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Abstract. In addition to the rhodopsin crystal structure, high-resolution crystal structures of ligand-
mediated G-protein-coupled receptors (GPCRs) have recently become available, and these have become
attractive templates for developing homology models of several GPCRs of therapeutic interest. These
crystal structures and the homology models derived from them have provided significant insights into
ligand-receptor interactions. Moreover, several studies have demonstrated that the structural models are
indeed suitable for virtual screening of compound databases to identify new ligands for various GPCRs.
Recent examples of such virtual screening against GPCRs are discussed in this review.
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INTRODUCTION

G-protein-coupled receptors (GPCRs) are the targets of
60-70% of the drugs in development today. In the past, drug
discovery for GPCRs has primarily utilized ligand-based
methods due to the absence of experimental structural
information. However, the availability of the crystal struc-
tures of GPCRs coupled with advances in homology-based
and ab initio modeling methods have led to an increase in the
use of structure-based methods for drug discovery. The first
mammalian GPCR for which experimental 3D structure was
available was the bovine rhodopsin (1,2). Significant advances
in protein expression and crystallization techniques have led
to the determination of X-ray crystal structures of several
additional GPCRs (3-9). The human R2-adrenergic receptor
was the first non-rhodopsin GPCR to be cloned, and the X-
ray structures of this receptor have provided the much
needed templates for ligand-gated GPCRs. More recently,
the X-ray structure of the pl-adrenergic receptor has also
been published. A significant difference between rhodopsin
containing the covalently bound retinal and the p2-adrenergic
receptor containing the diffusible ligand carazolol is found in
the second extracellular loop (ECL2, Fig. 1). The homology
models developed from GPCR crystal structures have gener-
ally found widespread use in the analysis of mutational data,
mapping ligand binding sites and docking of known ligands to
gain insight into ligand-receptor interactions. In addition,
results from several studies have demonstrated that homology
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models of GPCRs are also suitable for structure-based virtual
screening for identification of novel agonist and antagonist
ligands. Some of these efforts on structure-based virtual
screening using homology models of GPCRs have been
discussed in earlier reviews (10-14). Highlighted in this
mini-review are recent examples of structure-based virtual
screening studies on various GPCRs.

p2-ADRENERGIC RECEPTOR

Topiol and Sabio have explored the potential utility of
the recently reported X-ray structure of p2-adrenergic
receptor for computer-aided drug design (15,16). In an initial
validation, they used Glide-XP and GOLD-GoldScore dock-
ing tools to dock the S isomer of carazolol (1, Fig. 2) into the
ligand binding site of the receptor and found that both the
protocols were able to produce binding poses similar to that
found in its co-crystal structure. In addition, the docking of six
known beta blockers using Glide-XP gave binding poses that
were consistent with expected interactions with several key
residues. Following this validation, they performed virtual
screening of an in-house database of approximately 400,000
compounds using Glide. The effectiveness of the protocol in
docking and ranking was demonstrated by its ability to
retrieve both carazolol and carvedilol (2) in the top-scoring
30 compounds. Among the top ranked 100 compounds, there
were 11 compounds which were either known beta blockers
or closely related analogues. The screening protocol was
applied to the high-throughput docking of a database of
approximately four million compounds. A comparison of the
overlay of the top-scoring compounds from this screen was
found to be similar to that obtained in the 400,000 compound
screen. The top-scoring ligands consisted of structural classes
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Fig. 1. Crystal structures of retinal-bound rhodopsin (a, PDB id 1U19) and carazolol-
bound R2-adrenergic receptor (b, PDB id 2RH1). The ligands retinal and carazolol are
shown in ball and stick representation with carbon atoms colored brown, while the
extracellular loops 2 (ECL2) are shown in yellow. In rhodopsin, ECL2 and the N terminus
form a lid over the ligand-binding pocket, whereas in p2-adrenergic receptor the ECL2
contains an extrahelical segment and is more exposed to the solvent, giving open access to

the ligand-binding pocket

that are both diverse and different from traditional beta
blockers. Evaluation of 56 compounds from the top-scoring
hits from the in-house database and 94 compounds from the
commercial database led to the identification of a total of 30
compounds with affinities in the nanomolar to low micromo-
lar range. Some of the carazolol-related high affinity ligands
discovered in this study are shown in Fig. 2 (3-6).

In a recent study, de Graaf and Rognan (17) modified
the p2-adrenergic receptor crystal structure to model an early
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conformational state of the activated state of the receptor to
obtain an “agonist-customized” structure. These modifications
included changing the rotameric states of two TMS5 serines
important for agonist binding (Ser’**, Ser’*%), followed by
energy minimizations with the agonist ligand in the active site.
The crystal structure as well as the modified structure were
then used to virtually screen a database of compounds
consisting of 13 known (2-adrenergic receptor antagonists or
inverse agonists, 13 known partial or full agonists, and 980
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Fig. 2. Structures of carazolol, carvedilol, and related ligands predicted to bind like carazolol to p2
adrenergic receptor
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diverse drug-like compounds using the docking programs
Surflex and Gold. Docked poses were ranked using built-in
scoring functions and protein-ligand interaction fingerprint
scoring (IFP). An analysis of the results revealed that docking
into the crystal structure followed by IFP scoring yielded both
agonist/antagonist ligands among the top-ranking sets. On the
other hand, the use of the agonist-customized receptor
structure for screening of the same 1,006 compounds
selectively retrieved partial/full agonists. Their study also
found that the use of the topological scoring function IFP
was essential to properly rank the docking poses and achieve
acceptable enrichments for partial and full agonists.

alA-ADRENERGIC AND RELATED RECEPTORS

Evers et al. (11) performed a comparative evaluation of
different virtual screening approaches for their effectiveness
in identifying known antagonists of the biogenic amine-
binding GPCRs, adrenergic alA, SHT2A, dopamine D2,
and muscarinic M1 receptors. They generated a homology
model of alA receptor using rhodopsin crystal structure
incorporating mutagenesis and ligand binding data from
literature. This model was then used as template to generate
models of SHT2A, dopamine D2, and muscarinic M1
receptors. These receptors were screened against a database
consisting of 950 inactive compounds and 42-48 known
antagonists of each target receptor assembled from the
MDDR database. For docking, GOLD and FlexX-Pharm
were used and the poses were scored with GoldScore and
FlexX-Score. Additionally, the poses were rescored using
seven other scoring functions (D_Score, G_Score, Chem-
Score, PMF, F_Score, DrugScore, Xscore). The performance
of virtual screening protocols was evaluated on the basis of
their ability to retrieve known ligands. The results obtained
showed that the performance of the scoring functions varied
among the four target GPCRs. The results from this
structure-based virtual screening were compared with
ligand-based screening methods and found that some ligand-
based methods showed surprisingly high enrichment factors.
Nevertheless, the high hit rates (up to 60% among the top-
ranked 1% of screened database) in the docking and ranking
method indicate that the structure-based virtual screening
using homology models of GPCRs can be a useful approach
for finding new leads when little or no information about
active ligands is available.

DOPAMINE D2 RECEPTOR

Kortagere and Welsh (18) used a combined ligand-based
and receptor structure-based method to demonstrate the
potential of such an approach to identify new GPCR ligands.
Ligand-based methods were applied to build GPCR-biased
small molecule libraries which were then screened against
rhodopsin and the rhodopsin-based dopamine D2 receptor
model by structure-based methods. A random dataset of
~300,000 compounds was screened as follows. First, shape
signatures encoding shape characteristics and electrostatic
potential property were computed. Shape signatures were
compared between database compounds and known ligands
with confirmed activities against rhodopsin and dopamine D2
receptors. Second, 3D pharmacophore models capturing
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essential protein-ligand interactions between retinal and
rhodopsin and between dopamine and the D2 receptor were
developed. The compound library was then screened using
these shape signature-based and 3D pharmacophore-based
models. These led to the identification of 110 compounds as
potential ligands of rhodopsin and 183 compounds for
dopamine D2 receptor. These were then docked into the
active sites of the rhodopsin and the dopamine D2 receptor.
The docking was performed using GOLD and the docked
poses were scored using GoldScore as well as a customized
scoring function. This stepwise approach was shown to
efficiently identify retinal-related compounds and dopamine-
related compounds that are known binders of these two
receptors. In addition, their study also led to the identification
of 34 new compounds predicted to have high affinity for the
D2 receptor. The experimental evaluation of these ligands
against dopamine D2 receptor is, however, yet to be done.

HISTAMINE H4 RECEPTOR

Recently, Kiss ef al. (19) reported a successful large-scale
virtual screening on a ligand-supported homology model of
the human histamine H4 receptor (hH4R) that was devel-
oped and validated earlier (20). They compiled a compound
database comprising more than 8.7 million structures repre-
senting more than five million unique compounds. These
compounds were docked by FlexX and the docked ligands
were ranked using ChemScore that had previously been
shown to perform best in enrichment tests. The structures
were inspected visually to identify the best 2,000 compounds
that met both of the following criteria: (1) the entire ligand
has to be positioned within the binding site cavity and (2) the
ligand has to have acceptable protonation and tautomeric
states. The presence of additional interaction(s) with key
residues, Asp94 or Glu82, was considered as a favorable
feature in the selection of 128 compounds of which 66 could
be purchased from vendors. An additional set of 189
compounds was selected through an analysis of the top-
scoring 45,000 ligands (top 0.5% of the ranked database) and
their close analogues. Of the total 255 compounds that were
evaluated in radioligand displacement assays, 16 compounds
emerged as hits that displayed significant radioligand dis-
placement at a concentration of 5 uM. These hits could be
classified into compounds containing two guanidinium units
(five compounds), compounds containing one guanidinium
group (two compounds), and nine singletons. Concentration—
response determinations on six compounds that displayed
>60% ligand displacement at 5 pM led to the identification of
7 and 8 (Fig. 3) as ligands with binding K; values of 85 and
219 nM, respectively.

KAPPA OPIOID RECEPTOR

Singh et al. (21) have reported on their effort to develop
a robust virtual screening model for the kappa opioid
receptor (KOP) using a combined pharmacophore modeling
and structure-based docking approach. The pharmacophore
model was generated using the kappa agonist salvinorin A (9)
and 14 chemically closely related analogues represented by 10
(Fig. 4) using Catalyst/HypoGen module. The best model that
was generated consisted of two hydrogen bond acceptor and
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Fig. 3. Structures of human histamine H4 receptor identified by virtual screening

three hydrophobic features. The reliability of the pharmaco-
phore model was tested in several validation procedures. In
addition, the human kappa opioid receptor (hKOP) was
modeled using the 22A X-ray structure of bovine rhodopsin
as the template. Multiple sequence alignments were generat-
ed from human kappa, delta, mu, and nociceptin receptors,
and the models were generated and refined using Modeler/
Discover of INSIGHTII. An agonist-bound state of the
model was then generated by manually placing salvinorin A
within the putative binding pocket followed by molecular
dynamics simulation and minimizations. Although salvinorin
A lacks a protonatable nitrogen to guide the placement of the
ligand using the generally accepted key salt bridge interaction
with conserved Asp138 in TM3, information gathered from
site-directed mutagenesis studies was utilized to dock the
ligand at the putative binding pocket. The quality of the
refined models was evaluated using PROCHECK and PRO-
STAT. The model thus developed was consistent with the
predictions from the pharmacophore model and correlated
well with known SAR and mutational data. The docking
protocol was then applied to 14 other ligands, generating ten
solutions per ligand. For a majority of the ligands, top-scoring
poses were found to display relevant binding interactions. A
robust correlation (#*=0.80) was observed between the
experimental binding affinity (pK;) and the GOLD score.
Moreover, a quantitative comparison of the predicted
activities from the pharmacophore model with the GOLD
scores from docking initially gave a correlation of 0.67 (0.85
after removal of one outlier compound). This study indicates
that a hybrid approach using models in which ligand-based
and target-based information has been synergistically
integrated could improve the effectiveness and performance
of database searching for drug discovery through virtual
screening.

MELANIN-CONCENTRATING HORMONE
RECEPTOR 1

Cavasotto et al. (22) successfully used a ligand-steered
homology modeling and virtual screening approach to
identify novel classes of antagonist ligands of melanin-
concentrating hormone receptor 1 (MCH-R1). An initial
homology model of MCH-R1 was built using the rhodopsin
template. Four known ligands of MCH-R1 were placed into
the binding site of this model, and an ensemble of 200
structures for each ligand was generated by randomizing the
position and orientation of the ligands followed by a multistep

energy minimization. These models were then subjected to a
flexible-ligand-flexible-receptor Monte Carlo docking and
were analyzed by estimation of ligand-receptor interaction
energy, binding pocket clustering, and visual inspection to
select a final set of eight models. These final models were
validated through a small-scale virtual screening with 11
known MCH-R1 antagonist and 5,497 decoy compounds.
Analysis of the ability of the models to recover known ligands
and the diversity observed among the top-ranking compounds
led to the selection of the model that was finally used for
large-scale virtual screening of 187,084 non-redundant com-
pounds using the ICM virtual screening module. The docking
of the entire compound set was performed three times and
the best scoring pose for each compound was kept. The
docked compounds were examined for the absence of docked
ligand-receptor clashes and for the presence of a hydrogen
bond between the ligand and the key aspartate residue in
TM3. Compounds meeting these requirements were clustered
according to chemical similarity, and the top-scoring com-
pound from each cluster was chosen to obtain a set of 281
compounds. Of this final set, samples of 129 compounds were
experimentally tested in competitive radioligand binding
assay. Of the evaluated compounds, five compounds 11-15
(Fig. 5) displayed K; values in the range of 7-12 pM. These
results demonstrate that explicit ligand information can be
applied to shape and optimize the binding site to reduce
uncertainties in homology-modeled structures.

CANNABINOID RECEPTOR 2

Chen et al. (23) generated a model of the antagonist
bound state of cannabinoid receptor 2 (CB2) by flexible

9, salvinorin A 10

Fig. 4. Structures of salvinorin A and related compounds used in
pharmacophore modeling and docking at kappa opioid receptor
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Fig. 5. Structures of antagonist ligands of melanin-concentrating hormone receptor 1 identified by virtual
screening

docking of SR144528 at the ligand binding site of rhodopsin-
based CB2 model using FlexiDock program. The model was
further refined by MD/MM simulations with the INSIGHTII/
Discover program. The placement of the antagonist ligand
and refinement were aided by mutagenesis data implicating
Serl61 and Ser165 as key residues for ligand binding. The
model was validated by docking a test set containing 1,000
compounds consisting of 967 inactive NCI compounds and 33
other cannabinoid ligands, of which 15 were considered as
active CB2 antagonists. The efficiency of single and combi-
nation of five different scoring functions in retrieving the
known active ligands within the top 10% and 15% of hits was
evaluated. The results from this validation study indicated
that the developed virtual screening protocol is capable of
identifying known CB2 ligands from randomly selected
molecules.

THYROTROPIN-RELEASING HORMONE RECEPTOR

Recently, Engel et al. (24) applied a virtual screening
approach to identify novel small molecule ligands of the
thyrotropin-releasing hormone receptor 1 and 2 (TRH-R1
and TRH-R2) using a methodology that takes into consider-
ation an expanded pharmacophore definition and protein
flexibility. They defined a receptor-based pharmacophore
model through a GRID analysis to identify potential fields
of interaction with hydrogen donor, hydrogen acceptor, and

sen ” e
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hydrophobic molecular probes using rhodopsin-based homol-
ogy model of thyrotropin-releasing hormone receptor. In this
analysis, the side chains were allowed to be flexible to extend
the potential interaction area. The pharmacophore model was
used to screen one million commercially available drug-like
compounds from ZINC database with Flex Search protocol
(Unity) to obtain a subset of 100,000 compounds. A diversity
subset of 10,000 compounds was selected and docked using
FlexE against five alternative conformations of the binding
pocket in order to mimic protein flexibility. Of the 1,000
compounds with best docking scores, 100 were selected using
MACCS structural keys fingerprints as diverse representa-
tives for experimental evaluation. The evaluation of these and
related analogues for agonist or antagonist activity led to the
identification of several unique scaffolds represented by 16—
18 (Fig. 6) as antagonists. Among these, of particular interest
was compound 16 possessing the 2,3-dihydro-1,4-benzodioxin
scaffold which was present as the core structure among
several highly ranked compounds from the virtual screen.
The commercial sample of 16 containing all four stereo-
isomers displayed affinity against both TRH-R1 and TRH-R2
receptors. Docking of the four stereoisomers against TRH-R1
and scoring using LiaisonScore predicted that the C1-R, C2-S
isomer will be the most potent ligand. This prediction was
confirmed by experimental evaluation which revealed that
this isomer binds to TRH-R1 with a binding K; of 0.29 uM
and shows nearly 13-fold selectivity over TRH-R2. The

ZT
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Fig. 6. Structures of thyrotropin-releasing hormone receptor 1 antagonists identified by virtual screening
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Fig. 7. Structures of agonist or partial agonist ligands of the free fatty acid receptor 1 identified by virtual
screening

predicted binding modality of these antagonists was further
verified through comprehensive mutational analysis of the
key residues at the binding pocket of TRH receptors.

FREE FATTY ACID RECEPTOR 1

In an attempt to identify new ligands that activate or
inhibit the free fatty acid receptor 1 (FFART1), also known as
GPR40, Tikhonova et al. (25) performed virtual screening
starting with an initial library of 2.6 million drug-like
compounds from the ZINC database. Sequentially, they
performed a 2D similarity search, diversity subset selection,
pharmacophore search, and docking against a structural
model of FFARI1. In the first step, 2D similarity searches
with two known high potency agonists were performed to
obtain a set of 704,772 unique compounds using molecular
operating environment. A diversity subset of 70,447 com-
pounds (10%) was assembled using DiverseSolutions soft-
ware. A 3D pharmacophore was defined on the basis of the
docked conformations of the two known agonists of FFARI.
This pharmacophore was then used to search the 70,447
compound set to identify 1,581 compounds as hits. In parallel,
the same database was subjected to high-throughput docking
using Glide to obtain a set of 3,131 compounds with Glide-
Scores lower than —8 kcal/mol. The 3D pharmacophore hits
and docking hits contained 183 compounds that were
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common in both sets. The final subset selection was based
on structural diversity calculated using BIT_MACCS struc-
tural keys and visual inspection. Of the final set of 52
compounds, 32 came from the 183 common hits and ten each
from the unique compounds from docking and 3D pharma-
cophore search. Experimental evaluation of the 52 com-
pounds led to the identification of six active compounds, two
full agonists, three partial agonists, and one antagonist. The
five ligands 19-23 (Fig. 7) identified by docking studies were
either agonist or partial agonists but not antagonists, suggest-
ing that the model was indeed biased toward agonist
recognition. The experimental results also indicated that
compounds identified by both 3D pharmacophore search
and by docking had a better chance of emerging as hits than
those retrieved by only one of the two techniques.

CORTICOTROPIN-RELEASING FACTOR RECEPTOR
1 AND GLUCAGON RECEPTOR

The construction of reliable 3D models of the TM
domain of class B and class C GPCRs suitable for structure-
based virtual screening is a challenge, as these receptors share
little primary structural homology with class A GPCRs.
Recently, de Graaf et al. (26) have explored the application
of structure-based virtual screening methods to the class B
GPCRs, corticotropin-releasing factor receptor 1 (CRFR1)
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Fig. 8. Structures of compounds identified as inhibitors of photoactivated rohodopsin and transducin by
virtual screening
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and glucagon receptor. They built three alternative CRFR1
models and performed retrospective virtual screening using
13 known CRFR1 antagonists and 987 decoys. The docking
was performed with Gold and ranked with IFP. The relative
performance of the three models was assessed through
enrichment analyses. The best model was demonstrated to
retrieve nine of the 13 known ligands in the top 1% of the
screened set. Using the CRFR1 model as the template, they
generated two models of the glucagon receptor and used
them for prospective virtual screening of 144,000 compounds.
From the two screens, 25 compounds were selected for
experimental evaluation that led to the identification of six
ligands as confirmed hits.

METABOTROPIC GLUTAMATE RECEPTOR 5

The metabotropic glutamate receptors (mGluRs) belong
to the class C GPCRs. Recently, Radestock et al. (27) applied
ligand-supported homology modeling of the allosteric ligand
binding site of mGIuRS, taking into consideration mutagen-
esis data and structure—activity relationship information from
known ligands. The mGIluRS5 model was developed using a
modified version of ligand-supported homology approach
(MOBILE) of Evers et al. (11). A total of 159 known
negative allosteric modulators were selected as reference
ligands. Each of these reference ligands was docked into the
ligand binding site using FlexX1.2, and the best poses were
selected through visual inspection. The interaction finger-
prints were then generated using these selected poses. For
evaluation purposes, ten sets of 1,822 compounds each
containing 11 known negative allosteric modulators and
1,791 presumably inactive compounds from NCI database
were assembled. These were docked and ranked using
interaction fingerprint-based similarity (IFS) scoring scheme.
The enrichment rates obtained using the IFS-based ranking
were significantly higher than those using other conventional
scoring functions (Dock-score, PMF-Score, Gold-Score,
ChemScore, and FlexX-score). This retrospective virtual
screening validation study indicates that the described
protocol could potentially be applied to successful virtual
screening for ligands for the mGluR family.

VIRTUAL SCREENING FOR LIGANDS THAT INHIBIT
GPCR/G-PROTEIN INTERACTIONS

The development of homology models and virtual
screening have primarily been focused on finding agonist or
antagonist molecules that bind to the transmembrane domain
closest to the extracellular side. In a recent effort, Taylor et al.
(28) have investigated the possibility of targeting the interface
between an activated GPCR and its G-protein to block signal
transduction. The complex structure of photoactivated rho-
dopsin in MII state (R* state) bound to a segment of its G-
protein, transducin (Gt) was modeled using known structure
of rhodopsin in the R* state and TrNOE structure of Gt for
the segment between residues 340 and 350. Rhodopsin
intracellular loop structure in a conformation binding to Gt
was previously modeled based on the best fit between loop
conformations and Gt, as predicted through docking the Gt
(340-350) segment. The NCI diversity set containing 1,990
compounds were then docked into this model and scored
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using X-Score, Autodock score, and CSCORE. A series of
subset selections from the top-scoring ligands were performed
to finally select nine compounds for experimental testing.
These nine compounds were assayed to determine their
ability to stabilize MII-photoactivated rhodopsin and inhibit
the interaction between MII-photoactivated rhodopsin and
Gt. In the MII stabilization assay, two of the tested
compounds, 24 and 25 (Fig. 8), were found to be active, with
an ECs, value of 120 and 45 pM, respectively. Further, the
dose-dependent inhibition of activated rhodopsin—Gt showed
that both 24 and 25 inhibited rhodopsin—Gt interaction with
an ICsg value of 180 and 15 pM, respectively. An analysis of
the docked conformations for 24 and 25 revealed several key
interactions of these ligands with the intracellular loop
structure. A search of the full NCI database of 140,000 for
compounds similar to 24 or 25 and evaluation of seven
compounds thus identified yielded an additional compound
26 that displayed an ECsj value of 350 uM and ICs, value of
2 mM for inhibition of activated rhodopsin-Gt interaction.
Thus, this first virtual screening effort using modeled
intracellular loop structures of an activated form of GPCR
was successful in identifying compounds. These hits from the
virtual screening were comparable in potency to those found
in experimental high-throughput screening. This study indi-
cates the potential of virtual screening approaches for
discovery of small molecule inhibitors of signal transduction
processes of GPCRs.

CONCLUSIONS

During the past few years, as highlighted in this review,
there have been several reports on the application of
homology models of GPCRs for structure-based virtual
screening. While some of the efforts have focused on the
validation of the models and virtual screening protocols,
others have focused on the successful identification of novel
agonist or antagonist ligands for various GPCRs. With the
availability of the X-ray crystal structures of the R1- and R2-
adrenergic receptors as additional templates for homology
modeling, along with the advances in protein modeling/
refinement techniques, docking/scoring methods, and in-
creased computing power, structure-based virtual screening
is becoming an increasingly useful approach for identifying
novel ligands for therapeutically relevant GPCRs.

REFERENCES

1. K. Palczewski, T. Kumasaka, T. Hori, C. A. Behnke, H.
Motoshima, B. A. Fox, I. Le Trong, D. C. Teller, T. Okada, R. E.
Stenkamp, M. Yamamoto, and M. Miyano. Crystal structure of
rhodopsin: A G protein-coupled receptor. Science. 289:739-745
(2000).

2. D. C. Teller, T. Okada, C. A. Behnke, K. Palczewski, and R. E.
Stenkamp. Advances in determination of a high-resolution three-
dimensional structure of rhodopsin, a model of G-protein-coupled
receptors (GPCRs). Biochemistry. 40:7761-7772 (2001).

3. V. Cherezov, D. M. Rosenbaum, M. A. Hanson, S. G.
Rasmussen, F. S. Thian, T. S. Kobilka, H. J. Choi, P. Kuhn, W. L.
Weis, B. K. Kobilka, and R. C. Stevens. High-resolution crystal
structure of an engineered human beta2-adrenergic G protein-
coupled receptor. Science. 318:1258-1265 (2007).

4. D. M. Rosenbaum, V. Cherezov, M. A. Hanson, S. G.
Rasmussen, F. S. Thian, T. S. Kobilka, H. J. Choi, X. J. Yao,
W. 1. Weis, R. C. Stevens, and B. K. Kobilka. GPCR engineering



Virtual Screening of GPCRs

10.

11.

12.

13.

14.

15.

16.

17.

yields high-resolution structural insights into beta2-adrenergic
receptor function. Science. 318:1266-1273 (2007).

. S. G. Rasmussen, H. J. Choi, D. M. Rosenbaum, T. S. Kobilka, F. S.

Thian, P. C. Edwards, M. Burghammer, V. R. Ratnala, R. Sanishvili,
R. F. Fischetti, G. F. Schertler, W. I. Weis, and B. K. Kobilka.
Crystal structure of the human beta2 adrenergic G-protein-coupled
receptor. Nature. 450:383-387 (2007).

M. A. Hanson, V. Cherezov, M. T. Griffith, C. B. Roth, V. P. Jaakola,
E. Y. Chien, J. Velasquez, P. Kuhn, and R. C. Stevens. A specific
cholesterol binding site is established by the 2.8 a structure of the
human beta2-adrenergic receptor. Structure. 16:897-905 (2008).

. T. Warne, M. J. Serrano-Vega, J. G. Baker, R. Moukhametzianov,

P. C. Edwards, R. Henderson, A. G. Leslie, C. G. Tate, and G. F.
Schertler. Structure of a betal-adrenergic G-protein-coupled
receptor. Nature. 454:486-491 (2008).

J. H. Park, P. Scheerer, K. P. Hofmann, H. W. Choe, and O. P.
Ernst. Crystal structure of the ligand-free G-protein-coupled
receptor opsin. Nature. 454:183-187 (2008).

P. Scheerer, J. H. Park, P. W. Hildebrand, Y. J. Kim, N. Krauss,
H. W. Choe, K. P. Hofmann, and O. P. Ernst. Crystal structure of
opsin in its G-protein-interacting conformation. Nature. 455:497—
502 (2008).

C. Bissantz, P. Bernard, M. Hibert, and D. Rognan. Protein-
based virtual screening of chemical databases. II. Are homology
models of G-protein coupled receptors suitable targets? Proteins.
50:5-25 (2003).

A. Evers, G. Hessler, H. Matter, and T. Klabunde. Virtual
screening of biogenic amine-binding G-protein coupled recep-
tors: Comparative evaluation of protein- and ligand-based virtual
screening protocols. J. Med. Chem. 48:5448-5465 (2005).

S. Schlyer, and R. Horuk. I want a new drug: G-protein-coupled
receptors in drug development. Drug Discov. Today. 11:481-493
(20006).

S. Ghosh, A. Nie, J. An, and Z. Huang. Structure-based virtual
screening of chemical libraries for drug discovery. Curr. Opin.
Chem. Biol. 10:194-202 (2006).

G. Klebe. Virtual ligand screening: Strategies, perspectives and
limitations. Drug Discov. Today. 11:580-594 (2006).

S. Topiol, and M. Sabio. Use of the X-ray structure of the beta2-
adrenergic receptor for drug discovery. Bioorg. Med. Chem. Lett.
18:1598-1602 (2008).

M. Sabio, K. Jones, and S. Topiol. Use of the X-ray structure of the
beta2-adrenergic receptor for drug discovery. Part 2: Identification
of active compounds. Bioorg. Med. Chem. Lett. 18:5391-5395 (2008).
C. de Graaf, and D. Rognan. Selective structure-based virtual
screening for full and partial agonists of the beta2 adrenergic
receptor. J. Med. Chem. 51:4978-4985 (2008).

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

185

S. Kortagere, and W. J. Welsh. Development and application of
hybrid structure based method for efficient screening of ligands
binding to G-protein coupled receptors. J. Comput. Aided Mol.
Des. 20:789-802 (2006).

R. Kiss, B. Kiss, A. Konczol, F. Szalai, 1. Jelinek, V. Laszlo, B.
Noszal, A. Falus, and G. M. Keseru. Discovery of novel human
histamine H4 receptor ligands by large-scale structure-based
virtual screening. J. Med. Chem. 51:3145-3153 (2008).

R. Kiss, B. Noszal, A. Racz, A. Falus, D. Eros, and G. M.
Keseru. Binding mode analysis and enrichment studies on
homology models of the human histamine H4 receptor. Eur. J.
Med. Chem. 43:1059-1070 (2008).

N. Singh, G. Cheve, D. M. Ferguson, and C. R. McCurdy. A
combined ligand-based and target-based drug design approach
for G-protein coupled receptors: Application to salvinorin A, a
selective kappa opioid receptor agonist. J. Comput. Aided Mol.
Des. 20:471-493 (2006).

C. N. Cavasotto, A.J. Orry, N. J. Murgolo, M. F. Czarniecki, S. A.
Kocsi, B. E. Hawes, K. A. O'Neill, H. Hine, M. S. Burton, J. H.
Voigt, R. A. Abagyan, M. L. Bayne, and F. J. Monsma Jr.
Discovery of novel chemotypes to a G-protein-coupled receptor
through ligand-steered homology modeling and structure-based
virtual screening. J. Med. Chem. 51:581-588 (2008).

J. Z. Chen, J. Wang, and X. Q. Xie. GPCR structure-based
virtual screening approach for CB2 antagonist search. J. Chem.
Inf. Model. 47:1626-1637 (2007).

S. Engel, A. P. Skoumbourdis, J. Childress, S. Neumann, J. R.
Deschamps, C. J. Thomas, A. O. Colson, S. Costanzi, and M. C.
Gershengorn. A virtual screen for diverse ligands: Discovery of
selective G protein-coupled receptor antagonists. J. Am. Chem.
Soc. 130:5115-5123 (2008).

1. G. Tikhonova, C. S. Sum, S. Neumann, S. Engel, B. M. Raaka,
S. Costanzi, and M. C. Gershengorn. Discovery of novel agonists
and antagonists of the free fatty acid receptor 1 (ffarl) using
virtual screening. J. Med. Chem. 51:625-633 (2008).

C. de Graaf, F. Giordanetto, G. Abbas, C. G. Unson, and D.
Rognan. Class B G-protein coupled receptors as targets for
protein-based virtual screening. The 236th American Chemical
Society National Meeting, Philadelphia, PA, Aug 17-21, MEDI-
409 (2008).

S. Radestock, T. Weil, and S. Renner. Homology model-based
virtual screening for GPCR ligands using docking and target-
biased scoring. J. Chem. Inf. Model. 48:1104-1117 (2008).

C. M. Taylor, Y. Barda, O. G. Kisselev, and G. R. Marshall.
Modulating G-protein coupled receptor/G-protein signal trans-
duction by small molecules suggested by virtual screening. J.
Med. Chem. 51:5297-5303 (2008).



	Recent Advances in Structure-Based Virtual Screening of G-Protein Coupled Receptors
	Abstract
	INTRODUCTION
	2-ADRENERGIC RECEPTOR
	1A-ADRENERGIC AND RELATED RECEPTORS
	DOPAMINE D2 RECEPTOR
	HISTAMINE H4 RECEPTOR
	KAPPA OPIOID RECEPTOR
	MELANIN-CONCENTRATING HORMONE RECEPTOR 1
	CANNABINOID RECEPTOR 2
	THYROTROPIN-RELEASING HORMONE RECEPTOR
	FREE FATTY ACID RECEPTOR 1
	CORTICOTROPIN-RELEASING FACTOR RECEPTOR 1 AND GLUCAGON RECEPTOR
	METABOTROPIC GLUTAMATE RECEPTOR 5
	VIRTUAL SCREENING FOR LIGANDS THAT INHIBIT GPCR/G-PROTEIN INTERACTIONS
	CONCLUSIONS
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


