
FoxO1 integrates insulin signaling to VLDL production

Adama Kamagate and H. Henry Dong*
Rangos Research Center; Division of Immunogenetics; Department of Pediatrics; Children’s
Hospital of Pittsburgh; University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania USA

Abstract
Very low-density lipoproteins (VLDL) are triglyceride-rich particles. VLDL is synthesized in
hepatocytes and secreted from the liver in a pathway that is tightly regulated by insulin. Hepatic
VLDL production is stimulated in response to reduced insulin action, resulting in increased release
of VLDL into the blood under fasting conditions. Circulating VLDL serves as a vehicle for
transporting lipids to peripheral tissues for energy homeostasis. Conversely, hepatic VLDL
production is suppressed in response to increased insulin release after meals. This effect is critical
for preventing prolonged excursion of postprandial plasma lipid profiles in normal individuals. In
subjects with obesity and type 2 diabetes, the ability of insulin to regulate VLDL production becomes
impaired due to insulin resistance in the liver, resulting in excessive VLDL secretion and
accumulation of triglyceride-rich particles in the blood. Such abnormality in lipid metabolism
characterizes the pathogenesis of hypertriglyceridemia and accounts for increased risk of coronary
artery disease in obesity and type 2 diabetes. Nevertheless, the molecular basis that links insulin
resistance to VLDL overproduction remains poorly understood. Our recent studies illustrate that the
forkhead transcription factor FoxO1 acts in the liver to integrate hepatic insulin action to VLDL
production. Augmented FoxO1 activity in insulin resistant livers promotes hepatic VLDL
overproduction and predisposes to the development of hypertriglyceridemia. These new findings
raise an important question: Is FoxO1 a therapeutic target for ameliorating hypertriglyceridemia?
Here we discuss this question in the context of recent advances toward our understanding of the
pathophysiology of hypertriglyceridemia.
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Etiology of Hypertriglyceridemia
Hypertriglyceridemia is a hallmark of metabolic syndrome and is characterized by a triad
plasma lipid profile, i.e., increased triglyceride (TG) and low-density lipoprotein (LDL) levels,
and decreased high-density lipoprotein (HDL) levels.1,2 Due to its pro-atherogenic potential,
hypertriglyceridemia is considered an independent risk factor for coronary artery disease.3–
12 Hypertriglyceridemia increases the incidence of cardiovascular disease by 32% in men and
76% in women, independent of plasma HDL-C levels.13–15 To date, the pathophysiology of
hypertriglyceridemia is incompletely understood. Its close association with adiposity and type
2 diabetes implicates insulin resistance as a causative factor in the development of
hypertriglyceridemia.10,16–18 As a result of insulin resistance, adipose tissue undergoes
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unrestrained fat mobilization, resulting in elevated plasma free fatty acid (FFA) levels. An
increased FFA flux into the liver stimulates hepatic lipogenesis and promotes VLDL-TG
overproduction, contributing to the pathogenesis of hypertriglyceridemia (Fig. 1).16,19,20

Treatment of Hypertriglyceridemia
Hypertriglyceridemia is often associated with visceral obesity, insulin resistance,
hyperinsulinemia, hypertension or diabetes, a cluster of conditions that are collectively termed
“metabolic syndrome”. As a result, patients with hypertriglyceridemia are primarily
recommended with exercise or dietary supplements of omega-3 fatty acid-enriched food or
congestion of fish oil. If these non-pharmacological interventions fail to correct atherogenic
lipid profiles, pharmacological therapies are instituted with fibrates or niacin. These two
commonly prescribed triglyceride-lowering agents act to reduce plasma triglyceride levels via
distinct mechanisms, but each with its own limitations. Fibrates are fibric acid derivatives that
act as agonists of peroxisome proliferator-activated receptor alpha (PPAR-α) to enhance fatty
acid oxidation in peripheral tissues and promote triglyceride VLDL-TG clearance from plasma.
21–23 Niacin appears to target G protein-coupled receptors GPR109A and GPR109B (also
known as HM74A and HM74, respectively) in adipose tissues to limit fat mobilization and
reduce plasma levels of FFA, the substrate for hepatic VLDL production.24–27 More detailed
discussions on pharmacological intervention of hypertriglyceridemia have been reported
elsewhere.28–31 Here we focus our review on the molecular basis that governs insulin-
dependent regulation of VLDL production, while bearing in mind the question of how hepatic
VLDL production becomes unrestrained in insulin resistant subjects with metabolic syndrome.

Insulin Regulation of VLDL Production
VLDL is assembled and produced in liver, which depends on substrate availability and is tightly
regulated by insulin.32,33 Under fasting conditions, hepatic VLDL production is induced,
resulting in increased VLDL secretion into the blood. In response to postprandial insulin
release, hepatic VLDL production is suppressed to limit plasma triglyceride excursion.34–
37 Such an acute inhibitory mechanism of insulin action on VLDL production is critical for
rapid adaptation by the liver to metabolic shift between fasting and refeeding for maintaining
plasma lipids within the physiological range.

VLDL assembly in hepatocytes is conducted by microsomal triglyceride transfer protein
(MTP), an endoplasmic reticulum resident protein. MTP (MW, 88 kDa) is regarded as a
molecular chaperone. When heterodimerized with its small subunit protein disulphide
isomerase (PDI, 58 kDa) in the endoplasmic reticulum (ER), MTP catalyzes the transfer of
lipid to nascent apolipoprotein B (apoB), a rate-limiting step in hepatic VLDL production.
38–40 MTP is also produced in the intestine and is responsible for lipidation of apoB48 for
the production of chylomicrons.40–45 In humans, a lack of MTP activity, resulting from
genetic lesions in its gene, causes abetalipoproteinemia or Bassen-Kornzweig syndrome, a rare
autosomal recessive disorder that is characterized by defects in the assembly and secretion of
triglyceride-rich lipoproteins. Patients with abetalipoproteinemia manifest severe lipid
disorders and multiple vitamin deficiencies, due to the impairment in dietary fat absorption
secondary to defects in intestinal chylomicron secretion.46–50 This clinical condition is
recapitulated in mice with genetic MTP depletion, as MTP−/− homozygous mice are associated
with the inability to manufacture VLDL and die at the E10.5 stage during embryonic
development.50–52 MTP haploinsufficiency is associated with increased hepatic fat
deposition due to markedly reduced VLDL secretion in MTP+/− heterozygous mice.49 In
contrast, hepatic MTP overproduction results in excessive VLDL-TG secretion and
significantly elevated plasma TG levels.38 Pharmacological inhibition of MTP activity is
shown to reduce VLDL production and decrease plasma cholesterol levels in subjects with
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familial hypercholesterolemia.53 DNA polymorphism at -493G/T in the human MTP promoter
is linked to altered triglyceride metabolism and increased risk of coronary heart disease.54–
58 Furthermore, there is emerging evidence that diminished MTP activity is a compounding
factor for advanced alcoholic liver disease.59,60 Together these data highlight the critical role
of MTP in VLDL assembly and secretion in health and disease. This has spurred intensive
investigations to understand hepatic regulation of MTP gene expression in order to gain insights
into the pathophysiology of hypertriglyceridemia associated with obesity and diabetes.

Hepatic Regulation of MTP Production
Consistent with its importance in triglyceride metabolism, hepatic MTP production is regulated
in response to physiological cues. Hagan et al.,61 first report that MTP gene expression is
negatively regulated by insulin in cultured HepG2 cells. This observation is corroborated by
Lin et al.,62 who show in HepG2 cells that insulin inhibits MTP expression in a dose- and
time-dependent manner. In parallel with these findings, hepatic MTP mRNA levels are
significantly upregulated, correlating with augmented VLDL-TG secretion in a number of
animal models with insulin resistance and aberrant triglyceride metabolism, including non-
diabetic obese Zucker rats,63,64 high fat-induced obese mice,65,66 and high fructose-induced
hypertriglyceridemic hamsters.67–70 Pharmacological intervention, which improves insulin
resistance and ameliorates metabolic dyslipidemia, is associated with reduced MTP expression
and diminished VLDL-TG output in hypertriglyceridemic models.67,69,71,72 These data are
consistent with the idea that insulin exerts an inhibitory effect on MTP gene expression in the
liver. Loss of insulin inhibition is thought to be a contributor for unrestrained MTP expression
and VLDL overproduction in insulin resistant subjects.

To account for the underlying mechanism, Au et al.,73 show in HepG2 cells that insulin
regulates MTP gene expression via the activation of mitogen-activated protein kinase (MAPK).
However, a caveat of this study is the use of a relatively shorter version of the human MTP
promoter (−250/+86 nt) in their luciferase reporter system. Furthermore, targeted blockage of
MAPK activity only results in partial inhibition of insulin-mediated reduction in VLDL-apoB
production,74 suggesting that other mechanisms are involved in insulin-dependent inhibition
of MTP and VLDL-TG production in the liver.

Wolfrum and Stoffel75 show that the forkhead box A2 (Foxa2) contributes to hepatic
regulation of MTP expression. Foxa2 in complex with its co-activator PGC-1β stimulates
hepatic MTP mRNA expression, contributing to increased VLDL secretion from the liver.76
In response to insulin action, Foxa2 is phosphorylated and dissociated from PGC-1β,
contributing to the reduction in hepatic MTP and VLDL production.76 However, Foxa2 is
predominantly localized in the cytoplasm in response to hyperinsulinemia,76 arguing against
its direct action in promoting MTP gene expression in insulin resistant states. This has led to
the postulation that the absence of Foxa2 in the nucleus in the liver is compensated by other
factors such as hepatocyte nuclear factor 4 (HNF4) and peroxisome proliferator-activated
receptor alpha (PPAR-α) under hyperinsulinemic conditions.77 Indeed, a recent study by
Sheena et al.,72 demonstrates that hepatocyte nuclear factor 4-alpha (HNF-4α) targets the
human MTP promoter for trans-activation in cultured HepG2 cells. This effect is
complemented by hepatocyte nuclear factor 1-alpha (HNF-1α) and counteracted by β,β-
tetramethyl-hexadecanedioic acid acting as an HNF-4α antagonist. Nevertheless, the
significance of this finding in the pathogenesis of hypertriglyceridemia remains to be
determined.

Peroxisome proliferator-activated receptor alpha (PPAR-α) is shown to stimulate hepatic MTP
mRNA expression in primary cultures of mouse and rat hepatocytes.78 However, this finding
seems paradoxical, as targeted activation of PPAR-α with anti-hypertriglyceridemia therapy
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such as fibrates helps attenuate hepatic MTP activity and curb VLDL-TG overproduction in
animal models with diet-induced dyslipidemia.67,69,71,79 PPAR-α is known to bind
specifically to a highly conserved DNA sequence that comprises 2-hexamer repeats with one
nucleotide in between (AGGTCAXAGGTCA) in target promoters. Such a consensus PPAR-
α binding site is lacking within a 5-kb DNA region (−5000/+1 nt) of human and mouse MTP
promoters. Further studies are needed to reconcile the stimulatory action of PPAR-α on hepatic
MTP production with the ameliorating effect of PPAR-α agonists on hypertriglyceridemia.

Although MTP plays an obligatory role in the lipidation of apoB for VLDL assembly and
secretion, there is evidence that hepatic VLDL production is upregulated without significantly
altering hepatic MTP mRNA levels in genetically modified mice that over-express human apoB
but lack brown adipose tissue (Batless).80 In keeping with this observation, two independent
groups show that the late addition of core lipids to apoB molecules, a critical step for VLDL
maturation in the lumen of ER, is independent of MTP, as selective inhibition of MTP activity
does not seem to affect apoB100 secretion during the later stages of lipoprotein assembly.81,
82 While MTP is required for transferring lipids to nascent apoB polypeptides in coupling with
translation during the initial phase of VLDL assembly, these data argue against the requirement
of MTP in the late stage of VLDL assembly, in which bulk core lipids are incorporated into
poorly lapidated apoB for the production of mature VLDL particles.81,83 Thus, it remains an
unsettled question of whether MTP is absolutely necessary for the late stage of VLDL
assembly. Studies are needed to further delineate the VLDL secretion pathway for better
understanding of the molecular basis of hypertriglyceridemia.

Hepatic Regulation of apoB Expression
ApoB is a structural component of triglyceride-rich lipoproteins. There are two forms of apoB,
namely apoB100 and apoB48 that are differentially expressed in humans.84 ApoB100 is
expressed in the liver and is responsible for VLDL-TG production in the post-absorptive phase,
whereas apoB48 is produced in the intestine and required for postprandial chylomicron
secretion. In mice and rats, apoB48 is also produced in the liver.85 It is noteworthy that apoB48
is translated from its distinct mRNA that is derived from apoB100 mRNA editing, a
posttranscriptional process by which a C is converted to a U at nucleotide 6666. This single
nucleotide change results in the conversion of CAA (Gln-2153) to a stop codon UAA. As a
result, apoB48 comprises the N-terminal 48% of apoB100.86,87

Unlike MTP that is an ER-resident chaperone, apoB is a secretory glycoprotein whose
lipidation by MTP is essential for VLDL assembly and secretion. As depicted in Figure 2, this
dynamic process of VLDL assembly depends on substrate availability, which is counteracted
by insulin.33,88–91 Consistent with this model is the evidence that the synthesis of apoB is
closely coordinated with MTP protein activity.92,93 In the presence of lipids, nascent apoB
undergoes rapid lipidation that is facilitated by MTP. This process is kinetically coupled with
translation and translocation of apoB polypeptides into the ER lumen for VLDL assembly and
secretion. In the absence of lipids, nascent apoB molecules are unable to engage in lipidation
and are destined for proteasome-mediated degradation.83,94 This fine-tuning mechanism
serves as a quality control process for allowing physiological secretion of VLDL particles in
the access of lipids.

Given its importance in lipoprotein metabolism, the molecular mechanism underlying insulin-
and/or substrate-dependent regulation of apoB secretion has received intensive investigations.
One potential mechanism suggests that insulin inhibits apoB secretion by stimulating apoB
degradation. Consistent with this notion is the observation that insulin suppresses apoB
expression and promotes proteasome-mediated apoB degradation in cultured HepG2 cells,
primary rat hepatocytes, and perfused rat livers.91,95–100 Alternatively, insulin inhibits
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hepatic apoB secretion by limiting its substrate FFA availability.91,101,102 Indeed, insulin
has been shown to restrain FFA mobilization from adipose tissue by inhibiting the hormone-
sensitive lipase.103 It is thought that such an inhibitory action of insulin along with substrate
availability is critical for the liver to adjust the rate of hepatic VLDL-TG secretion in response
to changes in metabolic states. In insulin resistant states, an increased FFA flux into the liver,
resulting from unrestrained fat mobilization in adipose tissue, augments apoB secretion,
contributing to hepatic VLDL-TG overproduction and the development of dyslipidemia.
Indeed, hepatic apoB production is markedly elevated, accompanied by increased VLDL-TG
secretion in animal models with whole-body insulin resistance and altered triglyceride
metabolism.67,70,94,104–110 There is clinical evidence that elevated plasma apoB levels,
which reflect the number of small, dense LDL particles in plasma, are a significant predictor
of cardiovascular risk in subjects with metabolic syndrome.111–116

As discussed above, hepatic apoB production is tightly regulated at the posttranslational level.
This process has been viewed as a safeguarding mechanism for protecting against the
development of steatosis by enhancing VLDL secretion in the response to lipid overload into
the liver. This view raises an important question: why the liver cannot rid of excessive lipids
and avoid steatosis by accelerating VLDL secretion in the face of lipid excess such as in
obesity? A significant clue to this question derives from the study by Ota et al.,107 who show
that hepatic apoB production is subject to regulation by ER stress, an adaptive response that is
elicited by the accumulation of unfolded or misfolded proteins in the ER lumen. They show
that an increased lipid infiltration into the liver induces ER stress and compromises the
secretory pathway. This effect inhibits hepatic apoB secretion and instigates lipid
accumulation, contributing to the development of steatosis.107 This lipid-induced hepatic ER
stress along with concomitant steatosis is detectable in both genetic and dietary models of obese
mice.107,117,118 Likewise, we and others show that high fructose-induced
hypertriglyceridemic hamsters also exhibit hepatic ER stress, accompanied by excessive fat
deposition in the liver.67,70,108,119 Together these data elucidate that lipid-induced ER stress
links aberrant apoB secretion to the development of hepatic steatosis associated with obesity.

FoxO1 Integrates Insulin Signaling to Hepatic VLDL Production
FoxO1 is a nuclear transcription factor that belongs to a protein family characterized by a highly
conserved DNA binding motif, termed “forkhead” domain, including FoxO1 (FKHR), FoxO3a
(FKHRL1), FoxO4 (AFX) and FoxO6 in mammals.120–122 These fork-head proteins are
substrates of the Akt/PKB and SGK kinases and play important roles in insulin action.120,
121,123–128 Insulin exerts its inhibitory effect on gene expression via a highly conserved
insulin response element (IRE) with its core nucleotide sequence (TG/ATTTT/G) in the
promoter. In the absence of insulin, FoxO1 resides in the nucleus (Fig. 3A) and binds as a trans-
activator to IRE, enhancing promoter activity. In response to insulin, FoxO1 is phosphorylated
through the PI3K-dependent pathway, resulting in its nuclear exclusion (Fig. 3B) and inhibition
of target gene expression.123,129–133 Failure in phosphorylation of FoxO1 results in its
constitutive nuclear localization and trans-activation of gene expression.130,134

As shown in Figure 4, FoxO1 comprises two structural domains, the amino forkhead domain
that is necessary for DNA binding and the carboxyl trans-activation domain that is responsible
for stimulating promoter activity.131 These two domains are functionally separable, as the
carboxyl domain, when fused with a heterologous Gal4-DNA binding domain, is capable of
stimulating Gal4 promoter activity.135 In contrast, a truncated version of FoxO1 containing
the forkhead domain is able to bind IRE DNA, but its binding does not result in trans-activation
of promoter activity.136 This unique property accounts for its dominant-negative phenotype
in suppressing target gene expression.129,136
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Recently, we demonstrate that FoxO1 mediates insulin-dependent regulation of MTP
expression in modulating hepatic VLDL secretion.66 We show in cultured HepG2 cells that
hepatic MTP production is stimulated by FoxO1 and inhibited by insulin. This effect correlates
with the ability of FoxO1 to bind at its target site in the MTP promoter, resulting in trans-
activation of MTP promoter activity. Deletion or mutation of the FoxO1 binding site disables
FoxO1 binding to the MTP promoter and abrogates insulin-dependent regulation of hepatic
MTP production. FoxO1 gain-of-function, resulting from either FoxO1 transgenic expression
or adenovirus-mediated FoxO1 production in the liver, augments hepatic MTP expression and
promotes apoB secretion, contributing to a significant induction in both the number and size
of VLDL-TG particles. Both VLDL-TG production and apoB secretion are increased in
response to elevated FoxO1 production in HepG2 cells and mice. Conversely, FoxO1 loss-of-
function, caused by RNAi-mediated FoxO1 knockdown in the liver, suppresses hepatic MTP
expression and reduces hepatic VLDL-TG output in mice.

These data shed light on the mechanism that the liver has evolved to adjust hepatic VLDL-TG
assembly and secretion to maintain lipid homeostasis and energy balance in different
physiological states. It follows that in response to postprandial insulin release, FoxO1 is
phosphorylated and excluded from the nucleus, resulting in the inhibition of hepatic MTP
expression. This effect acts to abate VLDL-TG production and limit postprandial lipid
excursion in the blood. As a result of insulin resistance, FoxO1 is preferentially localized in
the nucleus due to the inability of FoxO1 to undergo insulin-dependent phosphorylation and
unclear exclusion. This effect augments FoxO1 transcriptional activity in promoting hepatic
MTP and VLDL-TG overproduction. These data suggest that unleashed FoxO1 activity in
insulin resistant livers plays an important role in linking impaired insulin action to excessive
VLDL-TG secretion, contributing to the development of hypertriglyceridemia in obesity and
type 2 diabetes.66,137 Consistent with this model, we show that hepatic MTP abundance and
hepatic VLDL-TG production are markedly upregulated, correlating with augmented hepatic
FoxO1 activity in multiple models of mice with altered triglyceride metabolism, including high
fat-induced obese mice, diabetic db/db mice, FoxO1-transgenic mice, and high fructose-
induced hypertriglyceridemic hamsters.66,67,108,129,138,139

These data are consistent with the idea that FoxO1 dysregulation is associated with aberrant
hepatic metabolism.139–141 Further support of this notion is provided by Valenti et al.,142
who report that an enhanced FoxO1 activity is associated with nonalcoholic steatohepatitis in
humans. This raises an important hypothesis that selective inhibition of FoxO1 activity in
insulin resistant livers would curb hepatic VLDL-TG overproduction and ameliorate
hypertriglyceridemia. As a proof of the concept, Samuel et al.,143 show that targeted inhibition
of FoxO1 by an anti-sense oligonucleotide approach results in significant improvement in
peripheral insulin sensitivity, glucose and lipid metabolism in high fat-induced obese mice.
Likewise, we demonstrate that functional inhibition of FoxO1 by adenovirus-mediated
production of FoxO1 dominant-negative mutant in the liver improves whole-body insulin
sensitivity and reduces hyperinsulinemia, contributing to improved carbohydrate metabolism
in diabetic db/db mice.129 Furthermore, FoxO1 haplo-insufficiency protects from high fat-
induced insulin resistance and lipid disorders in insulin receptor-deficient diabetic mice.144
In keeping with observation, Dong et al., show that liver-specific depletion of FoxO1 is
sufficient to restore the metabolic abnormality in diabetic mice with genetic deletion of both
insulin receptor substrate 1 (IRS1) and 2 (IRS2) genes.145

Our recent data of using RNAi-mediated FoxO1 knockdown approach to curb hepatic VLDL-
TG overproduction have validated the concept that FoxO1 deregulation contributes to aberrant
hepatic metabolism and selective inhibition of FoxO1 in insulin resistant livers contributes to
improved glucose and lipid metabolism.139,140 It also prompts an urgent call for the
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development of an antagonist compound for targeted inhibition of FoxO1 activity in vivo for
testing its therapeutic value in preclinical models of diabetic dyslipidemia.

Conclusion
FoxO1 has emerged as an important player in integrating insulin signaling to downstream target
gene expression in carbohydrate metabolism. FoxO1 mediates the inhibitory effect of insulin
on the expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-
phosphatase (G6Pase), two key enzymes in hepatic gluco-neogenesis.120,121,139 Under
fasting conditions, FoxO1 expression along with its nuclear distribution is increased,
accounting for its augmented transcriptional activity to promote hepatic gluconeogenesis.
Under fed conditions, FoxO1 is phosphorylated and translocated to the cytoplasm, resulting
in inhibition of gluconeogenesis in the liver. These two reciprocal mechanisms play a critical
role in maintaining blood glucose levels within a narrow physiological range in different
metabolic states.120,121

Our recent data suggest that a similar mechanism is exploited by the liver to regulate hepatic
VLDL-TG secretion for maintaining normal triglyceride metabolism.66 This is achieved via
FoxO1-mediated regulation of MTP and apoB production in response to insulin action in the
liver. As illustrated in Figure 5, hepatic insulin signaling bifurcates at FoxO1 to target different
sets of genes in glucose and lipid metabolism. Such a FoxO1-accentuated regulatory
mechanism is evolved for synchronizing insulin-dependent regulation of hepatic glucose
production and VLDL-TG secretion for priming the liver to respond to metabolic shift between
fasting and refeeding states. However, an impaired ability of insulin to check FoxO1 activity
consequently triggers concomitant perturbations in glucose and lipid metabolism, accounting
for concurrent manifestations of both hyperglycemia and hypertriglyceridemia in insulin
resistant subjects with obesity and/or type 2 diabetes.

It is of note that FoxO1 is a nuclear transcriptional factor that is ubiquitously expressed.
However, a comprehensive survey of FoxO1 function in other insulin sensitive tissues,
including the brain,146,147 skeletal muscle,148,149 pancreas150,151 and adipose tissue,
152,153 is beyond the scope of this article. Due to space limitation in this article, we have
centered our review on recent advances made toward our understanding of the underlying
mechanism of VLDL overproduction in the liver, a prominent pathological feature of
hypertriglyceridemia. In addition, there is emerging evidence that intestinal overproduction of
apoB48-containing lipoproteins is a compounding factor for the pathogenesis of postprandial
lipaemia and diabetic dyslipidemia in insulin resistant subjects.64,154–156 In accordance with
these findings, intestinal MTP and apoB48 expression levels are markedly elevated in
enterocytes isolated from hyperlipidemic animals.157–159 Nevertheless, the molecular
pathway from insulin resistance to aberrant production of apoB48-containing lipoprotein
particles remains largely undefined. It is noteworthy that FoxO1 is also expressed in the
intestine,138 but its role in regulating intestinal MTP and apoB48 expression in response to
insulin action remains obscure. Further studies are needed to decipher the molecular basis
underlying intestinal overproduction of apoB48-containing lipoproteins for better
understanding the pathophysiology of postprandial lipaemia that are closely associated with
obesity and type 2 diabetes.
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Abbreviations
FoxO1  

forkhead box O1

MTP  
microsomal triglyceride transfer protein

ApoB  
apolipoprotein B

IRS  
insulin receptor substrate

PEPCK  
phosphoenolpyruvate carboxykinase

G6Pase  
glucose-6-phosphatase

PPARα  
peroxisome proliferator activated receptor alpha

PGC1β  
PPARgamma coactivator-1beta

Foxa2  
forkhead box a2

HNF4α  
hepatocyte nuclear factor 4alpha

HNF1α  
hepatocyte nuclear factor 1alpha

VLDL  
very low-density lipoprotein

LDL  
low density lipoprotein

HDL  
high density lipoprotein

TG  
triglyceride

FFA  
free fatty acid
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Figure 1.
Hepatic VLDL overproduction. Unrestrained fat mobilization, resulting from peripheral
insulin resistance (IR), leads to increased FFA flux into the liver. This effect stimulates hepatic
lipogenesis and promotes VLDL overproduction, contributing to hypertriglyceridemia in
insulin resistant subjects with obesity and type 2 diabetes.
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Figure 2.
Hepatic VLDL assembly. The assembly of VLDL initiates with the lipidation of nascent apoB
polypeptides in a process that is mechanistically coupled with apoB translation and
translocation into the ER lumen. MTP acts as a molecular chaperone for transporting lipids to
nascent apoB molecules, resulting in the production of triglyceride (TG)-rich VLDL particles.
It remains a debatable issue of whether MTP is required for the late stage of VLDL assembly,
in which bulk core lipids are incorporated into poorly lapidated apoB for the maturation of
VLDL particles.
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Figure 3.
Insulin-mediated FoxO1 protein trafficking in HepG2 cells. (A) FoxO1 is localized to the
nucleus (N) in the absence of insulin. (B) In response to insulin, FoxO1 is translocated to the
cytoplasm (C). HepG2 cells pre-transfected with a plasmid encoding FoxO1-GFP fusion
protein are exposed to insulin (100 nM) for 15 min, followed by immunofluorescent
microscopy.
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Figure 4.
Schematic depiction of FoxO1 protein. FoxO1 comprises the amino DNA binding domain and
carboxyl trans-activation domain. The DNA binding domain is formed by three α-helix
structural motifs. Within the DNA binding domain are two consensus nuclear localization
signals (NLS) and three highly conserved phosphorylation sties (T24, S256 and S319).
Phosphorylation of FoxO1 in response to insulin promotes FoxO1 translocation from the
nucleus to cytoplasm. This effect results in inactivation of FoxO1 transcriptional activity and
inhibition of target gene expression, as FoxO1 is removed from its active nuclear location.
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Figure 5.
FoxO1 integrates insulin signaling to hepatic glucose and VLDL production. Insulin binds to
its receptors (Insr) at cell surface, resulting in the activation of a cascade of events including
insulin receptor substrate (IRS), PI3-kinase, and Akt (known as protein kinase B, PKB). Insulin
inhibits FoxO1 activity via Akt/PKB-dependent phosphorylation and nuclear exclusion. This
effect is instrumental for liver to curb hepatic glucose and VLDL-TG production and limit
postprandial glucose and lipid excursion. Loss of insulin inhibition of FoxO1 activity in insulin
resistant livers results in excessive production of both glucose and VLDL-TG, contributing to
the dual pathogenesis of hyperglycemia and hypertriglyceridemia in diabetes.
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