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HapMap methylation-associated SNPs, markers of
germline DNA methylation, positively correlate with
regional levels of human meiotic recombination
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Inter-individual and regional variability in recombination rates cannot be fully explained by the DNA sequence itself.
Epigenetic mechanisms might be one additional factor affecting recombination. A biochemical approach to studying
human germline methylation is difficult. We used the density of the 434,198 nonredundant methylation-associated SNPs
(mSNPs) in the derived allele HapMap data set as a surrogate marker for germline DNA methylation. We validated our
methodology by demonstrating that the mSNP density confirmed known patterns of genomic methylation, including the
hypermutability of methylated cytosine and hypomethylation of CpG islands. Using this approach, we found a genome-
wide positive correlation between germline methylation and regional recombination rate (500-kb windows: r = 0.622, P <
10�15). This remained significant with multiple correlations correcting for sequence features known to affect re-
combination, such as GC content and CpG dinucleotides (500-kb windows: r = 0.172, P < 10�15). Using the ENCODE data
set for increased resolution, we found a positive correlation between germline DNA methylation and recombination rate
(50-kb windows: r = 0.301, P = 0.002). This correlation was further strengthened when corrected for sequence features
affecting recombination (50-kb windows: r = 0.445, P < 0.0001). In the Human Epigenome Project data set there was
increased DNA methylation in regions within recombination hot spots in male germ cells (0.632 vs. 0.557, P = 0.007). The
relationship we observed between germline DNA methylation and recombination could be explained in two ways that are
not mutually exclusive: DNA methylation could indicate preferred sites for recombination, or methylation following
recombination could inhibit further recombination, perhaps by being part of the enigmatic molecular pathway mediating
crossover interference.

[Supplemental material is available online at www.genome.org.]

Modern genome-scale analysis of genetic linkage has increased the

resolution of the human recombination map and provided an

opportunity to study this fundamental evolutionary mechanism.

The Marshfield recombination map provided sex-averaged and

sex-specific recombination rates with a resolution of ;3 centi-

morgans (cM) and demonstrated significant individual and sex-

specific variations in the recombination rate (Broman et al. 1998).

Further progress was made with the creation of the deCODE re-

combination map, which increased the resolution over prior ge-

netic maps approximately fivefold and replicated observations of

inter-individual and sex-specific recombination variability (Kong

et al. 2002). Analysis suggested that the CpG fraction, GC content

fraction, and poly(A)n/poly(T)n,n $ 4 fraction explained a signifi-

cant amount of the variation in the recombination rate when the

genome was analyzed in 3-Mb windows. Further analysis of the

data using 5-Mb and 10-Mb windows gave similar correlations and

suggested that several additional sequence features, i.e., Wn $ 10

(W = A or T), Rn $ 10 (R = A or G), distance from the centromere,

and chromosome length, contributed to the variability of human

recombination (Jensen-Seaman et al. 2004).

Finer-scale recombination maps have more recently been

produced, utilizing linkage disequilibrium, a measure of non-

random association between adjacent single nucleotide poly-

morphisms (SNPs), to predict recombination rates (Myers et al.

2005). These maps have sufficient power to detect recombination

hot spots, i.e., regions of ;1–2 kb interspersed throughout the

genome that account for the majority of genomic recombination

activity (Jeffreys et al. 2001). The latest high-resolution re-

combination map of the genome is based on the second genera-

tion of the human haplotype map (www.hapmap.org) (Frazer

et al. 2007). Analysis of sequence features revealed that only the

GC content correlated significantly with recombination rate over

a wide range of window sizes (8–512 kb). In addition, several DNA

motifs correlated with recombination at window sizes <8 kb, and

exons and repeat content had a negative correlation with re-

combination at larger window sizes (16, 128, 256, and 512 kb)

(Myers et al. 2006).

Several observations suggest that the DNA sequence itself

does not provide a full explanation for the different re-

combination rates of individual genomic regions (Winckler et al.

2005; Neumann and Jeffreys 2006). Almost no recombination hot

spots that are known in humans were found at orthologous

locations in the chimpanzee genome despite a 98.6% similarity in

the regions studied (Winckler et al. 2005). Furthermore, inter-

individual variation in recombination hot spot activity without

differences in adjacent DNA sequence has been demonstrated
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(Neumann and Jeffreys 2006). One explanation would be that the

recombination rate is not determined by regional DNA sequence,

but rather is affected by variant distant DNA sequences. However,

an alternative mechanism for the different recombination rates of

individual genomic regions could be that these regions are marked

by epigenetic modifications (Winckler et al. 2005; Neumann and

Jeffreys 2006; Sandovici et al. 2006), either locally or by distal

elements brought into close proximity (Ling et al. 2006). This

notion is supported indirectly by the increased recombination rate

of genome regions containing clusters of imprinted genes (Lercher

and Hurst 2003; Sandovici et al. 2006).

Epigenetics is the study of modifications of DNA-associated

information that can be transmitted through either meiosis or

mitosis, but does not involve the DNA sequence itself. Methyla-

tion of cytosine is one of these modifications, affecting 3% of

cytosines (Weisenberger et al. 2005) but 70% of all CpG dinu-

cleotides (Robertson and Wolffe 2000) within the human genome.

It serves as a critical regulator within the genome, controlling

tissue-specific gene expression (Song et al. 2005; Weber et al. 2007)

and mediating X chromosome inactivation (Mohandas et al. 1981;

Venolia et al. 1982; Hellman and Chess 2007). Methylation has

also been suggested as a part of the defense mechanism against

potentially harmful transposon activity (Yoder et al. 1997). Pat-

terns of DNA methylation differ between healthy and cancerous

tissue (Feinberg and Vogelstein 1983; Badal et al. 2003). Recently,

both global and regional DNA methylation levels have been

demonstrated to change significantly during the lifetime of indi-

viduals (Bjornsson et al. 2008), supporting a possible role in the

pathogenesis of common age-related disorders (Bjornsson et al.

2004).

We hypothesized that germline DNA methylation might be

the prime epigenetic mechanism affecting meiotic recombination.

Methylation is the only epigenetic modification proven to be

established at prophase I in meiosis when recombination occurs.

This has been demonstrated genome-wide (Oakes et al. 2007) as

well as for retrotransposons (Bourc’his and Bestor 2004) and

imprinted genome sites (Davis et al. 1999). It is possible, however,

that other epigenetic modifications (such as histone mod-

ifications) participate in the process.

We chose to focus our efforts on germline DNA methylation

and took a novel approach to investigate this relationship. De-

amination of methylated cytosine results in a C / T transition

(and a G / A transition on the opposite strand) likely to be missed

by the DNA repair system (Coulondre et al. 1978; Cooper and

Youssoufian 1988). The resulting hypermutability of methylated

CpG has resulted in a great under-representation of CpGs in the

human genome (Bird 1980). According to the neutral theory of

molecular evolution, most substitutions in the DNA sequence are

caused by genetic drift rather than selection and have little effect

on fitness (Kimura 1991). As SNPs are generally considered func-

tionally neutral, they can be considered to reflect the local muta-

tion rate (Kimura 1989). Their frequency of fixation and elimination

is dependent on the population size but is independent of the type

of SNP (base change). A small subset is undergoing positive se-

lection (The International HapMap Consortium 2005). It is rare

that SNPs result in a positive attribute to an organism, and such

mutations are quickly fixed. We assume that the probability of

a SNP being selected for is essentially independent of the type of

SNP in this small subset. Single nucleotide mutations with dele-

terious consequences in the SNP data set should be rare because

they are quickly eliminated by purifying selection. Current esti-

mates of hypermutability of methylated cytosines are fivefold

based on the frequency of disease-causing single nucleotide

mutations in human genes (Krawczak et al. 1998) and sixfold

based on the frequency of CpG sequences in SNPs in the human

genome (Zhao and Zhang 2006). Both the absolute and relative

density of methyl-associated SNPs (mSNPs) can therefore be used

as a surrogate marker to reflect the degree of methylation in the

germline. This has previously been used to predict germline DNA

methylation on a smaller scale (Bjornsson et al. 2006). Using the

recently released HapMap data set of 3.1 million SNPs, we created

a model of human germline methylation. We then used this

model to test if DNA methylation of the human germline was

directly and independently correlated with meiotic recom-

bination. The results suggest that regional DNA methylation in

the germline affects the local recombination rate.

Results

Identification of methylation-associated SNPs within the
HapMap database, including the ENCODE regions

The second-phase HapMap database has 2,252,113 nonredundant

C/T or G/A SNPs in the autosomal chromosomes. Of those,

763,035 (33.9%) are located within a CpG dinucleotide. A derived

allele data set was created by mapping each SNP to the corre-

sponding base in the chimpanzee or macaque genomes, thus de-

termining which SNP allele was the ancestral one (Thomas et al.

2007). We used this data set to search for C/T or G/A SNPs where

either C or G was the ancestral allele (thus excluding non-

informative T / C or A / G SNPs). A total of 1,239,485 C/T or

G/A nonredundant polymorphisms fulfilled this criterion for the

autosomal chromosomes. Of these, 434,198 (35.0%, 79 6 36 per

500-kb window) were within a CpG dinucleotide, thus meeting

the criteria of a mSNPgenome. There was no appreciable difference

between mSNPs and non-mSNPs using the integrated haplotype

score (iHS) parameter for selection (Supplemental Table S1)

(Voight et al. 2006).

A search within the ENCODE HapMap data set found 9809

C/T or G/A nonredundant polymorphisms. Of those, 2987

(30.5%, 299 6 123 per 500-kb window) were within a CpG di-

nucleotide, thus meeting the criteria of a mSNPENCODE. Due to the

limited derived allele data for this subset, the additional criteria

used in the genome-wide data set was not applied to the ENCODE

data set.

We examined the SNP allele counts for evidence that

mSNPgenome counts are representative of hypermutable methyl-

ated sequences. Out of 548,370,281 sequenced cytosine bases in

the autosomal chromosomes of the hg17 release of the human

genome, 26,635,559 (4.9%) were within a CpG dinucleotide. If no

specific dinucleotide is hypermutable, we would expect the dis-

tribution of C/T polymorphisms within dinucleotides to be the

same as the distribution of cytosine bases within dinucleotides, so

4.9% of these polymorphisms (60,205 and 476 in the genome-

wide-derived allele data set and the ENCODE data set, re-

spectively) should be within a CpG dinucleotide. The observed

number of polymorphisms was significantly greater than the

expected number for both data sets (ratio of 7.2 and 6.3 for the

genome-wide-derived allele data set and the ENCODE data set,

respectively; P < 10�15 for both values), suggesting that these data

sets represent the known hypermutability of methylated cytosine.

Furthermore, if we expect that methylation explains the difference

between the expected and observed number of polymorphisms

within CpGs, ;373,993 (86%) of our mSNPgenome are due to
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methylation. This is consistent with the observed fivefold in-

creased frequency of single nucleotide mutations identified in the

coding sequences of human genes (Krawczak et al. 1998), and

a sixfold increased frequency of CpG sites in human SNPs (Zhao

and Zhang 2006).

Analysis of the derived allele data set revealed significantly

more mSNPs with either C or G as the ancestral allele than with T

or A as the ancestral allele (443,657 vs. 333,606, ratio 1.32, P <

10�15). The directionality observed in these numbers is consistent

with the fact that deamination of methylated cytosine results in

C/T or G/A mutations that likely remain unrepaired, and therefore

become polymorphisms. Additionally, counts of C/T SNPs were

compared with that of G/T SNPs, which have been categorized as

to whether the 39 adjacent base is G or another base (Table 1). For

SNPs with C as the ancestral allele, their proportion is significantly

increased with G as the adjacent allele relative to the control G/T

counts. In contrast, very similar proportions were observed for T/C

and T/G SNPs when T was the ancestral allele (Table 1). The in-

creased relative proportion of C/T SNPs with C as the ancestral

allele and an adjacent G further suggests that mSNPs are repre-

sentative of hypermutable methylated sequences. These results

together suggest that the subset of mSNPs in the derived allele data

set is not a random subset of the genome. The observed over-

representation of mSNPs in all data sets suggests that the mSNPs

variable is indicative of the previously known hypermutability of

methylated cytosines, thus supporting the methodology of our

approach.

For all genome-wide analyses, we used mSNPs determined by

the derived allele data set (mSNPgenome) to minimize inclusion of

noninformative mSNPs.

We calculated a methylation index (MI) as explained in

Methods. We found that the MI at a given window (Xi) correlated

positively with the MI at the adjacent window (Xi + 1) (500-kb

windows: r = 0.362, P < 10�15) (data not shown). This result sug-

gests that the MI reflects a genome characteristic extending over

a length at least comparable to the 500-kb window studied.

To support the theory that the MI was indicative of DNA

methylation, we correlated the CpG island base count with the MI

for each window. CpG islands are long (>200 bp) stretches of se-

quence with an unusually high frequency of CpGs. They are

commonly found near the transcriptional start sites of genes

(Antequera and Bird 1999). In general, CpG islands are known to

be hypomethylated compared with other CpGs in the genome

(Bird 1986). We found a strong negative correlation between the

MI and number of CpG island bases per window (500-kb windows:

r = �0.483, P < 10�15; Supplemental Fig. S1). This result is con-

sistent with lower mutation rates of CpG dinucleotides in CpG

islands, suggesting that MI is representative of genome methyla-

tion. Since the correlation between CpG islands and 1/NSNP is

positive (500-kb windows: r = 0.461, P < 10�15) and the correlation

between CpG islands and 1/NCpG is mildly negative (500-kb win-

dows: r = �0.120, P < 10�15), it is unlikely that the strong negative

correlation is due to the CpG count (data not shown).

Genome-wide map of germline methylation

We constructed a genome-wide map of the methylation index

(MI) of the human genome in 500-kb windows (Fig. 1). The map

suggested both inter- and intra-chromosomal variability in germ-

line methylation (Fig. 1; Supplemental Fig. S2). Chromosome 19

had the lowest average germline methylation, and one of the

lowest intra-chromosomal variabilities. While this could in part

be explained by a higher proportion of CpG islands (Grimwood

et al. 2004), it is notable that this chromosome has a lower

recombination hot spot density than any other chromosome

(Myers et al. 2005).

Genome-wide analysis of the correlation between germline
methylation and recombination

Two parameters can be used to describe the recombinational

activity of a window within the genome: the recombination rate

of the window and the number of bases within recombination hot

spots. The correlation between these parameters was high (r =

0.725, 0.747, 0.782, 0.822 in window sizes 125 kb, 250 kb, 500 kb,

and 1000 kb, respectively, P < 10�15 for all correlations).

The quantitative relationship between germline methylation

and recombination was tested by several methods. The MI index

does not allow for simultaneous correction of multiple con-

founding factors (see Methods). For this analysis, we therefore

used the absolute mSNP count per window while correcting for

the number of CpGs and SNP density as well as other relevant

sequence factors, rather than the methylation index.

We observed a significant positive correlation between the

absolute number of mSNPs per window and both the re-

combination rate (500-kb windows: r = 0.622, P < 10�15; Fig. 2A;

Table 2) and the number of bases within recombination hot spots

(500-kb windows: r = 0.508, P < 10�15; Fig. 2B). The correlation

increased with increasing window sizes and appears to be higher for

recombination rates than recombination hot spots (Supplemental

Table S2A), suggesting that methylation might affect the re-

combination rate beyond recombination hot spots alone. Several

other variables might be influencing both variables, explaining this

correlation. Therefore, we did a partial correlation correcting for

previously known sequence factors influencing recombination at

window sizes of 125–1000 kb (GC content, repeats, and exons)

(Smith et al. 2005; Myers et al. 2006) as well as factors specific for

our methylation model (CpG density and SNP density). The density

of recently described DNA motifs associated with recombination

(Myers et al. 2005) is not significantly correlated with re-

combination at window sizes >8 kb, and therefore was not specifi-

cally modeled in our analysis (Myers et al. 2006).

After correcting for these factors, we still found a signifi-

cant positive correlation between the number of mSNPs in win-

dows and either the recombination rate (500-kb windows: r =

0.172, P < 10�15) or bases within recombination hot spots (500-kb

windows: r = 0.152, P < 10�15) in all window sizes (Supplemental

Table S2A).

We created a linear model of either recombination rate or

bases per recombination hot spot as a response variable, and sev-

eral sequence and model features as the predictor variable. When

Table 1. Absolute counts of SNPs in the derived allele data set
within dinucleotides containing G and dinucleotides not containing
G (H = A,C,T) for SNPs linked to methylation and control SNPs

SNP type Count SNP type Count Ratio

(C*/T)pG 434,198 (C*/T)pH 805,287 0.539
(G*/T)pG 54,550 (G*/T)pH 227,845 0.239
(T*/C)pG 324,960 (T*/C)pH 677,057 0.480
(T*/G)pG 76,920 (T*/G)pH 180,319 0.427

The ancestral allele is marked with (*). Our model is based on the premise
that the (C*/T)pG count is informative of cytosine methylation.

Germline DNA methylation and recombination
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looking at the known predictors of recombination rate in addition

to mSNPs in a linear model, mSNPs contributed significantly to

the model in all window sizes (Supplemental Table S2B). We found

that for recombination rate, mSNPs were the third and fourth

strongest predictor in window sizes of 250 kb and 500 kb, re-

spectively (Table 3; Supplemental Table S2B). For recombination

hot spots, mSNPs were the second strongest and strongest pre-

dictor in window sizes of 250 kb and 500 kb, respectively (Sup-

plemental Table S2B). The proportion of recombination rate

variability explained by the linear model was 0.339–0.518, and the

proportion of recombination hot spot variability explained by the

linear model was 0.193–0.369 depending on window sizes (Sup-

plemental Table S2B). This proportion is within a similar range or

higher than previous models have been able to explain (Kong et al.

2002; Smith et al. 2005).

We repeated the analysis using non-

log-transformed data and obtained simi-

lar results (data not shown). However, the

amount of variability explained by the

model was decreased, presumably due to

more outliers in the nontransformed data

set.

Analysis of the correlation between
germline methylation and
recombination at a higher resolution

Given the size of the human genome

and the latest observed number of re-

combination hot spots in the genome

(Frazer et al. 2007), the average distance

between recombination hot spots is 80

kb. Our absolute maximal resolution us-

ing the genome-wide HapMap data set is

125 kb, and in that resolution finer-scale

effects might be obscured from the rela-

tively coarse measurements. Therefore,

an alternative approach was needed to

study the relationship between germline

methylation and recombination hot

spots in greater detail.

The ENCODE HapMap data set con-

tains more detailed haplotype analysis of

5 Mb of human genome sequence. It has

roughly three times more known SNPs per

sequenced base than the genome-wide

data set. We used the ENCODE HapMap

data set to create windows of 25 and 50 kb

for the 5 Mb of available sequence. In this

increased resolution subset, we found

a significant positive correlation between

mSNP and recombination rate in both

window sizes (50-kb windows: r = 0.301,

P = 0.002; 25-kb windows: r = 0.319, P <

0.0001; Table 2; Supplemental Table S3A).

Furthermore, when we performed corre-

lation correcting for factors known to af-

fect recombination rate at the given

window sizes (GC ratio, repeats, exons) as

well as factors affecting the methylation

model (CpG count, SNP density), the

correlation was further strengthened (50-

kb windows: r = 0.445, P < 0.0001; 25-kb windows: r = 0.335, P <

0.0001; Supplemental Table S3A). In the linear model of re-

combination rate, mSNP was the strongest predictor of re-

combination rate for both window sizes (Table 3; Supplemental

Table S3B). The ENCODE data set had insufficient power to create

a linear model of recombination hot spots (Supplemental Table

S3B), since 153 out of 200 25-kb windows and 60 out of 100 50-kb

windows did not contain any recombination hot spot.

Correlation of recombination and Human Epigenome
Project data

Given the results obtained using the model of germline methyla-

tion, we investigated the correlation between recombination and

methylation in an independent set of data. The aim of the Human

Figure 1. A genome-wide map of human germline methylation. A methylation index (MI) was
calculated for each 500 kb of genomic sequence with satisfactory data (no gaps in sequencing and at
least 20 known SNPs). The y-axis value and bar color (see color index) demonstrate methylation as the
ratio of average genome MI (MIav).

Sigurdsson et al.
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Epigenome Project (HEP) is to identify, catalog, and interpret

genome-wide DNA methylation profiles of all human genes in

all major tissues utilizing bisulfite sequencing, the gold standard of

methylation profiling (Rakyan et al. 2004). The latest data release

from the HEP project contains the methylation status of 2524

amplicons within three human chromosomes in 12 different tis-

sues. The average length of each amplicon is 411 bp, and they

contain on average 16 CpGs (Eckhardt et al. 2006). The data set

contains information about the percentage of methylation of each

cytosine base within a CpG dinucleotide. The short amplicon

length made it impossible to calculate the recombination rate of

each amplicon, so location within recombination hot spots was

used instead.

We screened the whole data set for results from sperm tissue,

the final product of the male germ line. Then we calculated the

average methylation of each amplicon by averaging the methyl-

ation percentage of each sequenced CpG within the amplicons.

Since recombination hot spots are on average three to four times

larger than the amplicons from the HEP data set, the amplicons

were divided into two groups. One group contained amplicons

located within recombination hot spots (n = 219) and the other

contained amplicons not located within recombination hot spots

(n = 1745). For both groups, the distribution of methylation was

still bimodal after averaging the CpG methylation values within

each amplicon (Fig. 3). The average amplicon methylation was

significantly higher for the group located within recombination

hot spots (0.632 vs. 0.557, P = 0.007; Fig. 3). We assigned each

amplicon a methylation status of one of three categories: unme-

thylated (<20% methylation), heterogeneously methylated (20%–

80% methylation), and hypermethylated (>80% methylation), as

described in the HEP data release (Eckhardt et al. 2006). For

amplicons not within a recombination hot spot, the distribution

of amplicons into the three categories (no methylation, hetero-

geneous methylation, and hypermethylation) was 36%, 13%, and

50%, respectively. For amplicons within recombination hot spots,

the distribution into the three categories was 28%, 16%, and 56%,

respectively. These differences in distribution were significantly

different between the two groups (P = 0.03). Comparable results

were obtained when methylation was split into groups of even

ranges (<33%, 33%–66%, and >66% methylation) or into two

groups (0%–50% and 51%–100%) (data not shown).

Discussion
Several recent observations suggest that the DNA sequence itself is

not the sole determinant of region-specific and inter-individual

variation in recombination activity. Therefore, other alternatives

have been proposed, including epigenetic mechanisms. DNA

methylation is a prime candidate, either by itself or by interacting

closely with another unknown epigenetic mechanism (i.e., his-

tone modifications) conserved through meiosis. To study this

mechanism in the germline, we have proposed a novel approach

using methylation-associated SNPs (mSNPs) as a surrogate marker

for DNA methylation.

Our methodology was supported by the observed sevenfold

overrepresentation of mSNPs in the HapMap data set compared

with control SNPs. This supports that the mSNPs reflect the

previously demonstrated hypermutability of methylated CpGs.

Figure 2. A significant positive correlation was found between number of mSNPs per 500-kb window and both the recombination rate (r = 0.622, P <
10�15) (A) and number of bases within recombination hot spots per window (r = 0.508, P < 10�15) (B).

Table 2. Correlation of several sequence and model features
with recombination rate in the high-resolution ENCODE regions
and genome-wide

ENCODE regions
50 kb

Genome-wide
500 kb

r P-valuea r P-valuea

mSNP 0.301 0.002 0.622 <0.0001
SNP density 0.027 0.790 0.355 <0.0001
Repeats -0.136 0.177 -0.332 <0.0001
Exons 0.045 0.656 0.070 <0.0001
GC content 0.211 0.035 0.390 <0.0001
CpG dinucleotides 0.172 0.087 0.353 <0.0001

aStatistically significant values (P < 0.05/6) are in bold.

Germline DNA methylation and recombination
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Furthermore, the mSNP marker detected the previously known

hypomethylation of CpG islands. A genome-wide map of the

human germline methylation detected both inter- and intra-

chromosomal differences. Chromosome 19, known for the lowest

recombination hotspot intensity, had the lowest average germline

methylation.

We found a statistically significant positive correlation between

the number of mSNPs and both recombination rate and re-

combination hot spots in a genome-wide resolution of 125–1000 kb.

This remained significant after correcting for known sequence

properties influencing recombination (such as GC content and CpG

dinucleotides) and factors influencing the methylation model.

We found an even stronger correlation between re-

combination rate and mSNPs in the ENCODE regions. These

regions comprise a 5-Mb subset of the human genome with an

increased density of known SNPs and sequence information, thus

allowing analysis with greater resolution. In this data set, germline

methylation was found to be the strongest predictor of re-

combination rate in our linear model of recombination rate in 25-

and 50-kb window sizes. This suggests that epigenetic modifica-

tion might affect recombination more strongly at a smaller (kilo-

base) rather than on a larger (megabase) scale.

Finally, we used a biological data set from the Human Epi-

genome Project (HEP) to provide independent results supporting

the correlation between methylation and recombination. The

project has released a limited but high-quality data set including

the bisulfite sequencing results of ;2000 stretches of DNA in

sperm. This is, to date, the largest data release of direct DNA

methylation measurements. We found that the average methyla-

tion was significantly higher in amplicons located within re-

combination hot spots compared with amplicons that are not.

Furthermore, the distribution of amplicons into groups contain-

ing different amounts of methylation was significantly different

between amplicons located within recombination hot spots and

amplicons not located within recombination hot spots.

Our approach of using mSNPs as a surrogate marker for

methylation has several limitations. Not all SNPs fulfilling the

criteria of mSNPs are representative of methylation; and, con-

versely, not all methylation is represented by mSNPs. The differ-

ence in recombination rates between males and females poses an

additional problem when a sex-averaged data set is used to esti-

mate recombination. This phenomenon has been demonstrated

when recombination patterns are examined at large scales (meg-

abases) (Broman et al. 1998; Kong et al. 2002), but the difference

seems to decrease when recombination is studied on a finer scale

(Myers et al. 2006; Coop et al. 2008). Finally, a cause-and-effect

relationship can never be determined based on a correlation be-

tween two variables. Both variables might reflect a third variable

more proximal to the cause.

Given the limitation of our methylation marker, it is remark-

able how consistent and strong our correlations are. Although lin-

ear models are commonly used to model recombination, the

contribution from nonlinear effects cannot be excluded. Nonlinear

effects are, however, more likely to affect the exact magnitude of

effects rather than their directionality. While methylation appears

to influence recombination, other factors certainly play a role. For

instance, recently described motifs determining a significant

amount of hot spot-dependent recombination do not contain CpG

dinucleotides (Myers et al. 2005).

A relationship between germline DNA methylation and re-

combination could be interpreted in two ways that are not mu-

tually exclusive. Areas of the genome undergoing recombination

could be methylated secondarily, perhaps inhibiting further re-

combination. A second recombination event (re-recombination)

close to a previous one in the same meiosis would negate the

potentially beneficial effects of recombination. An interesting

consequence of this possibility is that methylation might be a part

of the enigmatic signaling pathway mediating crossover in-

terference. At the molecular level, it would be of interest to study if

methylation is induced by repair of double-stranded breaks by

homologous recombination either in the context of chromosome

recombination at meiosis or as a DNA damage response (O’Hagan

et al. 2008). This also applies to the relationship between meth-

ylation and gene conversion with associated meiotic drive, two

important processes closely linked to homologous recombination

(Webb et al. 2008).

Alternatively, it is possible that methylation is a potentiator

of recombination. Perhaps areas marked by methylation are pre-

ferred sites for recombination. Such areas might be those where

potentially mutagenic recombination is unlikely to cause harm-

ful effects. This hypothesis is supported by the fact that DNA

methylation patterns are already established in prophase I when

Table 3. Multiple linear regression of recombination rate as
a response to sequence and model feature predictors in the
high-resolution ENCODE regions and genome-wide

ENCODE regions
50 kb

Genome-wide
500 kb

ba P-valueb ba P-valueb

mSNP 0.661 <0.0001 0.151 <0.0001
SNP density -0.462 <0.0001 0.322 <0.0001
Repeats RMc RMc -0.134 <0.0001
Exons -0.214 0.06 -0.180 <0.0001
GC content RMc RMc 0.250 <0.0001
CpG dinucleotides 0.301 0.013 0.275 <0.0001
Model R2 0.394 0.426

aStandardized beta values are shown. b is the number of standard devi-
ations that the outcome variable will change as a result of one standard
deviation change in the predictor variable.
bStatistically significant values (P < 0.05/6) are in bold.
c(RM) Value not included in linear model.

Figure 3. Density map of the distribution of the average methylation of
amplicons located inside recombination hot spots (black, n = 219) or
outside of recombination hot spots (gray, n = 1745). Average methylation
was significantly more in regions located within hot spots (0.632 vs.
0.557, P = 0.007, t-test).
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recombination occurs (Davis et al. 1999; Bourc’his and Bestor

2004; Oakes et al. 2007).

The finding of a positive correlation between methylation

and homologous recombination contrasts with the observation of

chromosomal instability caused by mutations in DNMT3B, a de

novo methylation enzyme of the human genome (Xu et al. 1999).

This suggests that methylation might have a role in promoting

homologous recombination, but suppresses nonhomologous re-

combination. Another possibility, as previously explained, is that

methylation is used to mark regions that have already undergone

recombination. A lack of methylation could then result in fre-

quent re-recombination, eventually leading to chromosomal in-

stability. This would be an interesting avenue to pursue in further

studies.

Our results suggest that differences in methylation provide

an explanation for a previously unexplained phenomenon of

inter-individual differences in recombinational activity despite

identical DNA sequence, as well as different locations of re-

combination hot spots between species with high sequence ho-

mology (Winckler et al. 2005; Neumann and Jeffreys 2006).

Previously, CpG density has been correlated with recombination

(Kong et al. 2002; Myers et al. 2006). Also, an epigenetic mecha-

nism has been proposed as the explanation for recombination

(Winckler et al. 2005; Neumann and Jeffreys 2006; Sandovici et al.

2006). Our results support and extend these results by showing

a positive correlation between germline DNA methylation and

human recombination.

Methods

Definitions
In the following paragraphs, we define methylation-associated
SNP (mSNP) as any C/T or G/A (corresponding to a C/T poly-
morphism on the opposite strand) polymorphism with an adja-
cent 39 guanine (for C/T polymorphism) or adjacent 59 cytosine
(for G/A polymorphism). Therefore, the subset of mSNPs includes
all possible methylation-associated mutations occurring in the
CpG dinucleotide within a given database of SNPs. For the
genome-wide associations, an additional criterion for a mSNP to
become a mSNPgenome was that the ancestral allele was either C or
G. The mSNPENCODE were defined as mSNPs in the ENCODE
regions.

We took two different approaches to correct for possible
confounding factors of our methylation model. For graphical
representation and mapping purposes we calculated the MI for the
genome in various window sizes. The index should be considered
as a ratio of observed mSNP (NmSNP) to the expected (NCpG � NSNP)
times a constant. The index is defined as:

MI =
NmSNP

NCpG �NSNP

where NmSNP stands for the number of mSNPgenome within a given
window. NCpG stands for the number of CpG dinucleotides within
the window and is directly proportional to the probability of a SNP
occurring in a CpG. NSNP stands for the number of all SNPs except
mSNPs detected within the window. The density reflects both
functional constraints in the region and the sensitivity of the
method used for SNP detection. The product NCpG � NSNP is
therefore directly proportional to the expected number of mSNPs.

The MI only provides correction for two confounding factors.
When several factors can affect a variable, and the factors can
be intercorrelated, a calculation of an index such as the MI is

statistically insufficient. The MI index was therefore used only for
imaging purposes. For exploration of the relationship between
recombination rate and germline methylation, the absolute
number of mSNPs per window was used while correcting for the
effects of other confounding factors using partial correlation or
multiple linear regression (see below), since these methods allow
for the correction of multiple variables simultaneously.

HapMap data sets

For genome-wide searches for mSNPs, we used release 21 (July
2006) of the genotype data from the International HapMap
Consortium. We downloaded the nonredundant genotype set for
all 22 autosomal chromosomes for all populations from the Hap-
Map website (http://www.hapmap.org). We also downloaded
a derived alleles data set (http://hgwdev.cse.ucsc.edu/;daryl/
HapMap_rel21_derived_alleles/). This data set includes in-
formation about the chimpanzee and macaque states for each
HapMap allele set when available, thus determining which allele
was the ancestral one (Thomas et al. 2007). We analyzed data for
all 22 autosomal chromosomes. We wrote programs to extract the
appropriate iHS value for mSNPs and non-mSNPs from the entire
database of calculated iHS values for HapMap phase II, down-
loaded from http://haplotter.uchicago.edu/selection/ on 01/01/
2009 (Voight et al. 2006).

The ENCODE (ENCyclopedia of DNA Elements) project aims
to identify all functional elements in the human genome (The
ENCODE Project Consortium 2004). We downloaded the full
HapMap genotype data set for the currently available 10 500-kb
human genome regions from the HapMap ENCODE web-
site (http://www.hapmap.org/downloads/encode1.html, accessed
7/11/2008).

For both the genome-wide data set and the ENCODE data set,
we searched within all four populations for the SNPs of interest.
We then pooled the populations and erased redundant poly-
morphisms so our final data set used in further analysis contained
a single copy of each SNP.

Sequence features

For information on GC content, location of gaps, and CpG di-
nucleotide count, we created programs to search within the hu-
man genome sequence (NCBI Build 35, UCSC hg 17), downloaded
from the UCSC Genome Browser (http://genome.ucsc.edu) (Kent
et al. 2002). Information on recombination rate and recom-
bination hot spots based on phase II of the International HapMap
Consortium project was downloaded from the HapMap website.
The creation of this data set is described in detail elsewhere (The
International HapMap Consortium 2005). For all other sequence
features, both for genome-wide analysis and the ENCODE
region analysis, we used tables derived from the UCSC
Table Browser (Karolchik et al. 2004). For genome-wide analysis,
all data tables were based on NCBI Build 35 of the human
genome (UCSC hg 17); for the ENCODE regions, the tables were
based on NCBI Build 34 (UCSC hg 16). Specifically, we used the
cpgIslandExt table for the location and properties of CpG
islands (Gardiner-Garden and Frommer 1987), the knownGene
table for the location of exons of known genes (Hsu et al. 2006),
and the rmsk table for the location and properties of repeated
elements created using the RepeatMasker (http://www.
repeatmasker.org) based on the Repbase database of repeated
elements (Jurka et al. 2005). Due to the multiple data sets un-
derlying the known gene table, redundant data were removed
from the table, and only one copy of each exon was included in
the analysis.
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HEP data set

Data from the Human Epigenome Project (HEP) were downloaded
from the project website (http://www.epigenome.org). We used
the most recent data release containing the results from bisulfite
sequencing of 2524 amplicons chosen from chromosomes 6, 20,
and 22 in 12 different tissue types (Eckhardt et al. 2006). We then
wrote programs selecting out data from sperm as well as programs
to determine if an amplicon was located within a recombination
hot spot or not.

Programs

We developed several programs in the JAVA programming lan-
guage using the Textpad editor (Helios Software Solutions). For
statistical and figure creations, scripts were also developed in the R
statistical language. The source code of all programs used in the
paper is available at www.hi.is/;mis.

Sliding windows correlation and statistical analysis

Our genome-wide analyses were done using four different window
sizes (125 kb, 250 kb, 500 kb, and 1000 kb). For each window size,
we divided the genome into nonoverlapping windows. Each win-
dow was then assigned values according to its genetic properties
(recombination rate, number of bases within CpG dinucleotides
and repeats, GC content, mSNP amount, SNP density, and calcu-
lated MI). Windows containing any sequencing gaps were removed
prior to analysis. The genome-wide map of the MI only displays
windows where more than 20 SNPs were available for analysis. The
ENCODE regions were analyzed in a similar fashion using non-
overlapping windows of two different sizes (25 kb and 50 kb). Each
window was assigned values according to their genetic properties in
the same way as for the genome-wide analysis.

For simple correlation, we first explored the distribution of all
variables by applying the Kolmogorov–Smirnov normality test. If
any of the variables were not normally distributed, a Spearman
ranked correlation coefficient was calculated; otherwise a Pearson
correlation coefficient was calculated. Partial correlations were
also done using either ranked data or unranked data based on tests
of normality.

Prior to multiple linear regression analysis, we first trans-
formed the data to provide a better fit to normal distribution using
Box–Cox transformation, a form of lognormal transformation.
Linear regression was then done using either recombination rate
or number of bases within recombination hot spots as the re-
sponse variable using a stepwise backward method.

When comparing the summary statistics of two different
groups, either x2 or t-tests were done. For the genome-wide and
ENCODE regions analysis, multiple correlation (six correlations)
was performed between sequence features and recombination. A
P-value < 0.05/6 was therefore considered statistically significant.
We note, however, that certain features tested were substantially
intercorrelated (such as GC content and amount of CpG dinu-
cleotides), possibly increasing the likelihood of type II errors. For
other analysis where multiple testing was not done, a P-value < 0.05
was considered statistically significant. Linear regression was done
using SPSS version 15 (SPSS, Inc.). All other statistical analysis as
well as figure preparation was done using R package version 2.5.1.
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