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Multiple sequence alignments have become one of the most commonly used resources in genomics research. Most
algorithms for multiple alignment of whole genomes rely either on a reference genome, against which all of the other
sequences are laid out, or require a one-to-one mapping between the nucleotides of the genomes, preventing the
alignment of recently duplicated regions. Both approaches have drawbacks for whole-genome comparisons. In this paper
we present a novel symmetric alignment algorithm. The resulting alignments not only represent all of the genomes
equally well, but also include all relevant duplications that occurred since the divergence from the last common ancestor.
Our algorithm, implemented as a part of the VISTA Genome Pipeline (VGP), was used to align seven vertebrate and six
Drosophila genomes. The resulting whole-genome alignments demonstrate a higher sensitivity and specificity than the
pairwise alignments previously available through the VGP and have higher exon alignment accuracy than comparable
public whole-genome alignments. Of the multiple alignment methods tested, ours performed the best at aligning genes
from multigene families—perhaps the most challenging test for whole-genome alignments. Our whole-genome multiple
alignments are available through the VISTA Browser at http://genome.lbl.gov/vista/index.shtml.

Genome conservation is an essential guide for biologists and

bioinformaticians attempting to locate functional elements and

formulate biological hypotheses for testing in the laboratory. By

searching for highly conserved sequences across multiple species,

scientists have identified critical functional elements (Bejerano

et al. 2004; Pennacchio et al. 2006; Prabhakar et al. 2006). Se-

quence conservation is commonly used as input to programs that

predict genes (Dewey et al. 2004; Majoros et al. 2005; Gross and

Brent 2006), find transcription factor binding sites (Lenhard et al.

2003; Moses et al. 2004), and find other regulatory elements (de la

Calle-Mustienes et al. 2005; Abbasi et al. 2007). The conservation

signal used by all of these applications is based on alignments

between the input genomic sequences.

The first tools developed for alignment of longer genomic

regions, such as GLASS (Batzoglou et al. 2000), AVID (Bray et al.

2003), and BLASTZ (Schwartz et al. 2003), could not align more than

two DNA sequences.At thesametime multiplealignment tools, such

as ClustalW (Thompson et al. 1994) and DIALIGN (Morgenstern

et al. 1998; Morgenstern 2000), could not handle more than a few

kilobases of sequence. To address the need for multiple (three or

more sequences) alignment of long genomic regions, several tools

have been developed, including LAGAN (Brudno et al. 2003a),

MAVID (Bray and Pachter 2004), and TBA (Blanchette et al. 2004).

Most recently several methods have been developed for probabilistic

alignment of DNA sequences (Lunter et al. 2008; Paten et al. 2008).

These tools differ from previous approaches in that they can learn

correct alignment parameters directly from the data, and use

a probability-based score, instead of the heuristic Needleman–

Wunsch penalties used by previous methods. All of these tools use

a progressive alignment technique, which is based on the phyloge-

netic relationship between the sequences being aligned. First, the

closest sequences are aligned to each other, and then the resulting

alignment is aligned to the more distant sequences, following

a phylogenetic tree. The progressive heuristic, because it closely

mirrors the evolution of the organisms, has been found to be highly

effective for alignment of both DNA (Brudno et al. 2003a; Blanchette

et al. 2004; Bray and Pachter 2004; Paten et al. 2008) and protein

(Thompson et al. 1994; Do et al. 2005) sequences. In fact, it was

shown that multiple DNA sequence alignment methods (as opposed

to pairwise) are better at capturing functional signals from phylo-

genetically diverse vertebrates because of the use of intermediate

sequences in multiple alignments (Margulies et al. 2006).

The problem of aligning whole genomes is more difficult

than that of aligning individual, shorter DNA segments because it

is necessary to find the corresponding (orthologous) blocks in the

genomes prior to the actual alignment. Perhaps the most

straightforward approach to aligning two whole genomes is to

perform local alignment between all of the chromosomes of both

of the genomes. However, classical local alignment methods do

not consider whether a particular local alignment falls into a larger

syntenic block (region without rearrangements). This leads to

difficulties with unmasked repeats, and with paralogous copies of

various genomic features: For example, when both sequences have

n paralogous genes, the classic local alignment methods would

yield n2 alignments between all pairs of these. Despite some of the

disadvantages, local alignments were used for comparison of the

human and mouse genomes (Ma et al. 2002; Schwartz et al. 2003)

and for the human/mouse/rat three-way alignments (Blanchette

et al. 2004), because of their high sensitivity when aligning large

mammalian genomes with complex rearrangements.

An alternate approach proposed for human/mouse compar-

ison was the tandem local–global approach (Couronne et al.

2003). In this technique, one genome is split up into arbitrary-

sized pieces (the authors used 250 kb), and the potential orthologs

for each piece is found in the second genome using a rapid,

though less sensitive, alignment program, e.g., BLAT (Kent 2002).
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The sequence was extended around the BLAT anchors and aligned

using a global alignment program. This procedure was later ex-

panded to three-way alignment of the human, mouse, and rat

genomes (Brudno et al. 2004). Although the tandem approach

produces a map that is accurate within large syntenic blocks

(regions of genomes without rearrangements), it has two main

weaknesses: Small syntenic blocks, resulting from rearrangements

within a larger region, may be missed, and the initial arbitrary

division of one genome into segments can split a syntenic region,

making it difficult to map the region to its true ortholog.

Because of the shortcomings of these methods, there has

been increased effort in developing hybrid, ‘‘glocal’’ alignment

methods. These methods attempt to combine the advantages of

the local and global approaches by modeling the rearrangements

(shuffling) that a genome undergoes during evolution. Some of

the most common rearrangement events are inversions (a block of

DNA changes direction, but not location in the genome), trans-

locations (a piece of DNA moves to a new location in the genome),

and duplications (two copies of a block of DNA appear where there

was one previously). The more recent algorithms for whole-

genome alignments attempt to incorporate the likely evolutionary

events as ‘‘operations’’ into their scoring schemes, including sev-

eral tools that decide whether to accept or reject a local alignment

based on other alignments near it. These include Shuffle-LAGAN

(Brudno et al. 2003b), Chains and Nets on the UCSC Browser

(Kent et al. 2003), Mercator (Dewey 2007), A-Bruijn Block Aligner

(Raphael et al. 2004), and Mauve (Darling et al. 2004).

While most of the pairwise whole-genome alignment algo-

rithms described above have been generalized to multiple align-

ment, these approaches rely on a reference genome, against which

all of the other sequences are laid out, or require a one-to-one map-

ping, where each nucleotide of one genome is constrained to align

to, at most, one place in the other genome. Both of these approaches

have drawbacks for whole-genome comparisons: The first will not

align segments conserved among some genomes, but missing in the

reference, while the second will fail to align any element that has

undergone a duplication. Most recently, nonreferenced genome

alignment implementationshave appeared, for example, theEnredo

package (Paten et al. 2008), used by the Ensembl genome browser.

Enredo builds a genome alignment graph, akin to the A-Bruijn graph

alignment of Raphael et al. (2004), and all of the genomes are aligned

simultaneously. This approach has the disadvantage of not taking

into account the phylogenetic information about the species, mak-

ing it more difficult to align distant genomes.

In this work, we present a novel, nonreferenced, multiple

alignment algorithm. Our approach is based on the progressive

technique for multiple alignment and has several advantages over

previous algorithms: (1) It does not utilize a reference genome but

creates a symmetric alignment equally valid for all genomes; (2) it

allows for arbitrary duplications in all genomes and does not re-

quire the nucleotides to have a one-to-one mapping; and (3) it is

able to align short syntenic blocks based on their adjacency to

high-similarity areas, even in the presence of rearrangements. Our

results demonstrate that our alignments have high exon align-

ment accuracy and outperform other approaches, especially for

alignment of genes from multigene families and distant species.

Results

Algorithms

Our algorithm is based on progressive alignment, with genomes

aligned up the phylogenetic tree. After aligning two genomes, our

algorithm joins together syntenic blocks based on the outgroups

(those sequences that will be aligned at a later stage: For example,

if we have aligned mouse with rat, then human, dog, and chicken

are all outgroups). By picking an order of the syntenic blocks that

is closest to the outgroups, we facilitate alignment of the more

distant genomes.

In the sections below we start by describing SuperMap—a

symmetric extension of the pairwise Shuffle-LAGAN algorithm

capable of alignment of whole genomes. Secondly, we describe

a novel multiple whole-genome alignment algorithm that uses

SuperMap for pairwise genome alignment and uses an algorithm

based on the Maximum Weight Perfect Matching (MWPM)

problem to order the aligned areas of the two genomes to simplify

the mapping in the next stages of the progressive algorithm.

SuperMap: Pairwise alignment of genomes

The SuperMap algorithm is based on the original Shuffle-LAGAN (S-

LAGAN) chaining algorithm (Brudno et al. 2003b). The S-LAGAN

alignment algorithm runs in three stages (Fig. 1). During the first, all

local alignments between the two input sequences are located. In

the second stage, we select a subset of these alignments to represent

a rearrangement map between the two sequences. Finally, regions

of conserved synteny (those without rearrangements) are realigned

using the LAGAN global alignment algorithm.

The S-LAGAN chaining program takes as input a set of local

alignments between the two sequences and returns the maximal

scoring subset of these under certain gap criteria. To allow

S-LAGAN to catch rearrangements, the collinearity assumption of

global algorithms was relaxed to allow the map to be non-

decreasing (monotonic) in only one sequence (the ‘‘base’’), with-

out putting any restrictions on the second sequence. This is called

a 1-monotonic conservation map. Perhaps the main weakness of

the Shuffle-LAGAN chaining algorithm is its asymmetry, since it

depends on one genome being labeled as the ‘‘base,’’ and dupli-

cations only in the base genome are aligned.

To address this issue we have built the SuperMap algorithm

that solves the symmetry problem by adding a post-processing

step. We run S-LAGAN twice, using each sequence as the base

(see Fig. 2). This gives us three pieces of data: the original local

alignments, which were common to the two runs of S-LAGAN,

Figure 1. Overview of the Shuffle-LAGAN algorithm. S-LAGAN first
locates all local areas of similarity between the two sequences using a local
alignment algorithm. A subset of these is selected using the 1-monotonic
chaining algorithm (Fig. 2). Finally, global alignments are built (using
LAGAN) for consistent subsegments of the 1-monotonic chain (areas
without rearrangements). The S-LAGAN algorithm is not symmetric, re-
quiring two alignments to identify all duplications.
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and two chains of these alignments, each corresponding to the

S-LAGAN 1-monotonic maps. We then classify all local alignments

as belonging to both chains, and consequently orthologous (best

bidirectional hits), or being in only one chain, and hence be-

longing to a duplication. Local alignments that do not fall into

either chain are considered to be false positives and are removed

from consideration. We transform the two S-LAGAN chains into

a graph as follows: Every alignment becomes a node. If the

alignment A2 follows A1 on an S-LAGAN chain, we add an edge

going from A1 to A2. Every node that has incoming edges from

two different nodes is the beginning of a syntenic block, and every

node with two outgoing edges to two different nodes is the end of

such a region. Identifying all regions can easily be accomplished in

linear time once the S-LAGAN chains are built.

This SuperMap algorithm has several advantages over regular

S-LAGAN: (1) It is able to locate duplications in both sequences,

overcoming a major weakness of the original algorithm; (2) in case

of transpositions, two of the pieces are no longer arbitrarily joined

together; (3) this approach locates both regions of one-to-one

similarity (those that were in both 1-monotonic chains) and likely

duplications.

Multiple alignment

We have generalized the SuperMap algorithm to alignment of

more than two genomes through a progressive alignment frame-

work. Our algorithm reorders, at each internal node of the phy-

logenetic tree, the alignments between its children genomes to

simplify the alignment of these alignments to the next outgroup.

We refer to this ordering as the ‘‘ancestral’’ ordering, as it most

closely resembles the order of the same regions in the genomes of

other, close genomes.

For every node of the tree, our algorithm starts by generating

a set of local alignments between the two children genomes.

SuperMap chaining is used to identify all rearrangements and

define consistent subsegments among the local alignments. The

resulting regions are aligned with LAGAN. Given the output of the

SuperMap algorithm, for every syntenic block, we consider the

two children genomes as the two possible next blocks in the best

ordering of the alignments. To decide on the better ordering we

use the most proximal outgroups to

compute the support for each edge, and

then select a subset of these edges such

that each syntenic region is preceded by,

at most. one region, and followed by, at

most, one region.

To build this ancestral ordering, we

first use Fitch’s algorithm to build a con-

sensus representation of all alignments.

Fitch’s algorithm recreates the character

that should be used in the ancestral ge-

nome so as to minimize the number of

mutations that take place in the align-

ment. We align these ancestral contigs to

the most proximal outgroups (since we

assume that the tree is binary, we follow

one edge up the tree, and locate those

genomes that are present in the other

child of this node). For every breakpoint

between syntenic blocks, we determine

which of the two children is most likely

to be the ancestral order by letting the

outgroups ‘‘vote’’ on the proper ordering. Each outgroup is

assigned a weight based on its proximity to the ancestral node.

The outgroup’s vote is distributed between the two children, with

the child whose order of conserved elements is closest to the

outgroup receiving the bigger fraction.

This problem can be formally written as the Maximum

Weight Path Cover problem, in a similar manner to the reduction

of the breakpoint median problem to the Traveling Salesman

Problem (Sankoff and Blanchette 1998). Each path corresponds to

an ordered segment of the ancestral genome. However, this

problem is known to be computationally intractable (NP-hard).

Consequently, we solve the MWPM problem instead. We reduce

the alignment problem to a graph in the same way as in the

SuperMap algorithm (see Fig. 3), though the new graph is built

based on the syntenic regions that are produced by SuperMap. We

define the weights for each edge in the graph based on how much

it is supported by outlying genomic sequences. This procedure is

explained in detail in the Methods section. The MWPM solution is

a set of paths and cycles. We remove the smallest weight edge in

each such cycle to break the circular path, and create a (possibly

nonoptimal) path cover. For each path we build an ancestral

‘‘contig’’ by filling the gaps between alignments with the genomic

sequence that was closer to the ancestor. We use these ancestral

contigs in higher levels of the tree.

It is important to note that our ‘‘ancestral genome order’’ and

‘‘ancestral contigs’’ should not be thought of as representing the

genome of the ancestor of the organisms being aligned—in fact, it

is an ordering of the pieces that will make it easiest to align them

to the next outgroup. This idea also appears in the context of

progressive alignments of protein sequences, where alignment

programs use the UPGMA guide tree to align the sequences, rather

than the neighbor-joining tree, even though the neighbor-joining

tree is a better approximation of the true phylogeny (Edgar 2004;

Nelesen et al. 2008).

Evaluation

Our multiple genome alignment algorithm has been implemented

as part of the VISTA Genome Pipeline (VGP) and has been used to

align seven vertebrate genomes (human, rhesus, dog, horse,

Figure 2. SuperMap Algorithm. The left side (I) is a dotplot demonstrating the local alignments
between two hypothetical genomes. Local alignments A and B correspond to duplications in Organism
1 and Organism 2, respectively. Local alignment C corresponds to an inversion, and local alignments D
are spurious false positives. The middle panel (II) shows (in blue) the result of running the regular S-
LAGAN 1-monotonic chaining algorithm using Organism 1 as the base. On the right (III) we have built
the 1-monotonic maps for Organism 1 (blue) and 2 (red). Whenever these chains merge, they are
shown as purple. Similarly, local alignments are colored based on which chains they belong to blue
(M1), red (M2), or purple (both, DM). All points where the two chains split or join are borders of
a region of conserved synteny.
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mouse, rat, chicken) and six Drosophila genomes (D. melanogaster,

D. ananassae, D. erecta, D. pseudoobscura, D. simulans, and D.

yakuba). To evaluate the quality of our alignments we considered

two metrics commonly used in alignment literature: the overall

coverage of the genome and of important genomic features by

high scoring alignments (Schwartz et al. 2003), and the accuracy

of alignment of annotated exons (Brudno et al. 2003a; Bray and

Pachter 2004). Another metric commonly used to evaluate align-

ments is the comparison of sequences that have undergone sim-

ulated evolution, and for which the true alignment is known.

While this approach is useful for comparison of the alignments of

regions without rearrangements (Blanchette et al. 2004), where

the only allowed evolutionary events are substitutions and inser-

tions/deletions, it is not currently practical for whole-genome

alignment, as currently there are no tools for realistic simulation of

evolution of a complete genome.

Genome coverage

The first analysis we conducted was the comparison of the three-

way human–mouse–rat alignment obtained using our progressive

whole-genome algorithm with the tandem local/global heuristic

previously used by the VISTA Genome Pipeline (Couronne et al.

2003; Brudno et al. 2004). We evaluated the alignments based on

the fraction of the gene coding regions and of the whole genome

that are aligned above a certain threshold (coverage), and based on

the total size of the alignments (specificity). The results (summa-

rized in Table 1) show higher sensitivity and accuracy of the new

method in aligning coding regions, while the overall length of the

alignment was lower, indicating higher specificity. The increase in

exon coverage is due to the fact that the new method is better able

to align genes in regions with rearrangements. To illustrate this we

demonstrate coverage statistics for chromosome 20, which has

almost no rearrangements between the species, and the results of

the two methods are very similar.

Exon alignment accuracy

Secondly, we compared the overall alignment accuracy of our

progressive technique with the alignments produced by the Penn

State/UCSC Alignment Pipeline and displayed by the UCSC Ge-

nome Browser for two clades: vertebrates and Drosophila. We also

compared our vertebrate alignments to the Enredo/Pecan align-

ments displayed at the Ensembl Genome Browser. To measure the

alignment quality we use the method that evaluates exon align-

ment (Brudno et al. 2003a; Bray and Pachter 2004). For both clades

we have designated a reference organism (human and D. mela-

nogaster, respectively). We decomposed the multiple alignments

into pairwise alignments between the reference and all other

species, and rank each exon of the nonreference genomes based

on what percentage of its nucleotides are aligned within an exon

in the reference genome. The results are summarized in Figure 4.

Figure 3. A schematic representation of the reconstruction of ancestral
orderings. (A) The result of running SuperMap on a set of local alignments.
(B) The corresponding graph representation, with alignment edges colored
black, and connection edges colored by the color of the genome in which
these syntenic blocks are adjacent. The weight of all of the edges is com-
puted as shown in E. (C) The output of running the maximum matching
algorithm: Each node is connected to only one connection edge, as well as
the alignment edge. Note that by removing the alignment edges this
graph is decomposed into two connected components, which can be
solved separately. (D) The translation of the maximum matching output
back to the alignments: The result of the algorithm is a chain of alignments,
where the letters of the appropriate genome can be inserted between the
sequences. These chains can then be used for alignment in higher nodes of
the tree. (E) In this example we are recreating the ancestral order of the gray
node in the phylogeny on the right. The top right quadrant shows the
output of the SuperMap algorithm applied to the blue and purple
genomes. The top left and bottom right quadrants show the local hits of the
two genomes on the red outgroup. The selected regions on the left are
used to compute the score for the blue edge marked S (S = (U �
MIN(C1,C2))/MAX(C1,C2)). All of the other edges will be scored the same
way, and the MWPM problem is solved in the resulting graph. In this
particular case the purple genome will have more support for being the
ancestral order than the blue genome.

Table 1. Comparison of the alignment quality for human
chromosome 20 and whole human genome to the mouse
genome between the tandem local/global heuristic previously
used in the VISTA Genome Pipeline (Couronne et al. 2003; Brudno
et al. 2004) and the new Ancestral Alignment technique

Chromosome 20 Whole Genome

Tandem Ancestral Tandem Ancestral

Total 33.5% 32.9% 28.7% 28.4%
Exon 90.6% 89.3% 78.5% 83.5%
Size (in Gb) 13.7 11.0
Time (hours) 15 10

The numbers are the coverage (Schwartz et al. 2003) of the whole ge-
nome (total) and the annotated coding exons of RefSeq genes (exon).
Size is the total size of the resulting alignments, and time is the wall clock
time for the alignment (20 dual node, 40 CPU cluster). This time excludes
the running time for running pairwise local alignment (BLAT), which is ;3
d per pair of genomes.
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For the mammalian genomes (Fig. 4A,C) our alignment method

consistently achieved exon alignment accuracies of >90%, with

the highest accuracy being for dog (94%). The difference between

our alignments and those of the UCSC browser were small—we

aligned anywhere between 1.6% (rhesus) and 4.8% (horse) more

exons completely within a human exon than the UCSC pipeline,

with a similar decrease in the number of exons not aligned at all

(first column). However, the differences grew when we considered

more distant genomes: We were able to align 85% of the annotated

chicken exons over their full length to human exons, while the

UCSC pipeline aligned 15% less. We found the differences in exon

alignment accuracy between the Ensembl and our alignments

even greater (Fig. 4D). As became evident

from our analysis of multigene families

(see below), these differences were mainly

due to the inability of the Ensembl pipe-

line to properly deal with some duplica-

tion events.

While the overall level of alignment

accuracy in the Drosophila genomes was

much lower (Fig. 4E, from 83% to 60% of

the exons aligned), the overall tendency

of our alignment pipeline to perform

better than the UCSC browser for align-

ment of more distant sequences is still

evident (Fig. 4F).

Pairwise versus multiple alignment

We wanted to test whether the ancestral

multiple alignment method improves

results compared with the pairwise one

(using the SuperMap anchoring algo-

rithm). Although the algorithm is gener-

ally the same, the use of intermediate

sequences has been previously shown

to improve the alignment of distant

orthologs. For example, Margulies et al.

(2006) showed that multiple DNA se-

quence alignment methods (as opposed

to pairwise) are substantially better at

aligning (or ’’capturing’’) functional

signals from phylogenetically diverse

vertebrates. To test this hypothesis we

compared the exon accuracy of pairwise

alignments between the genomes present

in our whole-genome alignment set

with the multiple alignment results. The

results, summarized in Figure 4B, con-

firm that using intermediate sequences

improves alignment quality, especially

when aligning more distant sequences,

such as chicken.

Alignment of Inparanoid gene families

To test not only the sensitivity, but also

the specificity of our method, we have

compared the multiple alignments to the

Inparanoid gene clusters for human and

mouse genomes (O’Brien et al. 2005).

Inparanoid organizes human and mouse

genes into groups, each containing one

or more genes from each genome. All of

the human and mouse genes within a group (cluster) are orthologs

of each other and putatively evolve from a single gene in the ge-

nome of the human/mouse ancestor. The Inparanoid clusters are

based on pairwise protein BLAST alignments between all of the

genes; since this method is significantly different from whole-

genome multiple alignments, it provides an independent method

for evaluating the accuracy of the alignments. Good genomic

multiple alignments should align truly orthologous, rather than

paralogous, genes. We considered all of the mouse exons and

evaluated their alignments to human exons, labeling every

alignment orthologous (aligned within a gene that is an Inpar-

anoid ortholog) or paralogous (to an exon that is not an ortholog).

Figure 4. Exon alignment accuracy for vertebrate (A–D) and Drosophila (E,F) genomes. Each category
on the X-axis shows the exons for a particular species that are aligned to a reference genome exon over
the given fraction of their length. The Y-axis for A and E shows the overall fraction of exons in each
category for our alignments, while the other plots show the difference of these fractions between our
multiple alignments and those from the UCSC Genome Browser (ours minus UCSC, C and F), those
from the Ensembl browser (D), and our pairwise alignments (B). Our algorithms align more exons
perfectly (100% category) and fewer exons are not aligned at all (0–10 category) for all species. In the
comparison between our multiple and our pairwise alignments, while the macaque alignments are
identical, and the dog alignments are nearly identical (the two species are close), the human/mouse
alignment is slightly improved, and nearly 10% of chicken exons were aligned in the multiple but not
pairwise alignment. The 23-way Ensembl alignments that we used had a different version of the horse
genome, preventing a direct comparison, and we did not generate a pairwise human/rat alignment (rat
would be very similar to mouse), hence the missing columns in B and D.

Dubchak et al.

686 Genome Research
www.genome.org



For genes, we considered them orthologous/paralogous if any

exon in them was orthologous/paralogous. As is illustrated in Ta-

ble 2, the alignments generated by our method were the most

sensitive (highest fraction of orthologous genes/exons aligned),

while the UCSC-based alignments and those from Ensembl were

more specific (fewer nonorthologous genes/exons).

Secondly, we evaluated the three methods on how well they

can align genes that have undergone recent (since the divergence

of human and mouse) duplications. To test this we considered

only those genes and exons that were in clusters with multiple

human and multiple mouse genes (many–many) and those with

multiple human genes and a single mouse gene (one–many). For

both of these groups, all of the alignment methods were able to

align (even to a single ortholog) significantly fewer genes than in

the genome as a whole. This trend was especially pronounced for

Ensembl, which aligned only 20% of the many–many genes and

44% of the one–many genes to even a single ortholog. Our

alignments were the most sensitive for these clusters, aligning

70% and 79% of the genes, respectively. Furthermore, our align-

ments were the only ones that were able to align more then 3% of

either the genes or the exons to all of the orthologs: Only 46 of the

2500 exons in multigene clusters were aligned to all of the

orthologs in Ensembl alignments (36 in the UCSC alignments),

while 655 were in our alignments.

Discussion
In this paper we describe the design and implementation of

a progressive alignment algorithm for whole genomes. Our

method differs from other multiple alignment algorithms for

whole genomes in that it does not assume a reference genome

against which all of the other genomes are laid out. Instead, we

combine the ‘‘glocal’’ alignment framework that is widely used in

whole-genome alignment with a progressive approach, where at

every progressive step we attempt to order the obtained align-

ments in such a way as to ease the comparison to the next out-

group. Thus, our approach takes advantage of highly conserved

segments to align nearby less conserved ones, even in the cases

where there has been a rearrangement at the locus in one of the

species. We have implemented our method as part of the VISTA

Genome Pipeline and applied it to the alignment of seven verte-

brate and six fly genomes. We compared the resulting alignments

to those available through the UCSC Genome Browser and

Ensembl, and show that our approach is more accurate at

aligning exons between the species, especially as the evolution-

ary distance between the organisms grows. All multiple align-

ments generated by our algorithm are available for browsing and

analysis through the VISTA Browser at http://genome.lbl.gov/

vista/index.shtml.

At the same time our approach to whole-genome alignment

has several weaknesses, which may prove to be fruitful grounds for

future work. Our approach toward the reconstruction of ‘‘ances-

tral’’ sequences for further alignment in the progressive framework

does not attempt to reconstruct the true genome of the ancestor

species but rather to construct the sequence that is easiest to align

to the outgroup. A method that will attempt to reconstruct the

true ancestor may be preferable for a wide range of evolutionary

studies (Ma et al. 2006). Another potential area of improvement is

our treatment of poorly assembled, draft genomes. For such

genomes, our algorithm currently resorts to using the reference-

based alignment approach, as using a draft genome in our ancestor

reconstruction stage has lead to decreased alignment accuracy.

Designing a progressive nonreferenced framework for aligning

both finished and draft genomes is an important future goal, as

many genomes sequenced today are left in draft form.

Perhaps the most evident weakness of ours (and all of the

other existing whole-genome alignment algorithms) is the in-

ability to deal with multigene families. While our alignment

method was the most sensitive in capturing multigene Inparanoid

gene clusters (O’Brien et al. 2005), aligning 70% of the genes and

64% of the exons in Inparanoid clusters with multiple genes from

both humans and mice to an ortholog, only 21% and 15% of these

were aligned to all of the orthologs (see Table 2). This shows that

there is still significant room to improve upon our methods for

whole-genome alignments.

Methods
The sections below provide a more thorough description of the
various components of our alignment pipeline. The Shuffle-LAGAN

Table 2. A comparison of the alignments at the UCSC Genome Browser, Ensembl, and our alignments (VISTA) based on Inparanoid
gene clusters

VISTA UCSC/MultiZ Ensembl/Enredo

Genes Exons Genes Exons Genes Exons

Aligned to gene/exon (of 13,780
genes, 141,244 exons)

13,444 97.6% 134,446 95.2% 13,207 95.8% 133,498 94.5% 11,592 84.1% 113,971 80.7%

Of these, aligned to orthologs only 12,978 94.2% 133,264 94.4% 13,170 95.6% 133,363 94.4% 11,567 83.9% 113,897 80.6%
Of these, aligned to orthologs and paralogs 417 3.0% 943 0.7% 19 0.1% 7 0% 11 0.1% 2 0%
Of these, aligned to paralogs only 49 0.4% 239 0.2% 18 0.1% 128 0.1% 14 0.1% 72 0.1%

Aligned to any ortholog, many–many
clusters (of 182 genes, 862 exons)

128 70.3% 549 63.7% 112 61.5% 475 55.1% 38 20.9% 162 18.8%

Of these, aligned to all orthologs 39 21.4% 126 14.6% 4 2.2% 2 0.2% 1 0.5% 1 0.1%
Aligned to any ortholog, one–many

clusters (of 305 genes, 2500 exons)
242 79.3% 2131 85.2% 226 74.1% 1909 76.4% 133 43.6% 1153 46.1%

Of these, aligned to all orthologs 97 31.8% 655 26.2% 7 2.3% 36 1.4% 7 2.3% 46 1.8%

We considered two exons aligned if they overlapped even by a single nucleotide (see Methods). The results show that while the VISTA Browser alignments
have slightly higher sensitivity (1.8% on genes and 0.7% on exons), it also has a slightly higher rate of alignment to paralogs (3.2% on genes, 0.8% on
exons). The bulk of this was due to genes that we aligned to both the true orthologs and to paralogs, and genes/exons aligned only to paralogs were less
the 0.5% of the total. Simultaneously, our methods showed significantly higher sensitivity at aligning genes in multigene clusters: ~ 10% higher for exons
aligned to any ortholog, and 20%–30% higher for genes aligned to all orthologs.
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chaining algorithm and the original Multi-LAGAN alignment
algorithms have been described earlier (Brudno et al. 2003a,b).

Implementation and availability

The whole-genome pipeline algorithm has been implemented in
a combination of Perl and C programs, using a MySQL relational
database to store both input genomic sequences and generated
alignments. All major stages of the pipeline—obtaining local hits
with BLAT, SuperMap chaining, aligning syntenic regions with
LAGAN, and computing ancestral contigs—make use of a Linux
cluster. The pipeline software is publicly available at http://
genome.lbl.gov/vista/downloads.shtml.

Local alignments

The local alignments between all sequences can be computed us-
ing any alignment algorithm. We typically use BLAT, as it allows
for rapid alignment. We run it in a translated DNA mode, indexing
nonoverlapping 5-amino acid words, and requiring one word to
trigger an alignment.

Global alignments

Global alignments are done with PROLAGAN, which is a variation
of the original Multi-LAGAN program that allows for the align-
ment of two alignments (profiles). The alignment of two profiles is
a basic step in the Multi-LAGAN algorithm, and the PROLAGAN
executable separates this functionality into a stand-alone pro-
gram. The algorithm used is identical to the progressive step of the
original LAGAN algorithm (Brudno et al. 2003a) and is available as
part of the LAGAN toolkit starting with version 2.0.

SuperMap

The SuperMap algorithm is implemented as a stand-alone Perl
application and is available as part of the LAGAN Toolkit. After
running the S-LAGAN algorithm with both genomes as bases, the
local hits that form both of the chains are sorted by their positions
in the first genome. The two lists are traversed to identify local
alignments that are in both chains, which are referred to as dual
monotonic (DM), and those that are in only one of the chains
(labeled M1 and M2, depending on the chain). In this first pass we
also group alignments that are labeled DM and M1 into segments
of conserved synteny by unifying any alignment with the pre-
vious one if they are consistent (can be a part of the same global
alignment) and have the same type (both M1 or both DM). The
local alignments are then re-sorted based on the second genome,
and the segments of the type M2 are formed.

This algorithm keeps all of the local alignments on disk,
sorted using the Unix sort command. We use only a constant
amount of memory, thus allowing for processing of extremely
large sets of local alignments efficiently.

Extending the alignments

One of the major weaknesses of fast, heuristic local alignment
algorithms is that they often fail to discover weaker areas of sim-
ilarity, and the borders of syntenic blocks based on these align-
ments may fail to include important conserved regions nearby
because they failed to meet the local alignment criteria. Conse-
quently, the Shuffle-LAGAN algorithm expanded the borders of
every syntenic block to the subsequent syntenic block in the base
sequence, or up to a constant, whichever was smaller. Expansion
in the second sequence was based on a fixed multiplicative factor
of the expansion in the first sequence. In SuperMap, we augment

this approach by expanding each alignment to the nearest M1 or
DM alignment in sequence 1, and either M2 or DM alignment in
sequence 2. This approach limits the expansion of alignments to
a minimum, while allowing for the addition of the border regions
not included in the original set of local alignments.

Computing ancestral contigs

After an alignment between two segments is built, we compute the
ancestral contigs as follows:

(1) Infer an ancestral sequence for all of the alignments using
Fitch’s algorithm (Fitch 1971). Gaps are treated as a fifth
character.

(2) Build local alignment between the ancestral sequence and the
genomes in the nearest outgroup (the nearest outgroup can
have either one or two genomes).

(3) Convert every alignment to an edge that connects the two
nodes corresponding to its two endpoints. We will refer to
such edges as ‘‘alignment edges.’’ Connect two endpoints if
there is no third alignment that falls between them in the
genome. This type of edge is referred to as a ‘‘connection
edge.’’ See Figure 3, A and B, for an illustration.

(4) Compute the weight for every connection edge by running
the S-LAGAN chaining algorithm on all of the local align-
ments built from every alignment edge, and also on pairs of
alignments connected by a connection edge. Let a and b be
two syntenic blocks joined by a connection edge. The weight
for this edge is computed as follows: For both of the outgroup
genomes X1, X2 we find all of the alignments between Xi and
both a and b. We find the highest scoring consistent chain of
local alignments between Xi and a, Xi and bI, and between Xi

and (a [ b). Let the cumulative scores of these three chains be
called C1, C2, and U, respectively. Then we set Wiab = (U �
MIN(C1,C2))/MAX(C1,C2). Note that Wiab ranges between 1 and
0, and is the support for the edge EL(a,b) from sequence Xi. We
combine the supports to get the weight for the edge between
a and b to be Wab = +Wiab/n. This is illustrated in Figure 3E.

(5) Remove the alignment edges from the graph and compute the
maximum weight matching on the resulting graph. Remove
the smallest edge from every cycle. For efficiency we split the
graph into the connected components and perform the pro-
cedure on all connected components separately. The result of
the maximum weight matching algorithm is shown in Figure
3C.

(6) Any edge in the matching joins together two alignments
through a particular genome. Build an ancestral contig by re-
solving any overlap between the alignment if they overlap in
the genome through which they were joined, or by inserting
any in-between piece in the joining genome if they do not
overlap. This is illustrated in Figure 3D.

Handling low-quality assemblies

When aligning a genome consisting of many short contigs to
a high-quality assembly, which usually consists of chromosomes,
we modify our algorithm by replacing the ancestral genome or-
dering stage with one that orders all of the alignments based on
their order in the better genome. This is done because a low-quality
genome assembly is likely to have regions that appear as duplica-
tions but are in reality undercollapsed copies of the same genomic
region. The copies are handled as duplications and lead to inac-
curacies in the ancestral reconstruction step. Instead, in such cases
we create a ‘‘faux ancestor’’ by ordering all of the M1 and DM
alignments based on their order in the high-quality genome.
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Evaluation based on Inparanoid clusters

We have downloaded the database of human/mouse Inparanoid
orthologous gene clusters (O’Brien et al. 2005) from http://
inparanoid.sbc.su.se and found the location of the orthologs in our
genome assemblies using the tables at the UCSC Genome Browser.
Inparanoid builds clusters of orthologous genes based on their
pairwise BLASTP scores. We removed from consideration all over-
lapping genes, as well as clusters where any of the genes had
missing locations. The remaining set consisted of 13,780 genes with
141,244 exons. We counted two exons aligned if they overlapped
by a single nucleotide in the multiple alignment. Two exons were
considered orthologous if they were located on two genes that were
members of a single Inparanoid cluster. The one–many and many–
many clusters were those that had multiple genes from human and
both human and mouse genomes, respectively.
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