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Abstract

The first transition metal-catalyzed asymmetric carboalkoxylation reaction of propargyl esters is
described. The (R)-MeO-DTBM-BIPHEP(AuCl)2-catalyzed reactions allows for the construction of
benzopyrans containing quaternary stereocenters with excellent enantioselectivity. Experimental
evidence supports a mechanism proceeding via the generation of a stabilized carbocation from an
allylic oxonium intermediate, and subsequent trapping by a chiral allylgold(I) spieces.

The gold-catalyzed 1,2-rearrangement of propargyl esters has provided the basis for the
development of a wide range of transformations.1,2 These reactions are proposed to proceed
through gold-stabilized cationic intermediates (A) that show reactivity analogous to
electrophilic transition metal carbenoids.3 Despite the current interest in reactions involving
these intermediates, very few examples of enantioselective transformations have been
described. We have recently reported that chiral biarylphosphinegold(I) complexes catalyze
the enantioselective cyclopropanation of alkenes with propargyl esters (eq 1).3c,i We
hypothesized that related gold(I) complexes might exert enantioface control on the addition of
nucleophiles to prochiral vinylcarbenoid intermediate A.

(1)

On the basis of reported 2,3-rearrangements of oxonium ylides generated from transition metal-
stabilized carbenoid intermediates,4 we envisioned that allyl ethers might serve as nucleophiles
towards the electrophilic gold(I)-carbenoid intermediate to generate chiral gold(I)-allyl B.
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Subsequent rearrangement of allylic oxonium intermediate B would afford the allylated adduct.
3e To this end, we were pleased to find that the reaction of propargyl ester 1a with a catalytic
amount of t-Bu3PAuCl/AgSbF6 in acetonitrile selectively provided carboalkoxylation5
product 2a in 70% yield, (Table 1, entry 2). Notably, products derived from a competing formal
2,3-rearrangement or intramolecular olefin cyclopropanation3i were not observed.

We turned our attention to the gold(I)-catalyzed asymmetric synthesis of 2a. We were pleased
to find that the complex employed in our gold(I)-catalyzed enantioselective cyclopropanation
reaction afforded 2a in 59% yield and 97% ee (Table 1, entry 3). Moreover, the excellent
enantioselectivity was maintained when nitromethane or dichloromethane6 were employed as
solvents; however acetonitrile generally provided higher yields of 2a.7 As in the
enantioselective cyclopropanation reaction, substitution on the phosphine aryl rings is critical
to the obtaining the excellent enantioselectivity. For example, the unsubstituted (entry 6) or
dimethyl-substituted (R)-MeO-BIPHEP(AuCl)2 generated the benzopyran with only 30 % and
35% ee, respectively.8 In contrast, when 3,5-di-tert-butyl MeO-BIPHEP derivatives were
employed as ligands, the gold-catalyzed rearrangement proceeded with excellent
enantioselectivity (entries 8 and 9).9

Under the optimized reaction conditions, substitution on the aryl ring was well tolerated.
Propargyl pivaloate 1 having halogen (Table 2, entries 2 and 3), sterically demanding (entries
4 and 7), phenyl (entry 5), or electron-donating groups (entry 6) on the aromatic ring afforded
2 in good yields and with excellent enantioselectivities.10,11 Use of substrates with bulkier
substituents in the propargyl position decreased the rate of the reaction, however,
enantioselectivities remained excellent in all cases (entries 8–10).12 Of particular note is the
reaction of allyl substituted ester 1i, which underwent the desired allyl transfer product 2i in
lieu of the gold-catalyzed 1,5-enyne cycloisomerization13 (entry 9).

We next examined the scope of the migrating ether substituent. The reaction of cinnamyl ethers
bearing an electron-rich methoxy (Table 2, entry 11) or halogen (entry 12) on the aromatic ring
provided desired products in good yields and excellent enantioselectivities. Ortho-substitution
on the aromatic ring did not interfere with the reaction (entry 13). While an unsubstituted allyl
group did not undergo the desired transformation, one or more alkyl groups on the alkene
moiety efficiently promoted the allyl transfer reaction (entries 14–16). Notably, the reaction
of 1p, which is a mixture of trans/cis alkene isomers, gave 2p as a single diastereomer (entry
16).

Possible mechanisms for the gold-catalyzed enantioselective rearrangement are outlined in
Scheme 1. Gold(I)-promoted 1,2-migration of propargyl ester 1a gives gold(I) carbenoid 3,
which subsequently undergoes nucleophilic attack of the ether oxygen to generate oxonium
intermediate 4. We considered several possibilities for the rearrangement of 4 into benzopyran
2a. First, the direct conversion of 4 to 2a, via a formal 1,4-sigmatropic rearrangement, was
excluded by the observation that gold(I)-catalyzed rearrangement of tertiary allyl ether 7
furnished pyran 2n with inversion of the allyl moiety (eq 2).

(2)
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(3)

Alternatively, 4 could be transformed into 2a by a 2,3-rearrangement to give 5 followed by a
3,3-rearrangement. However, the observation that, unlike related transition metal catalyzed
2,3-rearrangements of allyl ethers,4 unsubstituted allyl ethers do not participate suggests that
substantial cation character is being generated in the gold-catalyzed rearrangement. Therefore,
a mechanism analogous to that proposed for related carboalkoxylation reactions,5 involving
the formation of an allyl cation and allylgold(I) intermediate 6, seems most likely.14 In accord
with this hypothesis, gold(I)-catalyzed rearrangement of para-methoxylbenzyl ether 8, which
is unlikely to proceed through a pathway involving sequential 2,3/3,3-rearrangements,
produced pyran 9 in 94% ee (eq 3).

In summary, we have developed a (R)-MeO-DTBM-BIPHEP(AuCl)2-catalyzed
carboalkoxylation reaction of propargyl esters that provides benzopyrans containing
quaternary stereocenters with excellent enantioselectivity. A mechanism involving reaction of
a carbocation with a chiral allylgold(I) intermediate, generated from a gold(I)-stabilized
vinylcarbenoid, is proposed. This reactivity significantly expands the class of enantioselective
transformations available to transition metal carbenoid intermediates generated from the 1,2-
rearrangement of propargyl esters. Experiments aimed towards studying and exploiting the
reactivity of these intermediates are ongoing and will be reported in due course.
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Scheme 1.
Proposed Mechanisms
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Table 2
Gold(I)-Catalyzed Asymmetric Carboalkoxylation

entry substrate time (h) 2 (%) ee (%)a

1 1 2a, 74 97

2 1 2b, 69 97

3 3 2c, 60 94

4b 1 2d, 65 99

5 1 2e, 64 97

6 1 2f, 60 97

7 1 2g, 64 98

8 3 2h, 53 99

9 3 2i, 44 99

10c 11 2j, 35 98

11 1 2k, 78 99

12 3 2l, 72 98

13 3 2m, 58 98

14 3 2n, 55 97

15c 3 2o, 51 97

16 1 2p, 49
(>

95:5,
E:Z)

91

a
Determined by chiral HPLC analysis.

b
MeCN/CH2Cl2=19:1 was used as solvent.

J Am Chem Soc. Author manuscript; available in PMC 2010 March 18.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Uemura et al. Page 8

c
10 mol% (R)-MeO-DTBM-BIPHEP(AuCl)2/20 mol% AgSbF6.
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