient and thus the driving force for ScNHX1 
mediated cation accumulation, results in increased salt tolerance, 
increased K+ levels, and reduced intracellular Na+ levels in the pres-
ence of endogenous ScNHX1 only.14

Based on these observations it can be stated that the sequestra-
tion model, that suggests that NHX mediated salt tolerance is a 
consequence of the accumulation of toxic Na+ inside the vacuole, 
away from the cytosol is too simple, and that at least part of the 
tolerance is due to K+ accumulation or altered K+ homeostasis, 
although the precise mechanism remains unclear. It was shown 
that in conditions of salt stress, K+ continues to be accumulated 
actively especially in leaf mesophyl cells, and NHX antiporters 
could very well be involved in such K+ accumulation.104 Especially 
Class-II antiporters, that are suggested to be more specific to 
K+ seem to increase internal K+, but cause reduction of internal 
Na+.14,28,32,38 These data on ion accumulation indicate that the 
role for NHX antiporters in salt tolerance is above all related 



www.landesbioscience.com Plant Signaling & Behavior 273

Plant NHX cation/proton antiporters

vacuolar biogenesis, potentially a site for detoxification of the 
drug.67,75 Addition of weak bases can suppress these phenotypes 
in nhx1 null mutants showing that endosomal alkalinisation by 
ScNHX1 is essential for trafficking out of the endosome.75 Such a 
fundamental role in pH regulation is likely to depend on the more 
physiologically relevant K+ and not Na+. Therefore, the ability to 
catalyze K+/H+ exchange appears to be a universal feature of the 
intracellular NHX enzymes, as has been discussed above.68,75

Both Class-I and Class-II plant NHX isoforms complement 
NaCl, KCl and hygromycin sensitivity of the yeast ScNHX1 disrup-
tion mutant.16,28,38 It is thus tempting to suggest a role for plant 
NHX proteins in endosomal pH regulation and protein trafficking 
as well. The effect of expression of plant NHX genes in yeast on 
protein trafficking was however not studied, and no information 
from plant studies is available. Interestingly however it was shown 
that plants that overexpress the intracellular vesicle trafficking 
protein AtRab7, involved in vacuolar biogenesis, have increased 
resistance to salt and osmotic stress and accumulate increased 
amounts of Na+ inside the vacuole.116 Furthermore, suppression 
of vesicle-SNARE expression was shown to increase salt toler-
ance, presumably by inhibition of the delivery of ROS-producing 
endosomes to the vacuole.117 Regulation of vesicle trafficking by 
plant NHX could thus represent an alternative or additional route 
for NHX proteins to enhance salt tolerance. The plant Class-II 
sequences, more closely related to NHX proteins from other 
organisms with a demonstrated role in vesicle trafficking, catalyze 
more specific K+/H+ exchange, and show a subcellular expression 
pattern similar to the yeast ScNHX1 protein, which makes them 
the most likely candidates for such role in plants. Silencing of the 
LeNHX2 gene in tomato plants causes a very severe phenotype 
which would be in accordance with a fundamental cellular role 
for the encoded protein.32 The Class-I antiporters could also play 
a role in intracellular vesicles trafficking, as DNA array analysis of 
an nhx T-DNA insertional mutant showed changes in the expres-
sion of a large number of genes encoding proteins associated with 
intravesicular trafficking, trafficking to the nucleus and Golgi 
processing.107

Concluding Remarks

Published research has shown that NHX antiporters play roles 
in salt tolerance, vacuolar pH regulation and K+ homeostasis. 
Contrary to general belief, NHX mediated salt tolerance is not 
strictly related to Na+ accumulation, and reduced Na+ content 
and increased K+ content are equally often observed. This suggests 
that the genes function in vacuolar osmotic adjustment via K+ or 
Na+ accumulation, in accordance with their ion specificity and 
gene induction pattern, or that salt tolerance is induced by other 
mechanisms possibly by indirect effects on vesicle trafficking via 
endosomal pH regulation. In this respect it has to be pointed out 
that plant salt tolerance mechanisms appear to be plant species or 
variety specific, determined by differential responses at the tissue, 
cell-type and subcellular level. Also vacuolar or cytoplasmic pH 
and K+ concentrations are variable between cell types, and differ-
entially regulated in different species. The differential expression 
of NHX genes in plants or varieties that accumulate or exclude 

accumulation to drive water flow towards the developing fruit48 
needed for the berry size increase. Also in Ipomea tricolor, in addi-
tion to the role in vacuolar pH determination and flower colour, 
the simultaneous induction of NHX1, V-ATPase, V-PPase and 
PM-ATPase was suggested to be required for K+ accumulation to 
reduce water potential and drive cell enlargement during flower 
opening.27

Cellular pH regulation. Cellular pH homeostasis is one of the 
most important factors for cellular function. In plants cells cyto-
plasmic pH is determined by the action of primary proton pumps 
and metabolic processes producing H+ or OH-. Cation/Proton 
antiporters constitute proton leak pathways permitting rapid 
cytoplasmic pH adjustment.108 Several biotic and abiotic stresses 
have been reported to affect cytoplasmic or vacuolar pH and cyto-
plasmic pH variation has been shown to be at the basis of many 
signalling pathways involved in stress responses, developmental 
processes, hormonal control of stomatal movements, gravitropic 
response and elongation growth.109-114

Involvement of plant NHX genes in vacuolar pH regulation 
was most clearly demonstrated analysing the dependence of flower 
colour on vacuolar pH. The colour change in flowers of Ipomea 
tricolor cv heavenly blue from purplish red to blue, is caused by 
a vacuolar pH increase from 6.6 to 7.7 during flower opening, as 
pH determines the colour of anthocyanins inside the vacuole.27,115 
It was shown that in the related Ipomea Nil, a purple flowering 
mutant that carries a mutation in an NHX gene, was unable to 
increase vacuolar pH to create the normal blue petals.115 The high 
vacuolar pH suggests that vacuoles are alkaline respective to the 
cytosol. Development of such alkaline pH by an electroneutral 
K+/H+ antiporter mechanism would require higher cytoplasmic 
K+ concentration respective to the vacuole, as has been reported 
to occur in K+ deplete conditions in barley root epidermal and 
cortical cells.2

Although involvement of plant NHX transporters in cyto-
plasmic pH regulation was not yet demonstrated, it was shown 
that elicitor induced cytoplasmic acidification, responsible for 
induction of oxidative burst and synthesis of secondary metabo-
lites, is dependent on stimulation by lysophosphatodylcholine of  
amiloride sensitive tonoplast Na/H antiporter activity.114

In yeast, involvement of ScNHX1 in pH regulation was clearly 
demonstrated. ScNHX1 disrupted cells are sensitive to acid pH 
and have more acidic vacuolar and cytoplasmic pH.68 Activation 
of ScNHX1 in yeast by acidic pH was suggested to be at the basis 
of enhanced Na+ accumulation in mutant cells with lower plasma 
membrane PMA1 activity.72

The most important function of yeast ScNHX1 appears to be 
related to its involvement in protein sorting through endosomal 
pH regulation. The ScNHX1 gene was shown to be identical to 
the vacuolar protein sorting gene VPS44,67 and disruption causes 
CPY secretion, endosomal enlargement and accumulation in endo-
somes of the G protein coupled receptor Ste3 or the dye FM4-64 
that are delivered to the vacuole in wild type cells.67,68 Disruption 
of ScNHX1 also causes strong Hygromycin B sensitivity,14 a 
phenotype shared by many other Vacuolar Protein Sorting (VPS) 
mutants, indicating that the phenotype is dependent on defective 
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intracellular K+/H+ antiporter related to Na+/H+ antiporters is important for K+ ion 
homeostasis in plants. J Biol Chem 2003; 278:22453-9.

	 39.	 Brini F, Gaxiola RA, Berkowitz GA, Masmoudi K. Cloning and characterization of 
a wheat vacuolar cation/proton antiporter and pyrophosphatase proton pump. Plant 
Physiol Biochem 2005; 43:347-54.

	 40.	 Fukuda A, Nakamura A, Tanaka Y. Molecular cloning and expression of the Na+/H+ 
exchanger gene in Oryza sativa. Biochim Biophys Acta 1999; 1446:149-55.

	 41.	 Zahran HH, Marín-Manzano MC, Sánchez-Raya AJ, Bedmar EJ, Venema K, 
Rodríguez-Rosales MP. Effect of salt stress on the expression of NHX-type ion transport-
ers in Medicago intretexta and Melilotus indicus plants. Physiol Plant 2007; 131:122-30.
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Na+ indicates that NHX proteins could play crucial roles in such 
differences, but this has not been studied in much detail. Only in 
one case, the alkaline pH in vacuoles of Ipomea nil, a species and 
cell-type specific role of NHX was clearly demonstrated.

Little more information can be gathered from general overex-
pression experiments and crude experiments comparing species 
based on total shoot or root ion content and antiporter expression 
levels. It indeed seems odd, that unregulated overexpression of one 
gene, promoting vacuolar accumulation of ions in vacuoles across 
the plant, can substantially improve such a complex trait as salt 
tolerance in such a wide variety of plants. To describe function 
of the NHX genes in plants, genetic studies using individual or 
multiple NHX knock-out mutants are required, as well as detailed 
studies on tissue distribution and vacuolar or cytoplasmic ion 
content. Function of plant NHX genes in endosomal vesicle traf-
ficking has not been studied so far and the search for regulatory 
mechanisms and NHX interacting partners is lacking far behind 
compared to yeast and animal studies. These studies will be crucial 
to provide more clues to the real function of the various NHX 
isoforms in plants.
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