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Abstract. Physiologically based pharmacokinetic (PBPK) models are composed of a series of differential
equations and have been implemented in a number of commercial software packages. These models
require species-specific and compound-specific input parameters and allow for the prediction of plasma
and tissue concentration time profiles after intravenous and oral administration of compounds to animals
and humans. PBPK models allow the early integration of a wide variety of preclinical data into a
mechanistic quantitative framework. Use of PBPK models allows the experimenter to gain insights into
the properties of a compound, helps to guide experimental efforts at the early stages of drug discovery,
and enables the prediction of human plasma concentration time profiles with minimal (and in some cases
no) animal data. In this review, the application and limitations of PBPK techniques in drug discovery are
discussed. Specific reference is made to its utility (1) at the lead development stage for the prioritization
of compounds for animal PK studies and (2) at the clinical candidate selection and “first in human” stages
for the prediction of human PK.
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INTRODUCTION

During the drug discovery process, many compounds are
screened for their absorption, distribution, metabolism and
excretion (ADME) properties using both in vitro and in vivo
resource. To optimize the use of such screening, there has
been a growing demand to predict human pharmacokinetics
(PK) as early as possible. Accurate predictions of human PK
would reduce failures in clinic related to poor ADME
properties by enabling the early selection of the best
candidates for development and the rejection of those with
a low chance of success. Such PK predictions could be used to
help choose the first dose for a clinical trial, to test the
suitability of the compound for the particular dosage regimen,
and even to predict the expected variability in the intended
population. A large number of methodologies have been
established for PK prediction, including allometric scaling
(1–4) and physiologically based pharmacokinetic (PBPK)
modeling (5,6). Until recently, the use of PBPK modeling
had been limited in drug discovery and development due to
the mathematical complexity of the models and the large
amounts of in vivo animal tissue concentration data required.
However, advances in the prediction of hepatic metabolism
(7–10) and tissue distribution (11–17) from in vitro and in silico
data have made these models more attractive (18–25). PBPK
models provide the opportunity to integrate key input parameters

from different sources not only to estimate PK parameters and
predict plasma and tissue concentration–time profiles but also
to gain mechanistic insight into compound properties.

Several commercial PBPK packages have become available
(26) (http://www.simulations-plus.com/; http://www.simcyp.com/;
http://www.pk-sim.com/; http://www.cyprotex.com/), and strate-
gies for the application of PBPK in the drug discovery setting
have been published and evaluated recently (23,24). This paper
describes the PBPK methodology used in drug discovery,
together with the applications and limitations of such models
with reference to specific case studies within Pfizer.

PBPK MODEL STRUCTURE AND METHODS
USED TO GENERATE THE NECESSARY INPUT DATA

PBPK Model Structure

PBPK models are composed of many compartments
corresponding to the different tissues of the body, e.g.,
adipose, bone, brain, gut, heart, kidney, liver, lung, muscle,
skin, and spleen, which are connected by the circulating blood
system (arterial and venous). A schematic of a PBPK model
is shown in Fig. 1. Each compartment is defined by a tissue
volume and a tissue blood flow rate which is specific for the
species of interest. These physiological parameters are
available from several sources in the literature (23,27,28). A
tissue can be described as either perfusion-rate-limited or
permeability-rate-limited. Perfusion-rate-limited kinetics
tends to occur for small lipophilic molecules that have no
trouble crossing membranes; in this case, the blood flow to the
tissue becomes the limiting process. Permeability-rate-limited
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kinetics occurs for polar larger molecules that have difficulty
penetrating the tissue; here, the permeability across the cell
membrane becomes the limiting process. Generic PBPKmodels
used in drug discovery usually assume perfusion-rate-limited
kinetics, and in general, the liver and kidney are considered to
be the only sites of elimination. The mass balance differential
equations used in the model have been described previously
(23) and follow the principles shown below.

Non� eliminating tissues : VT � dCT=dt¼QT � CA�QT � CVT

ð1Þ

where Q is blood flow (L/h), C is concentration (mg/L), V is
volume (L),T is tissues,A is arterial,V is venous,CVT =CT/Kp,
where Kp is tissue to plasma partition coefficient of the
compound.

eliminating tissues : VT � dCT=dt¼QT

� CA�QT � CVT � CLint: � CVT

ð2Þ

where CLint is the intrinsic clearance of the compound (L/h).
As well as species-specific physiological parameters, the

model requires compound-specific information [i.e., metabolic
clearance (CL), tissue to plasma partition coefficients (Kp

values), and the rate and extent of absorption] to predict the
plasma concentration time profile of the compound in the species
of interest (e.g., rat, dog, human) after intravenous (i.v.) or oral
administration. The mechanistic model provides a physiological
framework facilitating the incorporation of other processes, e.g.,
active transport processes, when such data are available.

Methods to Predict CL

An important compound-specific parameter required for
PBPK modeling is CL. Human CL is often predicted from
preclinical species using allometric scaling (1,2,29–34). This

can be achieved using preclinical data from multiple species.
Such methods assume that differences in CL across species
can be predicted by accounting for body weight differences.
Corrections for brain weight (BRW) or maximum lifespan
(MLP) can also be made. Mahmood and Balian (2) has
proposed a rule of exponents to help determine in a prospective
manner when and which correction factors should be used. An
analysis from Sinha et al. (35) suggested that the most accurate
prediction of human oral CL (CL/F) was obtained by scaling
unbound CL/F in animal species using the rule of exponents to
apply MLP or BRW corrections. For some compounds, the
unbound fraction in plasma (fup)-corrected intercept method
worked best (34). Some authors have proposed that it is possible
to predict human PK from data in a single preclinical species
using a fixed exponent method. For instance, Chiou et al. (36)
showed that for a set of 54 extensively metabolized compounds,
the mean allometric exponent for scaling from rat to human was
0.66. For initial predictions of human PK, we routinely use single
species scaling of unbound CL from the rat with a fixed
allometric exponent of 0.75.

Methodologies available for predicting hepatic CL (CLH)
from in vitro systems (e.g., hepatocytes and microsomes) have
been described in detail by Houston (7) and have been
validated extensively in the rat (37–39). With advances in the
storage and availability of human tissue, these approaches
have been used successfully to predict human CLH in a number
of cases (8–10). When scaling an in vitro CL to an in vivo CL
value, the first step is to obtain an intrinsic CL (CLint) value
from microsomal or hepatocyte data. In the discovery setting,
such data are normally obtained from substrate depletion
assays. CLint values are normalized for cell or microsomal
protein concentration to obtain units of microliters per minutes
per 106cells or microliters per minute per milligram of protein
and subsequently corrected for any non-specific binding to give
an unbound CLint [CLint(u)]. Binding to microsomes can be
measured in vitro using techniques such as equilibrium dialysis
and ultrafiltration or can be predicted using a number of in
silico methods (40–43). In vitro CLint(u) can then be scaled to
in vivoCLint(u) using formal scaling procedures accounting for
the microsomal recovery or hepatocellularity and liver weight
as described by Houston (7). Values for microsomal recovery
and hepatocellularity are available in the literature for both rat
and human (8,44–46). Finally, the in vivo CLint(u) value is used
together with blood binding data and liver blood flow within a
liver model, e.g., the well-stirred liver model to predict CLH.
The main liver models used are the well-stirred model, the
parallel-tube model, and the dispersion model. The different
attributes of these models have been compared extensively in
the literature (37,38).

The prediction of human renal CL (CLR) is normally
made using in vivo preclinical data, as no in vitro model is
available to scale CLR. In this context, allometric scaling from
one or multiple species are usually used. If a compound is
cleared by glomerular filtration only and is not reabsorbed or
subjected to active uptake processes, CLR can be predicted
from the glomerular filtration rate and plasma protein binding.

Methods to Predict Distribution

The development of mechanistic tissue composition
equations (11–17) for the prediction of in vivo Kp values,

Fig. 1. A schematic of a PBPK model (Q blood flow, CLint intrinsic
clearance)
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and hence distribution in rat and human, have revolutionized and
greatly extended the applicability of the PBPK approach to early
drug discovery by reducing the need for in vivo experiments.

The first set of tissue composition equations was
developed by Poulin and coworkers (11–13) and later
modified by Berezhkovskiy (14). A detailed explanation of
the mechanistic basis for these equations has been described
(11–14). Briefly, these equations assume that the drug
distributes homogenously into the tissue and plasma by
passive diffusion where two processes are accounted for: (1)
non-specific binding to lipids estimated from drug lipophilicity
data (LogP and LogD) and (2) specific reversible binding to
common proteins present in plasma and tissue estimated from
fup. The main compound-specific input parameters are the
pKa, LogD, and fup. The species-specific tissue composition
parameters have been reported by Poulin and Theil (13).

Rodgers and co workers (15–17) extended and improved
upon these tissue composition equations by incorporating
ionization/charge considerations. A detailed explanation of the
mechanistic basis for these equations has been described (15–17).
Briefly, these equations account for four main processes: (1)
partitioning of unionized drug into neutral lipids and neutral
phospholipids, (2) dissolution of ionized and unionized drug in
tissue water, (3) electrostatic interactions between ionized drug
and acidic phospholipids for strong ionized bases, and (4)
interactions with extracellular protein for neutrals, weak bases,
and acids. The main compound-specific input parameters are the
LogP, pKa, blood to plasma partitioning, and unbound fraction in
plasma. The species-specific tissue composition parameters have
been reported in Rodgers and Rowland (17).

Furthermore, Vss (volume of distribution at steady state)
can be calculated using Eq. 3 as described previously (47).

Vss¼
X

VT �KpT
� �þ VE � E=Pð Þ þ VP ð3Þ

where E is erythrocyte and E/P is the erythrocyte/plasma
ratio, which was estimated from B/P and the hematocrit
content in blood (Ht).

Methods to Predict Absorption

Various simulation packages are available for the pre-
diction of the rate and extent of oral absorption in human and
preclinical species, e.g., GastroPlus™, SimCYP Ltd,
PKSIM®, and ChloePK®. The models underlying these
packages are based on the CAT model described by Yu and
Amidon (48). The GastroPlus™ “advanced compartmental
absorption transit” model (ACAT) (49), the SimCYP©
“advanced, dissolution, absorption and metabolism” model
(ADAM) (50), and the PKSIM® absorption model (51,52)
have been described in detail in the literature. In brief, these
absorption models are physiologically based transit models
consisting of several compartments corresponding to different
segments of the digestive tract, which describes the release,
dissolution, degradation, metabolism, uptake, and absorption
of a compound as it transits through the different segments of
the digestive tract. The simulation software uses a variety of
in vitro and in silico input data such as solubility, permeability,
particle size, LogP, pKa, and dose together with a series of
differential equations to model the kinetics associated with
each of these processes.

Prediction Accuracy

Prediction accuracy is normally assessed in terms of the
fold error from the observed value. In our work, we have
considered less than twofold error to be an accurate
prediction, i.e., if something is predicted to be within twofold
error of the observed value, then the error is not greater than
twofold. However, for some parameters and compounds,
better prediction accuracy may be required. This is discussed
later in the manuscript.

APPLICATIONS AND LIMITATIONS OF PBPK
METHODOLOGY WITHIN PROJECTS AT PFIZER

PBPK Modeling in Lead Development (Prioritization
for Animal PK Studies)

One potential application of PBPK modeling approaches
is to predict animal PK before conducting studies with the
aim of prioritizing compounds for animal studies and
reducing the number of animal experiments needed. To do
this, it is necessary to predict the absorption (if dosing orally),
distribution, and CL of the compounds in question. Unlike
later stages where information from preclinical species can be
used to aid the predictions, in drug discovery, the prediction
of these processes relies on the use of physicochemical
properties, in vitro data, and increasingly in silico data. While
there has been a great deal of progress in recent years in
predicting absorption and distribution of compounds, the
most difficult process to predict early in the life of a project is
the CL. The prediction of these different processes will be
discussed below in the context of animal PK at the lead
development stage.

PBPK methods can be used within the discovery
environment effectively to predict absorption and may help
reduce the number of animals used. For example, Fig. 2
shows the accurate simulation of oral plasma concentration
time profiles for a number of diverse (LogD, pH 7.4, 1.2–3.8;
fup 0.008–0.52; PAMPA permeability 4–32×10−6 cm/s),
soluble analogues from a discovery program following doses
of 1 or 2 mg/kg to the rat. The only inputs into the
GastroPlusTM ACAT model were in vitro solubility (as
measured in phosphate buffer) and permeability inputs
(routinely available at the discovery stage) combined with
known i.v. disposition. In vitro flux in MDCK-MDR1 cell
lines indicated that these analogues were not substrates for P-
glycoprotein. It was assumed that gut metabolism was not
limiting oral absorption. Despite this assumption, confidence
gained by accurate prediction of oral PK for several
compounds in the series reduced the need for further
studies by allowing the scientist to rely totally on simulation.

In addition to this, we have shown that this approach is
valid for compounds from across our project portfolio. This
retrospective analysis of oral PK profiles in rat allowed
accurate prediction (within twofold) of Cmax (maximum
concentration), Tmax (time of maximum concentration), and
area under the plasma concentration time curve (AUC) in 60,
90, and 46% cases, given intravenous disposition, in vitro
solubility in a physiologically relevant media (e.g., FeSSIF,
fed state simulated intestinal fluid), and permeability esti-
mates. The apparently poorer AUC prediction accuracy was
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skewed by poor performance at high doses (only 20% of the
predictions were within twofold error when the oral dose was
>20 mg/kg). The success of these retrospective analyses built
confidence within the project team that these techniques could
be employed prospectively to both reduce animal use and the
costs associated with routine pharmacokinetic profiling, while
also increasing the speed with which compound selection could
proceed, given routinely available in vitro data.

There has been an improvement in the ability to predict the
distribution of candidate agents from physicochemical proper-
ties and in vitro data. Methodologies proposed by both Rodgers
and Rowland and Poulin and Theil have been outlined in the
previous section and can be employed to prioritize candidates
for progression to pre-clinical in vivo studies. A representative
selection of the literature in this area, in addition to the
experience in our own laboratories, is summarized in Table I.

A number of different authors (12,17,20,54) have
reported the encouraging performance of these mechanistic

equations, each having demonstrated accurate prediction of
rat Vss (within twofold of observed) for greater than 60% of
candidates. Poorer prediction accuracy has been reported by
Germani et al. (53); however, this work focused primarily on
the equations proposed by Poulin and Theil. Our own
experiences confirm the utility of these approaches with
accurate prediction of rat Vss being achieved in 60% of cases
for both Poulin and Theil and Rodgers and Rowland
approaches. One advantage to the prediction of Vss using
these mechanistic tissue composition equations is the gener-
ation of Kp values which can be used within PBPK models,
potentially resulting in better predictions of plasma concen-
tration time profiles particularly in terms of shape when
concentration versus time profiles are multi-exponential.

In our laboratories, we have investigated the distribution
of a small number of candidates (n=6) into rat heart, muscle,
and lung tissues following infusion to steady state. We note
the broad agreement (67% within twofold error of the

Fig. 2. Prediction of absorption in rat for a series of analogues using GastroPlus. Solid line,
prediction; open square, observed data; dotted line, lower limit of quantification (if applicable
to scale)
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observed value) between predicted and observed distribution
into muscle and heart tissue. In addition, while the overall
prediction of distribution into lung tissue was quantitatively
less accurate (33% within twofold), it is interesting to note
that our findings do not mirror the tendency to under-predict
distribution into the lung tissue that has been demonstrated
previously (15,54).

Perhaps the most difficult PK parameter to predict is CL;
however, again, this is an essential input parameter for PBPK
modeling. When simulations are performed before the
compound is dosed to animals, in vivo data are, by definition,
not available. Therefore, this parameter needs to be predicted
from in vitro systems. In an analysis of recent in vivo rat PK
studies at Pfizer Sandwich, it was found that when rat liver
microsomal data were scaled to an in vivo blood CL (CLb),
accounting for microsomal, plasma protein binding, and for
the blood/plasma ratio, there was an average fivefold under-
prediction of actual CLb. The predicted CL was within
twofold of the actual value for only five of 37 compounds
(13%; Fig. 3a). This trend for fivefold under-prediction was
also seen when the dataset was expanded to 89 compounds
[where the blood/plasma ratio was assumed to be 1 for the
cases where it had not been measured; this assumed value is

close to the mean blood/plasma ratio (0.98) of the 37
measured values available].

Although the scaling shown in Fig. 3a used an in silico
estimate of microsomal fraction unbound (fumic) (43), the
fivefold under-prediction was also seen for a smaller subset of
20 compounds where the fumic had been experimentally
determined by equilibrium dialysis. The under-prediction
seems to be due to an underestimation of CLint from the in
vitro incubation. Possible reasons for this observed under-
prediction include metabolism by hepatic enzymes other than
P450, metabolism of the compound in extrahepatic tissues,
CL by non-metabolic mechanisms, e.g., hepatic uptake, and
the enzyme activity in the in vitro system possibly not being
representative of the activity in vivo.

Although lacking scientific rigor, empirically multiplying
the in vitro CLint by 10 gives an average fold error of 2.1 with
no systematic bias (70% of compounds are predicted to be
within twofold of the actual CL).

When a plot of in vitro versus in vivo CLint is made
(Fig. 3b) for the same set of compounds (limited to those with
CLb<60 ml min−1 kg−1 and assuming hepatic blood flow to be
70 ml min−1 kg−1), there appear to be two groups of
compounds identified (those with <10 and those with >10

Fig. 3. Rat in vivo CL prediction accuracy from rat in vitro systems. a Predicted (from rat microsomal CLint)
versus observed in vivo blood clearance (CLb) for a series of 37 compounds for which in vivo intravenous
rat PK data were determined at Pfizer, Sandwich. The solid line is the line of unity. b Predicted (from rat
microsomal CLint) versus in vivo CLint for a series of 23 compounds. The solid line is the line of unity. c
Comparison of rat liver microsomal data and hepatocyte date for 37 compounds. The solid line is the line of
unity. d Predicted (from rat hepatocyte CLint) versus in vivo CLint for a series of 24 compounds. The blue-
and pink-colored compounds are the same compounds in the rat liver microsomal plot (b). There is much
less distinction between blue and pink compounds when hepatocyte data are used
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fold error). Those shown in diamonds show a reasonable
correlation with the in vivo CLint (R

2>0.7), although there is
approximately on average a fivefold under-prediction of CLint

and no cases where in vitro CLint was greater than in vivo
CLint. The squares represent a subset of compounds with
extremely poor predictions of CLint from the rat liver
microsomal data (all compounds had greater than tenfold
error and the average fold error for this subset was 30).

When data for rat hepatocytes and rat liver microsomes
(for 37 of the compounds where data in both systems was
available) are compared, the scaled CLint(u) from hepato-
cytes showed a tendency towards higher values than the rat
liver microsomal data (Fig. 3c). However, compared to in vivo
CLint(u), there was still an average fold error of 5.5-fold
between in vitro (from hepatocytes) and in vivo estimates (n=
24), although for five compounds, the in vitro estimate was
higher than that seen in vivo (Fig. 3d). In general, the
compounds poorly predicted in rat liver microsomes (average
fold error >10) were predicted better using hepatocytes
(compare Fig. 3b, d). In vitro estimates of CLint(u) from
hepatocytes were used to calculate CL (using the well-stirred
model) for 38 compounds. The average fold error for these
compounds was 4.4-fold, which, although better than that seen
with rat liver microsomes, is still not good enough to be used in
PBPK simulations. Five compounds had in vitro CL predictions
greater than the actual in vivo CL, and for 31% of compounds,
the predicted CL was within twofold of actual value.

Table II summarizes a number of publications which
have similarly endeavored to correlate the CLint observed
from in vitro rat liver microsome or rat hepatocyte incuba-
tions with in vivo CLint. While not intending to be a full and
complete review of literature in this area, it is clear that there
is a divergence of opinion as to the quantitative nature of the
predictive power of the in vitro systems. For example,
Houston and Carlile (37) reported successful prediction
(70% within twofold) of rat CL from hepatocyte data, while
a tendency to under-predict in vivo CL was observed using
microsome data. Similarly, Ito and Houston (38) demonstrated
an ability to predict rat CL from both microsome and
hepatocyte data using either the well-stirred, parallel-tube, or
dispersion models of the liver. While the quantitative predic-
tion was more accurate using hepatocytes (accurate prediction
in greater than 60% of cases), both methods offered a
reasonable prediction of in vivo CLint centered around unity.
Clarke and Jeffrey (61) looked at the ability of rat liver
microsomal CLint to predict the in vivo CL of 1163 compounds
across 48 discovery projects. Despite the limitations of the
analysis [(in vitro CLint was compared to in vivo CL (mixture
of CLb and CLp) and microsomal binding was not accounted
for], this analysis does show that across a broad scope of
chemical space, screening data can be used to roughly sort
compounds into bins. While this can be of value for initial
compound selection, a more defined estimate of CL is required
for accurate PBPK simulation.

Other authors have reported experiences similar to our
own laboratory. Under-prediction from rat microsome data
has been reported (54), which can only be corrected by the
omission of both binding terms. Similar observations have
been highlighted for hepatocyte data (20,53) where reasonable
quantitative estimates were obtained by assuming that fuhep
(fraction unbound in hepatocytes) and fub are equivalent.

While in many cases offering accurate predictions and being
similar to our own observations, the assumption that fumic is
equivalent to fub has been disputed (62). Omission of either
term sits uncomfortably with the mechanistically driven ap-
proach to predicting the behavior of candidates in vivo.

The reasons for the under-predictions from our own data
are not completely clear, but as can be seen from Table III, the
in vitroCLint values obtained in our in vitro assay are consistent
with (or greater than) literature values for a number of well-
studied compounds. Thus, the differences may well reflect that
the current chemical space being explored by the discovery
projects represented in this analysis is populated with com-
pounds that are cleared by non-CYP-mediated mechanism or
in extrahepatic tissues.

The observed discrepancy in the rat between in vitro and in
vivoCLint is a major stumbling block that is currently preventing
us from fully implementing PBPK methodology prior to animal
studies early in discovery projects. Although as illustrated
empirical scaling factors can be used to correct for this deficiency
to some extent, an explanation for the systematic under-
prediction of CLint in rat from in vitro systems would be a big
step forward enabling routine use of the PBPK techniques to
prioritize compounds for the first time in animal studies.

PBPK Modeling for the Prediction of Human PK
After Intravenous and Oral Administration

In recent years, there have been a number of publica-
tions from the pharmaceutical industry describing the use of
PBPK methods for the prediction of human PK (19,22–25).
Clearly, successful prediction of human PK requires the same
description of compound PK as has previously been discussed
in preclinical species, namely, distribution, CL, and, following
oral administration, absorption. The approaches used to
predict these processes in human are largely similar to those
methods employed preclinically. A representative summary
of the published literature in the distribution and CL areas
are shown in Tables I and II, respectively.

Jones et al. (23) proposed and validated a strategy for the
use of PBPK for human PK simulations. Essentially, the
PBPK simulation is initially performed in animals using
animal PBPK models, animal in vitro data (plasma binding
and blood/plasma ratio), and compound-specific physico-

Table III. Comparison of Rat Liver Microsome CLint for a Series of
Literature Compounds in the Rat Liver Microsome Assay at Pfizer
and in the Literature [Ito and Houston (38)]

Compounds

RLM CLint (μl min−1 mg−1)

Literature Pfizer

Alprenolol 80 >646
Diltiazem 250 604
Felodipine 500 2900
Nicardipine 6,700 >4,636
Omeprazole 330 178
Diclofenac 110 188
Ketoconazole 42 137
Metoprolol 44 23
Phenytoin 35 38
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chemical data. The animal simulation is compared with the in
vivo data. Providing the simulation in animals is reasonable;
the human simulation is performed using a human PBPK
model, human in vitro data, and compound-specific physico-
chemical data. If the simulation in animals is inaccurate, this
would indicate a violation of the assumptions of the model; in
this case, further experiments may be performed to under-
stand the mismatch, e.g., is it due to non-hepatic elimination
processes, permeability-limited tissue distribution, or involve-
ment of active transport processes.

This iterative simulation approach was validated by Jones
et al. (23) using a diverse set of 19 orally administered
compounds reaching clinical development between 1998 and
2002. For those compounds where good predictions of animal
PK were achieved, the accuracy in human in terms of the
percentage of compounds with an average fold error of less than
twofold was 92%, 67%, and 100% for AUC, Cmax, and Tmax,
respectively. The authors illustrated the importance of achieving
a good understanding in animals prior to the simulation in
human, as the prediction accuracy was reduced (76%, 47%, and
94% for AUC, Cmax, and Tmax, respectively) when the com-
pounds that were judged as having poor predictions in animals
were included in the human analysis. In all cases, the authors
observed that the PBPK approach was superior to standard
allometric scaling methods. The authors state that in general,
the compounds that were cleared by hepatic metabolism or
renal excretion and whose absorption and distribution were
governed by passive processes achieved good predictions using
PBPK methods. Significant mispredictions were achieved when
other elimination processes or active processes were involved.

Brightman et al. (22) used a PBPK model that had been
parameterized using an optimization process (training set 69
intravenously administered compounds taken from the litera-
ture) to simulate the human plasma concentration time profiles
of a test set of 18 intravenously administered compounds taken
from the literature. The prediction accuracy reported for CL

was 50% and 61% within two and threefold error of the
observed values, respectively.

DeBuck et al. (24) applied the prediction strategy
proposed by Jones et al. (23) to 26 compounds reaching clinical
development at Johnson and Johnson. Both intravenous and
oral administration data were available. For this set of mainly
strongly ionized bases, the authors observed that the tissue
composition equations developed by Rodgers and Rowland
(15) were superior to the Poulin and Theil (13) equations forVss

estimation (84% versus 32% within twofold error of the
observed value). This is to be expected for this class of
compounds, as these equations incorporate the electrostatic
interactions with the acidic phospholipids in the tissues. Using
these tissue composition equations together with the ACAT
model in GastroPlusTM, the authors achieved a prediction
accuracy of 84%, 74%, 65%, and 81% within twofold error of
the observed values for Vss, AUC, Cmax, and bioavailability.

In addition, Peters (25) simulated the human oral PK of
nine compounds from the literature to within twofold error of
the observed values by optimizing the CL and distribution
parameters through intravenous profile fitting.

In our company, we have compared PBPK modeling
(implemented in GastroPlusTM) to a simple one-compartmental
PK model prediction method for the simulation of human PK.
We performed intravenous and oral simulations for a set of 20
diverse in-house compounds which were selected based on the
availability of intravenous human PK data. Initial validation of
the PBPK modeling approach and assumptions was performed
in rat and dog as proposed by Jones et al. (23). Human IV PBPK
predictions were performed using the most appropriate tissue
composition equations for distribution, human liver microsomes
(accounting for bothmicrosomal and plasma protein binding) for
hepatically metabolized compounds, and allometric scaling from
a single species for non-hepatically metabolized drugs. Human
oral PBPK predictions were performed as above in combination
with the ACAT model to simulate the absorption profile. The

Fig. 4. Comparison of GastroPlus PBPK simulated profiles with the observed data for compound X. Solid line, GastroPlus PBPK prediction
from human liver microsome data; dotted line, GastroPlus PBPK prediction from dog CL data; open squares, observed data

Table IV. Prediction Accuracy after Intravenous and Oral Administration to Humans for 19 Compounds

Prediction method

% within twofold error of the observed value (threefold error of the observed value)

Vss (i.v.) Clearance (i.v.) AUC (p.o.) Cmax (p.o.) Terminal half-life (p.o.)

GastroPlus PBPK 90 (100) 80 (85) 50 (72) 67 (72) 61 (83)
One-compartmental model 75 (85) 80 (85) 33 (56) 44 (61) 50 (61)
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one-compartmental PK predictions were performed using the
same CL value implemented in the PBPK model, a Vss value
estimated by assuming unbound Vss is equal across species, an
absorption rate constant equal to rat, fraction absorbed equal to
rat, and a bioavailability calculated from the predicted CL and
the fraction absorbed value. In agreement with others in the
literature, the PBPK predictions were shown to be superior to
the one-compartmental PK model predictions in the majority of
cases in terms of the predicted PK parameters and also profile
shape (Table IV). The PBPK method was able to capture the
plasma concentration time profile shape more effectively than
the one compartmental model. In order to further understand
any mispredictions, simulations of intravenous and oral PK were
rerun using the observed rather than predicted CL value as input
into the model. These simulations showed that in over 90% of
cases, distribution and absorption were being predicted
accurately for this set of compounds. These improved
predictions are likely due to the mechanistic nature of the
models allowing the simulation of several phases to a profile
together with species differences and nonlinearities in
absorption. However, our results indicate that in humans, as in
animals, the most challenging parameter to predict was CL and,
consequently, bioavailability (results not shown). When
considering hepatic CL only, we saw predictions of CL from
microsomes that were within twofold of the observed for 70% of
the cases, which is an improvement on our observations in the
rat. Our results indicate that in many cases, even a prediction
accuracy for CL of twofold is not good enough for accurate
PBPK simulations, particularly for high CL compounds where
small changes in a predicted CL value can have large effects on
bioavailability. Further work is ongoing in our company to
improve the estimation of human CL. The prediction of in vivo
CL from microsomes have been shown by (10,24,55) to be
improved when appropriate binding terms are excluded. In our
study, we accounted for both microsomal and blood binding. We
relied heavily on microsome data rather than hepatocyte data.
Several authors (57,58) have reported under-predictions of CL
also using hepatocyte data.`

In addition, we have used PBPK modeling to prospec-
tively predict the human PK and design the first in human
trials of a number of compounds. Figure 4 shows the
predicted versus observed data for compound X over a range
of doses. The simulation was initially validated in animals
following i.v. and oral administration. Simulations were
performed in human using CL values estimated from human
liver microsomes and from the dog CL (by single species
scaling, exponent of 0.75). The simulated profile captured
well the observed data particularly in terms of shape. These
predictions were used to design the clinical study enabling
informed dose setting and more confident calculations of bulk
requirements. The model was refined as clinical data became
available and was then used to predict food effects and
formulation effects as the doses were increased.

CONCLUSIONS

In summary, using examples from our own laboratories
as well as literature data, we have shown how PBPK
techniques can be used in drug discovery. The limitations of
the PBPK approaches and some of the improvements

required to further increase the utility of PBPK have also
been discussed.

Our current focus is on using PBPK methodologies at the
lead development stage for the prioritization of compounds for
animal PK studies and at the clinical candidate selection and
“first in human” stages for the prediction of human PK. A
mixture of in silico, in vitro, and in vivo data is used in the PBPK
simulations. As the ability to predict the input parameters for
PBPK models improves, the need for in vitro and in vivo data
will decrease. Eventually, wemay be in a situation where human
PK can be accurately predicted using in silico inputs only.
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