Skip to main content
. Author manuscript; available in PMC: 2009 Apr 6.
Published in final edited form as: J Chem Theory Comput. 2008;4(12):2067–2084. doi: 10.1021/ct800330d

Table 5.

Comparison of exothermicity and barrier height from SCC-DFTB and high-level ab initio calculations for 37 elementary steps in the hydrolysis of MMP and DMPa

Processb ab initio SCC-DFTB
Single point
SCC-DFTBPR
Optimizationi
MP2//SCC-
DFTBPRj
com1→ts1 (MMP,B) 31.0c/−1.7d −0.9e/−3.0f/0.4g/3.1h 1.1 −0.9
com1→int1 (MMP,E) 30.6/−1.4 −2.1/−2.2/0.7/2.1 1.4 −0.8
com1→ts1_2 (MMP,B) 41.5/−2.1 1.2/−0.3/2.4/5.3 −3.4 −1.6
com1→int1_2 (MMP,E) 31.0/−1.1 −4.4/−0.6/1.6/3.1 1.9 −0.1
int1_2→ts2_1 (MMP,B) 11.9/−2.0 −2.5/−2.1/−3.3/−2.3 ---k
int1_2→ts2_2 (MMP,B) 3.6/0.1 −5.4/−5.0/−5.2/−5.0 0.3 6.1
int1_2→com2 (MMP,E) −28.8/−0.9 2.5/0.6/0.2/0.4 −0.4 −0.8
com1→diss_tsa (MMP,B) 36.8/−4.2 4.7/4.0/2.4/4.8 2.6 0.2
com1→diss_int (MMP,E) 19.6/−6.4 −7.1/−6.0/−3.5/−2.8 −2.9 −1.0
com1_w2→ts1_2_w2 (MMP,B) 39.9/−2.1 −8.2/−9.4/−6.1/−3.7 −5.4 −2.5
com1_w2→int1_2a_w2 (MMP,E) 28.0/0.8 −5.4/−2.5/−1.2/0.8 0.2 −1.1
int1_2a_w2→int1_2_w2 (MMP,E) 0.4/−1.7 0.4/0.7/1.2/1.0 1.7 1.5
int1_2_w2→ts2_0_w2 (MMP,B) 11.4/−0.5 −3.7/−7.3/−5.2/−3.8 −7.3 −1.1
com1_da→ts1_da (MMP,B) 55.0/−8.4 −22.5/−12.3/−9.2/−10.1 −8.9 0.0
com1_da→int_da (MMP,E) 4.5/−2.0 −2.9/−0.7/−1.8/−0.4 −12.1 −1.5
com1→ts1 (DMP,B) 38.6/−1.4 −0.9/−4.1/−0.8/3.1 −1.6 0.8
com1→int1 (DMP,E)j 35.4/−0.2 −5.6/−3.1/−0.5/0.2 −0.5 0.6
int1→int1_2 (DMP,E) 1.3/−0.7 −3.0/−0.9/−0.9/0.1 −4.0 2.0
int1_2→ts2 (DMP,B) 0.6/−0.5 0.5/−0.1/−0.6/−0.6 −0.5 −1.6
int1_2→com2 (DMP,E) −35.2/−0.7 7.1/4.6/4.9/4.2 7.0 −1.3
n_com1→n_ts3 (DMP,B) 33.6/−1.4 4.9/4.3/1.0/3.5 1.2 −0.4
n_com1→n_int1 (DMP,E) 13.2/0.4 −3.7/−0.8/0.4/1.1 0.1 0.1
n_int1→n_ts4 (DMP,B) 22.9/−1.6 6.4/4.9/2.0/4.2 0.9 1.0
n_int1→n_com2 (DMP,E) −15.8/−1.9 2.6/0.5/0.9/0.6 0.0 0.0
DMP_P→diss_ts (DMP,B) 40.9/−2.9 11.8/9.4/5.5/7.2 6.1 −0.8
DMP_P→diss_prod (DMP,E) 28.2/−3.8 0.6/−2.1/−2.7/−2.9 −2.6 −1.2
diss_prod2→diss_ts2 (DMP,B) 13.5/0.7 13.4/13.0/7.5/11.7 8.4 −0.5
diss_prod2→MMP_P (DMP,E) −29.8/3.6 0.8/2.8/2.6/3.6 2.8 0.2
diss_w_reac→diss_w_ts (DMP,B) 20.9/−2.3 5.9/3.4/−0.2/2.0 −0.1 −0.4
diss_w_reac→diss_w_prod (DMP,E) 18.4/−2.6 4.8/1.2/−2.5/−1.3 −2.0 −0.3
diss_w_prod2→diss_w_ts2 (DMP,B) 1.9/0.2 2.5/2.7/1.1/3.7 1.8 −0.8
diss_w_prod2→diss_w_reac2 (DMP,E) −21.0/2.7 −2.9/−0.5/0.9/1.5 0.4 0.3
n_w_com1→n_w_ts3 (DMP,B) 28.2/−1.8 −3.0/−2.3/−4.8/−2.0 --- ---
n_w_com1→n_w_int1 (DMP,E) 13.1/1.0 −4.2/−1.3/0.0/0.7 −3.1 −0.5
n_w_int1→n_w_int2 (DMP,E) −0.5/0.5 0.3/0.5/0.7/1.1 0.4 0.3
n_w_int2→n_w_ts4 (DMP,B) 15.1/−2.3 1.8/−0.5/−4.0/−2.3 --- ---
n_w_int2→n_w_com2 (DMP,E) −13.0/−2.0 1.2/−1.0/−0.4/−2.0 −1.3 0.6

Error Analysisl

    MAXE −8.4 −22.5/13.0/−9.2/11.7 −12.1 6.1
    RMSE 2.5 6.1/4.6/3.3/3.9 4.0 1.4
    MUE 1.9 4.4/3.3/2.4/2.9 2.8 1.0
    MSE −1.4 −0.4/−0.4/−0.4/0.8 −0.5 −0.2
a)

No zero-point corrections are included in either exothermicity or barrier heights. All quantities are given in kcal/mol.

b)

The processes are labeled in the following manner: e.g., “com1→ts1 (MMP,B)” refers to the reaction from the reactant “com1” to the transition state “ts1”, “MMP” in the parenthesis refers to the mono-methyl mono-phosphate ester model system, “B” in the parenthesis stands for “Barrier”. Similarly, “com1→int1 (DMP,E)” refers to the reaction from the reactant “com1” to the intermediate “int1”, “DMP” refers to the dimethyl di-phosphate ester model system, “E” stands for “Exothermicity”. For the structures, see Fig. S1 in the Supporting Materials.

c)

The number before the slash refers to the MP2/G3Large single point calculation based on the B3LYP/6-31+G** optimized structures. For more details about G3Large basis set, see http://chemistry.anl.gov/compmat/g3theory.htm.

d)

The number after the slash refers to the energy difference between the B3LYP result and the MP2/G3Large single point calculation at the B3LYP structure.

e)

The difference between the standard (second-order) SCC-DFTB and MP2/G3Large single point energies at the B3LYP/6-31+G(d,p) structures.

f)

The difference between the default 3rd-order SCC-DFTB and MP2/G3Large single point energies at the B3LYP/6-31+G(d,p) structures..

g)

The difference between SCC-DFTBPR and MP2/G3Large single point energies at the B3LYP/6-31+G(d,p) structures.

h)

The difference between the “Mix-optimized 3rd-order” SCC-DFTB and MP2/G3Large single point energies at the B3LYP/6-31+G(d,p) structures.

i)

The difference between fully geometry-optimized SCC-DFTBPR energies and MP2/G3Large single point energies at the B3LYP/6-31+G(d,p) structures.

j)

The difference between MP2/G3Large single point energies at the SCC-DFTBPR structures and those at the B3LYP/6-31+G(d,p) structures.

k)

As discussed in the main text and illustrated in Fig. 2, only one transition state is found at the SCC-DFTBPR level.

l)

The errors are defined in the same manner as in Table 3. For the entry for “ab initio”, the errors are for the B3LYP/6-31+G(d,p) energies relative to the MP2/G3Large results.