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The second messenger, 3',5'-cyclic monophosphate (cGMP), 
is a critical component of many different processes in plants 
while guanylyl cyclases that catalyse the formation of cGMP 
from GTP have remained somewhat elusive in higher plants. 
Consequently, two major aims are the discovery of novel GCs 
and the identification of cGMP mediated processes. Recently, 
we have reported temporal signatures of ozone (O3)-induced 
hydrogen peroxide (H2O2) and nitric oxide (NO) generation, 
their effect on cGMP generation, and consequent transcriptional 
changes of genes diagnostic for stress responses in tobacco. We 
demonstrated that O3 and NO induced early transcriptional 
activation of the scavenger encoding proteins, alternative oxidase 
(AOX1a), glutathione peroxidase (GPX) and the induction of 
ethylene production through aminocyclopropancarboxylic acid 
synthase (ACS2) are cGMP-independent. By contrast, the early 
response of the phenylalanine ammonia lyase gene (PALa) and 
the late response of the gene encoding the pathogenesis-related 
protein (PR1a) show critical dependence on cGMP. Here we 
show differential cGMP responses to virulent and avirulent 
Pseudomonas syringae strains and propose that host-pathogen 
recognition and/or down-stream processes are transduced by 
complex cGMP signatures. This is in accordance with the iden-
tification of a growing number of multi-domain molecules in 
Arabidopsis that are reported to contain putative functional GC 
catalytic centers.

Guanylyl Cyclases and cGMP in Higher Plants

It is emerging that cyclic nucleotides and hence the cyclic 
nucleotide generating enzymes such as adenylyl and guanylyl 
cyclases (GCs)1 have key roles in many and diverse biological 
processes.2-5 Here we shall mainly focus on GCs and cGMP. The 
latter is critically implicated in responses to both abiotic and biotic 
stress responses,6-8 the gating of channels,9,10 plant hormone signal 
transduction,11,12 nitric oxide (NO)-dependent signaling13-16 as 
well as the regulation of transcription.17 While there are currently 
only two experimentally confirmed GCs in higher plants,18,19 
this number has been predicted to significantly increase based on 
the presence of putative GC catalytic centers in many Arabidopsis 
thaliana proteins20 and the number (>100) of annotated nucle-
otide cyclases in Chlamydomonas reinhardtii.4,20 We hypothesize 
that many more processes that are also critically dependent on the 
second messenger cGMP remain to be discovered and that cata-
lytic domains capable of generating cGMP from GTP are part of a 
growing family of highly diverse multi-domain enzymes.

Cyclic GMP in Plant Stress Responses

It has been previously been demonstrated that cGMP levels 
in Arabidopsis thaliana seedlings increase very rapidly (onset: ≤5 
seconds), time dependently and, importantly, to different degrees 
in response to salt and osmotic stress, and that salt stress activates 
two distinct cGMP signalling pathways.7 The osmotic pathway 
is independent of the second messenger [Ca2+]c while the ionic 
response pathway, triggered by high NaCl, is [Ca2+]c-dependent. 
These findings are an indication that cGMP plays a complex role 
in stress responses that cannot be accounted for by simple “on/
off ” mechanisms. Contrary to the rapid changes in response to 
osmoticum dependent and ionic stress, responses to NO6 and 
gravitropic stimulus appear to be much slower21 and to the best 
of our knowledge, to-date there is no indication to suggest a 
link between the causing stimulus and the amplitude of resulting 
cGMP increases in biotic interactions between pathogens and their 
plant hosts.

We have measured cGMP accumulation in Arabidopsis thaliana 
leaves following inoculation with virulent (DC3000) and avirulent 
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(AvirB) Pseudomonas syringae strains (Fig. 1) and observed that one 
hour post inoculation, significant increases are registered in response 
to the avirulent strain only. The induced elevation persisted over the 
entire duration of the experiment. The virulent strain also caused an 
increase in cGMP level, but the onset was delayed and the increase 
remained smaller than that caused by the avirulent strain.

The earlier induction of cGMP accumulation in response to 
inoculation with the avirulent strain is consistent with the imme-
diate recognition of specific pathogen avirulent (avr) gene encoded 
molecules by resistance (R) genes in plants. The specific interac-
tion of pathogen derived avr genes and corresponding R genes in 
plants triggers activation of plant defense responses.22 This process 
involves production of a range of signalling molecules such as reac-
tive oxygen species, NO, jasmonic acid (JA), ethylene and salicylic 
acid (SA), and transcriptional activation of defense-related genes.23 
The response is often accompanied by a form of programmed host 
cell death referred to as hypersensitive response (HR)24 that in turn 
is characterised by the formation of necrotic lesions at the infection 
site that can inhibit the spread of biotrophic pathogens.25

In the absence of specific pathogen recognition by plant R gene 
products (as is the case for the virulent DC3000 strain), pathogens 
are able to grow and spread. However, virulent pathogens can still 
induce activation of the plant defense system to a certain level 
(basal defense) that is not dissimilar to that activated by avirulent 
pathogens.26 To explain this overlap it has been hypothesised that 
R proteins may not recognize pathogen virulence (avirulence) 
molecules directly, but rather detect the cellular consequence of 
pathogen infection.22 Nevertheless, the earlier induction of cGMP 
levels by avirulent infection is consistent with the earlier detection 
of the pathogen and activation of defence responses. The early 
induction is also consistent with a study in Arabidopsis suspension 
culture cells that showed that an avirulent race of Pseudomonas 
syringae (race m6) can cause a significant increase in NO concen-
trations after 30 minutes while the virulent race m4 strain failed to 
increase cellular NO levels even after six hours.27 These results are 
thus consistent with avirulent pathogens inducing cGMP synthesis 
via NO-dependent pathways and virulent cGMP induction occur-
ring through NO-independent pathways.

In tobacco, cGMP has been implicated in NO-dependent 
defence responses and being required for induction of expression 
of defense-related genes, pathogenesis-related 1 gene (PR-1) and 
the phenylalanine ammonia lyase gene (PAL).6,28 Additionally, in 
Arabidopsis cell cultures cGMP has been shown to be required 
for NO induced cell death in response to challenge by avirulent 
bacterial pathogens.27 While these studies used GC inhibitors and 
a cell-permeable cGMP analogue (8Br-cGMP) to help elucidate 
the role of cGMP in defence responses, to the best of our knowl-
edge, this is the first report to show a direct pathogen dependent 
increases in tissue cGMP levels in planta.

Outlook

Research on animal GCs suggests that a number of different 
GC domain combinations and architectures exist20 and that GCs 
can be divided in two groups, the soluble GCs and the particulate 
GCs. The former typically have a highly conserved NO binding 

site29-31 and consequently play a key role in NO sensing and signal 
transduction; the latter typically serve as transmembrane recep-
tors where the cytosolic GC domain is located next to a kinase 
domain. One of the best-studied examples of the second type are 
the Atrial Natriuretic Peptide (ANP) receptors. To-date there are 
two experimentally confirmed GCs reported in higher plants, the 
first, while soluble, is not NO sensitive.18 In this molecule the GC 
domain combines with a novel cysteine protease-like domain,32 a 
combination that is also found in Chlamydomonas reinhardtii. The 
second19 is the particulate brassinosteroid receptor (AtBRI1) and 
contains a leucine rich ligand binding domain, a transmembrane 
domain and intracellular GC and kinase domains reminiscent 
of the ANP receptor.33 Incidentally, the wall-associated receptor 
kinase-like 10 precursor (At1g79680) that we have identified as 
a candidate GC18 has a domain architecture not dissimilar to 
AtBRI1. But in this case, in place of the leucine rich ligand binding 
domain is the extracellular wall-binding anchor. It is noteworthy 
that At1g79680 is also differentially expressed in response to aviru-
lent and virulent Pseudomonas syringae strains (data extracted from 
“Genevestigator”34) and it is conceivable that the molecule has a 
critical role in cGMP-dependent signalling in response to biotic 
challenges.

Finally, the link between the reported NO increases and the 
consequent increase in cellular cGMP levels in plants remain to 
be discovered. In animals, soluble GCs can function as heme 
sensors that selectively bind NO and do so by the highly conserved 
H-NOX family (heme nitric oxide/oxygen-binding domain).30,31 

Figure 1. Time-course of cGMP generation in Arabidopsis thaliana leaves 
in response to virulent and avirulent Pseudomonas syringae strains. 
Both strains induced distinct time dependent increase in cGMP levels 
that peaked at ≥2 hours with the avirulent strain causing a more rapid 
response. Leaves of four week old plants were pressure inoculated with 
106 cfu/cm2 bacterial cells suspended in 10 mM MgCl2 solution. Whole 
leaf tissue was removed at the indicated time points and frozen immedi-
ately in liquid nitrogen. Cyclic GMP was extracted from N2 snap-frozen 
ground leaves using the trichloroacetic acid extraction procedure as 
detailed in the manual to the Amersham cGMP assay kit. Cyclic GMP con-
centrations were subsequently measured with the Amersham Biosciences 
cGMP[125I] assay system kit (code RPA 525, Amersham Biosciences, Little 
Chalfont, UK) using the acetylation protocol. Error bar values represent the 
mean (+/- SEM; n = 3) and the data are representative of two independent 
experiments.
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The core H-NOX signature is: Hx{12}Px{14,16} YxSxR, where “x” 
stands for any amino acid and the number in the curly brackets 
determine the length of the gap. Interestingly, this motif is present 
in four Arabidopsis thaliana proteins that are potentially capable of 
binding NO and might have GC activity.

In summary, in the near future we are likely to see the identi-
fication and characterisation of an increasing number of GCs in 
higher plants as well as reports of biological responses, processes 
and pathways35 that depend critically on highly specific temporal, 
spatial and stimulus specific cGMP signatures.
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