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Regulation of BCR signalling strength is crucial for B-cell

development and function. Bright is a B-cell-restricted

factor that complexes with Bruton’s tyrosine kinase

(Btk) and its substrate, transcription initiation factor-I

(TFII-I), to activate immunoglobulin heavy chain gene

transcription in the nucleus. Here we show that a palmi-

toylated pool of Bright is diverted to lipid rafts of resting B

cells where it associates with signalosome components.

After BCR ligation, Bright transiently interacts with su-

moylation enzymes, blocks calcium flux and phosphoryla-

tion of Btk and TFII-I and is then discharged from lipid

rafts as a Sumo-I-modified form. The resulting lipid raft

concentration of Bright contributes to the signalling

threshold of B cells, as their sensitivity to BCR stimulation

decreases as the levels of Bright increase. Bright regulates

signalling independent of its role in IgH transcription, as

shown by specific dominant-negative titration of rafts-

specific forms. This study identifies a BCR tuning mechan-

ism in lipid rafts that is regulated by differential post-

translational modification of a transcription factor with

implications for B-cell tolerance and autoimmunity.
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Introduction

B-cell development and response to antigen depend on

signalling through the B-cell antigen receptor (BCR) complex

(Gauld et al, 2002; Meyer-Bahlburg et al, 2008). BCR signal-

ling directs positive and negative selection of immature B

cells and their progression through transitional (T) stages

into mature B cells. Surface markers allow the resolution of

three non-proliferative immature B-cell subpopulations: T1,

T2 and T3 (Allman et al, 2001; Sims et al, 2005). The lineage

origins and signalling requirements of these intermediate

stages of B cells are the subject of considerable interest and

debate (Matthias and Rolink, 2005; Teague et al, 2007; Welner

et al, 2008). It is generally agreed that sequential progression

requires an increasingly higher threshold level of BCR signal-

ling; that is, low or ‘tonic’ threshold signals promote T1 to T2,

whereas relatively higher levels of signalling are needed for

T2 to progress to FO or MZB (Petro et al, 2002; Su and

Rawlings, 2002; Hoek et al, 2006). Strong BCR signalling also

is required to direct non-transitional, fetal progenitors to B-1

fate (Loder et al, 1999; Cariappa et al, 2001; Casola et al,

2004). The amplitude of BCR signalling is positively and

negatively regulated by coreceptors (Carter and Fearon,

1992; Cherukuri et al, 2001; Ravetch and Bolland, 2001)

and crosstalk between the antigen receptors and other path-

ways, particularly BAFF (Guo and Rothstein, 2005; Venkatesh

et al, 2006).

A spatially continuous but mobile unit of critical size within

the plasma membrane is required for efficient initiation of

BCR activation by multivalent antigen (Dintzis et al, 1976).

Engagement of the antigen receptor yields ‘microclusters’ that

can be found in highly ordered domains within the plasma

membrane, known as lipid rafts (Dykstra et al, 2003; Saeki

et al, 2003; Harwood and Batista, 2008). Size and composition

of these platforms of BCR signalling are dynamic and respon-

sive to signalling events mediated by the actin cytoskeleton

through plasma membrane linker proteins, such as Ezrin

(Stoddart et al, 2002; Gupta et al, 2006; Sohn et al, 2006).

Bright (B-cell regulator of IgH transcription/Dril1/

ARID3A) is the founder of the AT-rich interaction domain

(ARID) super-family of DNA-binding proteins (Herrscher

et al, 1995; Wilsker et al, 2005). Bright shuttles between the

cytoplasm and the nucleus in a Crm1- and cell cycle-depen-

dent fashion (Kim and Tucker, 2006). Bright transactivates

the IgH intronic enhancer (Em) and certain IgH promoters by

binding as a tetramer to ATC motifs within nuclear matrix

associating regions (Webb et al, 1999; Kim et al, 2007; Lin

et al, 2007). DNA binding and IgH transcriptional activities of

Bright are stimulated by its interaction with Btk and tran-

scription initiation factor-II (TFII-I), a direct substrate of Btk

(Webb et al, 2000; Rajaiya et al, 2005, 2006). TFII-I also

undergoes nucleocytoplasmic shuttling (Hakre et al, 2006),

and, within the cytoplasm, it associates with PLCg to inhibit

Ca2þ mobilisation (Caraveo et al, 2006).

Bright is lineage and stage-specifically expressed with high

basal levels in immature B cells and in mitogen or cytokine-

induced mature B cells (Webb et al, 1991a, b, 1998; Nixon

et al, 2004a, b). Shankar et al (2007) recently demonstrated
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the pathological consequences of loss of this tight control.

Transgenic (TG) mice that over-express wild-type (WT)

Bright specifically within the B lineage display spontaneous

autoimmunity. This intrinsic B-cell autoreactivity was not

accompanied by global increase in serum Ig. Instead, a

markedly expanded population of T1 and MZB cells was

observed.

These observations, along with the extranuclear expres-

sion of Bright, TFII-I and their functional association with

Btk, prompted us to examine whether Bright is used in BCR

signal transduction. We show here that a pool of Bright acts

within lipid rafts as a ‘brake’ to set a signalling threshold on

the BCR.

Results

Association of Bright with mIgM on B-cell membranes

is reduced after antigen receptor stimulation

Immunostaining of murine B splenocytes indicated that a

fraction of the non-nuclear Bright pool colocalised with mIgM,

suggesting cortical and/or membrane-associated localisation

(Figure 1A and readdressed below). This observation was

confirmed by computerised 3D reconstructions of the immuno-

fluorescence data (Figure 1A0 and Supplementary Video 1).

To determine whether this colocalisation remains intact

after engagement of the BCR, cells were stimulated for 5 min

with a-m. Only modest colocalisation of Bright and IgM

was retained, as assessed by computerised 3D reconstruc-

tions of the immunofluorescence data (Figure 1A00 and

Supplementary Video 2). Inspection of these and additional

images (data not shown) indicated that the observed redis-

tribution of mIgM-associated Bright in stimulated B cells was

not accompanied by significant alteration in either its nuclear

or its cytoplasmic levels (data not shown).

Bright accumulates within lipid rafts of resting but not

stimulated B cells

Because lipid rafts serve as platforms for BCR signalling,

we assayed purified plasma membranes and lipid rafts

(Supplementary Figure 1A) for the presence of Bright. A

small pool of Bright resides in lipid rafts purified from

unstimulated CD43� B cells (Figure 1B, upper panel).

Consistent with the imaging results, Bright was not detected

within lipid rafts after BCR engagement that was sufficient to

elicit a phosphotyrosine (pY) response (Figure 1B, lower

panel). This suggested that the presence or absence of

Bright within lipid rafts might influence BCR signalling.

Levels of Bright within lipid rafts determine BCR

signalling threshold

Normal B cells and mature B-cell lines were examined semi-

quantitatively for lipid raft content of Bright using the B cell-

specific lipid rafts component, Raflin (Saeki et al, 2003), as an

internal control (Supplementary Figure 1B and data not

shown). We estimated that raft-localised Bright accounted

for 1–10% of total cellular Bright, consistent with percentages

previously estimated for mIgM concentrations in lipid rafts

(Sproul et al, 2000; Putnam et al, 2003). Lipid rafts of Raji and

Daudi cells contained B10-fold less Bright than those of CL01

or Ramos (Figure 2A). However, no significant differences

were observed in other subcellular fractions among these

lines (Supplementary Figure 1B).

To achieve maximal BCR responses under minimal anti-

body concentrations and minimal receptor internalisation, an

approach using an anti-IgM mAb in the absence of secondary

cross-linking was optimised (Supplementary Figures 2B and

4B; Materials and methods; data not shown). Lipid rafts from

resting and stimulated cell lines were purified on sucrose
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Figure 1 Bright accumulates within lipid rafts of resting but not stimulated B cells. (A) Association of Bright with mIgM on B-cell membranes
is reduced after antigen receptor stimulation. CD43� B cells from spleens of BALB/c adult mice were fixed and stained for Bright (red), mIgM
(green) and DNA (blue). Arrows point to areas (yellow) where Bright colocalises with membrane IgM. (A0, A00) Engagement of the antigen
receptor reduces the colocalisation between Bright and mIgM. CD43� B cells (B1�104) from spleens of BALB/c adult mice were left untreated
(A0) or stimulated for 5 min (A00) with 10 pg a-m, followed by immunostaining as described above. Deconvoluted images are shown with arrows
pointing to areas (yellow) where Bright colocalises with mIgM. (B) BCR engagement leads to a discharge of Bright from lipid rafts. CD43� B
cells (B2�106) were stimulated with either 2 ng a-m or 2 ng a-mþ 2 ng a-CD19 for 5 min. Lipid rafts or whole cell lysates (WCL) were prepared
from half of each sample. Proteins from each fraction were analysed by SDS–PAGE/western blot using the antibodies indicated.
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gradients, and fractions were analysed for Bright and other

signalosome occupants (Figure 2B). In agreement with pub-

lished reports (Saeki et al, 2003; Depoil et al, 2008), levels of

mIgM, CD19, and the Bright-interacting partner Btk increased

in lipid rafts after a-m stimulation (Figure 2B). As observed

for normal B cells, Bright moved in the opposite manner.
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Figure 2 Levels of Bright within lipid rafts determine BCR signalling threshold. (A) Bright levels within lipid rafts vary among B-cell lines.
Lipid rafts were prepared from the indicated exponentially growing human B-cell lines (107 cells) and probed for Bright and (as loading control)
Raftlin. (B, C) Antigen receptor engagement results in a discharge of Bright from lipid raft-localised BCR complexes. (B) The indicated cell lines
(B5�108) were stimulated for 5 min with 500 ng of a-m, followed by preparation of lipid rafts using discontinuous gradient centrifugation.
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cell extracts were blotted with a-phosphotyrosine (pY). Equal loading was confirmed by staining of the filters with India Ink (data not shown).
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However, its discharge from lipid rafts was complete only in

cell lines in which its starting levels in lipid rafts were low

(Daudi and Raji, Figure 2B, fractions 3 and 4; boxed in red).

These differences in trafficking could reflect differences in

composition of raft-localised complexes, or artifacts resulting

from increased resistance to solubilisation, as BCR ligation is

known to induce coalescence of lipid rafts (Gupta et al, 2006).

Therefore, we compared profiles obtained from RIPA-solubi-

lised versus non-soluble lipid rafts immunoprecipitated (IP)

with a-m, a-Raftlin and a-Btk (Supplementary Figure 2E). We

observed that, as previously published (Saeki et al, 2003), a

complex containing Raflin and IgM was seen only in non-

solubilised rafts (Supplementary Figure 2E); this indicated

that our solubilisation conditions were sufficient. However,

unexpectedly, Raflin did IP with Btk under both conditions,

suggesting that an IP complex containing Btk and Raflin is not

disrupted by RIPA solubilisation of lipid rafts (readdressed

below). Importantly, Bright remained in a complex with

mIgM and Btk in solubilised lipid rafts of all unstimulated

cells (Figure 2C) but was lost only in a-m stimulated cells

(Daudi and Raji) that contained lower starting levels in their

lipid rafts (Figure 2C, lanes 6 and 12; boxed in red).

These results suggested that B cells that contain more lipid

rafts-associated Bright (Ramos and CL01) would be less

sensitive (higher threshold) to BCR ligation. This was con-

firmed by the pY responses of these cell lines to a-m stimula-

tion (Figure 2D). Ramos and CL01 also responded less

vigorously to pro-apoptotic signals shown previously (Chen

et al, 1999) to result from long-term stimulation by a-m
(Supplementary Figure 2C).

Ligation of the BCR coreceptor, CD19, is known to

synergistically enhance antigen receptor-mediated signalling

(Carter and Fearon, 1992; Cherukuri et al, 2001; Depoil et al,

2008). Accordingly, all cell lines responded to a-mþ a-CD19

costimulation with robust responses (Supplementary Figure

2B). BCR costimulation was required to expel Bright from

lipid rafts of the less sensitive (higher threshold) cell lines

Ramos and CL01 (Figure 2E–G). That Bright migrates as a

doublet is apparent in these experiments (addressed below in

the context of the sumoylation observations).

Thus, engagement of the BCR results in a significant and

specific reduction of the small pool of lipid rafts-localised

Bright. This pool is lost from lipid rafts, as Btk and other

signalosome components accumulate there, in proportion to

BCR signalling strength.

Entry of Bright into lipid rafts does not require

interaction with Btk but does require palmitoylation

Bright was readily detected in lipid rafts prepared from

retrovirally transduced NIH/3T3 fibroblasts and other non-B

cells (Figure 3B; data not shown). This indicated that even

though Bright associates (at least transiently) with Btk and

other signalsome components in a-m stimulated lipid rafts

(Figure 2C and addressed further below), these B-cell-re-

stricted proteins are not required to designate or retain

Bright in lipid rafts. Bright point mutants (Figure 3A; Kim

and Tucker, 2006) that are retained either within the cyto-

plasm (K466A) or the nucleus (G532A) did not localise to

rafts (Figure 3B). Thus, the rafts-localised pool of Bright is

not directly diverted from the cytoplasmic pool, suggesting

that nucleocytoplasmic shuttling (Kim and Tucker, 2006) is

required.

Palmitoylation of cysteine residues is a feature shared by a

number of lipid raft occupants (Simons and Toomre, 2000;

Ashery et al, 2006). Bright contains a single cysteine (C342)

in its ARID DNA-binding domain, which is conserved among

all identified orthologues and paralogues (Figure 3A; Wilsker

et al, 2005). After transfection into fibroblasts, WT Bright, but

not point mutants (C342S and C342D), were palmitoylated

(Figure 3C).

Sumoylation of Bright regulates its discharge from lipid

rafts into membranes after BCR stimulation

Yeast 2-hybrid cDNA library screening and additional ana-

lyses (Supplementary Figure 3A; data not shown) detected

strong and specific Bright interactions with Sumo-I conjugat-

ing enzymes Ubc9 and PIAS1. Further investigations indi-

cated that Bright is conjugated to Sumo-I at a consensus motif

(CKxE, Sampson et al, 2001; Gocke et al, 2005; Bossis and

Melchior, 2006) 401KIKKE (Figure 3A) both in cultured cell

lines and in vitro (Figure 3E; Supplementary Figure 3B).

Sumo-I-Bright was readily detected in a-Bright IPs of whole

cell lysates prepared from B-cell lines and normal B cells

(Figures 2E–G; Supplementary Figures 2D, 3B and C). We

found no Sumo-I-Bright in lipid rafts regardless of cell source

and stimulation regime; only membranes prepared from

stimulated B cells contained Sumo-I-Bright (Figure 2E–G;

Supplementary Figure 2D). Yet Sumo-I-deficient (401KIKK/

AIAA) Bright was capable of entering lipid rafts and mem-

branes as efficiently as WT in transfected fibroblasts

(Supplementary Figure 3D).

These results prompted us to speculate that the Sumo-I-

Bright pool within stimulated plasma membranes might

derive from a sumoylation reaction initiated in B cell rafts

immediately after BCR ligation. If so, a transient sumoylation

initiation complex might be trapped in lipid rafts under much

weaker BCR stimulation conditions. To test this, we isolated

lipid rafts following conditions (30 s; a-m). Consistent with

our hypothesis, Bright was detected in these mildly stimu-

lated rafts in an IP complex with sumolyation E2 and E3

components, Ubc-9 and PIAS-1 (Figure 3F; Schwarz et al,

1998; Kahyo et al, 2001).

Dominant-negative, lipid rafts localisation-defective

mutants modulate BCR signalling

Because Bright exists primarily as a homo-tetramer, we

established the basis for a dominant-negative approach by

pulling down endogenous Sumo-I-Bright using V5 tagged
401KIKK/AIAA-Bright (Supplementary Figure 4A; Herrscher

et al, 1995; Kim and Tucker, 2006). Thus, we reasoned that

over-expression of palmitoylation-defective C342S or C342D

Bright should titrate the small pool of palmitoylated Bright

tetramers destined for lipid rafts while sparing tetramers

destined for the nucleus. Conversely, the inability to sumoy-

late Bright should trap it in lipid rafts, leading to suppression

of BCR signalling.

As shown in Figure 4A, rafts prepared from WT transduc-

tants contained increased levels (relative to mock controls) of

V5-tagged retroviral Bright, whereas those expressing C342

substitutions were virtually depleted. Over-expression of
401KIKK/AIAA-Bright in lipid rafts (Figure 4A) led to retention

of both retroviral and endogenous Bright within rafts after

BCR stimulation.
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We next measured the effect of the dominant-negative

titrations on BCR signalling. As shown in Figure 4B and C,

signalling was markedly increased in Bright C342S and

C342D-infected cells. Notably, the signalling threshold of

the Raji BCR was converted from low to high, because

weak stimulation (a-m only) now resulted in significantly

reduced signalling (Figure 4; Supplementary Figure 4B).

Conversely, over-expression of WT Bright and the 401KIKK/

AIAA dominant-negative mutant form virtually eliminated

BCR-stimulated Ca2þ flux and pY activity. Yet, unstimulated
401KIKK/AIAA-transduced Ramos cells appeared to be con-

stitutively ‘hyperactivated’ with respect to pY signals

(Figure 4C, lane 7). This was a consistent result (please see

Figure 7A and discussion below) that we suspect derived

from Ramos-specific, off-target (i.e., non-BCR mediated)

effects of this dominant negative.

We conclude that a palmitoylated pool of Bright is dis-

patched to lipid rafts to dampen BCR signalling, and sumoy-

lation-triggered discharge of Bright is essential for relieving

this inhibition.

Bright regulates signalling and IgH transcription

independently

As the small lipid rafts-localised pool of Bright is diverted

from its nucleocytoplasmatic shuttling pool (Figure 3B; Kim

and Tucker, 2006), we examined the potential nuclear con-

sequences of the dominant-negative-mediated signalling per-

turbations. Neither nuclear-cytoplasmic ratios nor in vitro

DNA binding of Bright to a target VH-associated promoter

were significantly altered (Figure 5B and C).

In vivo, Bright does not modulate basal levels of IgH

transcription, but like several other trans-activators requires

accessory proteins induced during differentiation (reviewed

in Webb et al, 1999). Thus, we assayed Bright-binding-

dependent luciferase reporter activity in LPS stimulated Raji

and Ramos before and after dominant-negative transduction.
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As shown in Figure 5D, LPS-induced increase in reporter

activity above endogenous levels (lanes 5 and 29) was

equally enhanced by over-expression of WT (lanes 11 and

35) or substitution-mutant forms of Bright (lanes 17, 23, 41

and 47). Five minutes of stimulation using a-m sufficient to

influence BCR signalling (Figure 4) failed to elevate reporter

activity above background levels (Figure 5D, lanes 6, 12, 18,

24, 30, 36, 42 and 48). We conclude that the dominant-

negative effects of C342S/D and 401KIKK/AIAA are limited

to the rafts-destined pool, and that Bright functions indepen-

dently as both an inducible transactivator of IgH and a BCR

signalling regulator.

Over-expression of Bright impairs BCR signalling of

normal B-cell subpopulations

What is the consequence of manipulating Bright levels within

lipid rafts of normal B cells? Splenic B cells purified from

Bright-TG mice express 3–5-fold higher levels of Bright within

lipid rafts and whole cells lysates (Figure 6A). TG B cells were

markedly reduced relative to WT in Ca2þ and pY responses

over a wild range of a-m doses with concomitant depletion

kinetics of Bright from stimulated rafts (Figure 6A;

Supplementary Figure 5A).

MZB and immature B-cell populations are significantly

elevated in Bright TG, leading to development of sponta-

neously autoimmunity during aging (Shankar et al, 2007). TG

and WT B splenocytes were sorted under conditions that

avoid BCR activation into immature (T1 and T2), MZB, and

FO populations (Figure 6B). Elevated levels of Bright (B2–5-

fold) were observed in whole cell lysates and in lipid rafts

(Figure 6C and D) prepared from all resting TG populations

except FO. We confirmed that our a-m stimulation conditions

induced no changes in proliferation or differentiation of these

subpopulations, such as that observed by others under

prolonged stimulation (data not shown; Petro et al, 2002;

readdressed in Discussion).

The movement of mIgM, Btk and CD19 into lipid rafts was

unaffected by the starting levels of Bright, as all TG and WT

populations were indistinguishable (Figure 6D). Likewise, all

WT and TG populations responded to strong (a-mþa-CD19)

BCR costimulation with a complete discharge of Bright from

lipid rafts (Figure 6D) and a loss of membrane colocalisation

with mIgM (Supplementary Figure 5B and data not shown).

However, the BCR signalling threshold of immature and MZB

populations, as judged by their response to weak (a-m)

stimulation, correlated inversely with their lipid raft content

of Bright. As shown in Figure 6C, global pY responses of T1,

T2 and MZB TG B cells were reduced relative to WT controls,

consistent with the fact that weak stimulation was insuffi-

cient to discharge Bright from their lipid rafts (Figure 6D). pY

responses of FO WT B cells were, as expected (Li et al, 2001),

relatively less robust (Figure 6C). Resting FO B cells con-

tained slightly lower levels of total or lipid raft-localised

Bright (Figure 6C and D; Shankar et al, 2007) and displayed

less colocalisation between Bright and mIgM than the other

subpopulations (Supplementary Figure 5B). Nonetheless,

weak TG FO signalling was consistently dampened in

response to a-m stimulation, and Bright was not fully

discharged from their lipid rafts (Figure 6C and D).

We conclude that lipid rafts-localised Bright increases the

signalling threshold of MZB, immature, and, to a lower

extent, FO B cells. We further suggest that, as BCR signalling
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Figure 4 Dominant-negative, lipid rafts localisation-defective mutants modulate BCR signalling. Raji and Ramos cells (5�108) were infected
with retroviruses encoding wild type and mutant forms of Bright and were then stimulated for 5 min with 500 ng a-m, 500 ng a-CD19 or 500 ng
a-mþ 500 ng a-CD19. (A) Levels of Bright in lipid rafts are altered by dominant-negative forms. Lipid rafts levels of total Bright
(endogenousþ ectopic) were measured by anti-Bright western. Levels of ectopic V5-tagged wild-type Bright, a palmitoylation-defective
(C342S/D) form, which is unable to enter lipid rafts, and a Sumo-I-mutant form (401KIKK/AIAA), unable to be discharged from rafts, were
detected by anti-V5 western. Raftlin was used as a loading control. (B) Intracellular free [Ca2þ ] is increased by palmitoylation-deficient and
decreased by wild type or Sumo-I-deficient titration of endogenous Bright. Transduced Raji B cells (1�106 cells/ml) were loaded with 2mM
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strength contributes to B-cell subset development (Loder

et al, 1999; Cariappa et al, 2001; Niiro and Clark, 2002;

Petro et al, 2002; Su and Rawlings, 2002; Casola et al, 2004;

Su et al, 2004; Hoek et al, 2006), the skewed T1 and MZB

populations in Bright-over-expressing B-cells derived, at least

in part, from impaired signalling.

Phosphorylation of Btk and TFII-I within lipid rafts is

inhibited by Bright

Btk interacts with Bright (Webb et al, 2000; Rajaiya et al,

2005) to modulate its transcriptional activity in the nucleus

(Rajaiya et al, 2006). Thus, it seemed particularly informative

to determine how Bright levels outside the nucleus affect Btk

activation. First, we examined whole cell extracts prepared

from the dominant-negative transduced cell lines (Figure 7A).

When Bright entry into lipid rafts was blocked by over-

expression of the palmitoylation-defective C342S/D mutant,

pY-Btk was robustly detected after BCR stimulation of either

the less sensitive (Ramos) or the more sensitive (Raji) cell

line. Under conditions in which lipid rafts levels of

Bright were increased (by either WT over-expression or

Bright-401KIKK/AIAA retention), pY of Btk was inhibited

(Figure 7A). Note that the constitutive hyperactivation

phenotype observed for global pTyr (Figure 4C, lane 7) was

confirmed in this independent set of 401-KIKK/AIAA Ramos

transductants.

These results suggested that Btk activation by pY in lipid

rafts is inhibited by Bright. Consistent with this hypothesis,
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as described in the Materials and methods. Dual luciferase activity was then measured as described (Rajaiya et al, 2006) and expressed as the
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pY-Btk was detected in a-Btk IPs prepared from lipid rafts of

all a-m stimulated WT B-cell populations but in none of the

corresponding Bright-over-expressing TG B cells (Figure 7B).

As predicted by the global pY results, all WT and TG B-cells

responded with robust pY-Btk after strong (a-mþa-CD19)

BCR ligation (Figure 6C).

Btk pY is required for TFII-I function as a nuclear tran-

scription factor (Rajaiya et al, 2005, 2006) as well as for its

cytoplasmic interaction with PLCg and subsequent inhibition

of PLCg-mediated Ca2þ mobilisation (Guo et al, 2004;

Caraveo et al, 2006). As observed for Btk, TFII-I moved into

lipid rafts of TG and WT B-cell subsets after a-m stimulation
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Figure 6 Transgenic over-expression of Bright decreases BCR signalling of normal B cells. (A) Mobilisation of intracellular Ca2þ is reduced by
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loaded with Indo-1 and then subjected to measurements of intracellular Ca2þ using 1 ng (low), 500 ng (medium) or 40 mg a-m (high) to
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CD23� CD21þ ). (C) Over-expression of Bright inhibits global phosphotyrosine responses of isolated B-cell populations. Each indicated
subpopulation (B106 cells) was stimulated for 5 min using 1 ng a-m, 1 ng a-CD19 or 1 ng a-mþ 1 ng a-CD19. Whole cell lysates (WCL) were
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Raftlin and CD19 indicated coalescence of lipid rafts upon BCR engagement (Depoil et al, 2008).
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(Figures 6D and 7B). However, while stronger stimulation

(a-mþ a-CD19) further concentrated Btk and other signalo-

some components there, TFII-I was codischarged with Bright

(Figures 6D and 7B). Notably, phosphorylation of TFII-I and

Btk was inhibited in a-m stimulated rafts of Bright-over-

expressing TG B cells (Figure 7B).

These results indicate that lipid rafts-localised Bright con-

tributes to dampening of BCR responses by decoupling Btk

activation and downstream immediate early events, such as

tyrosine phosphorylation of TFII-I.

Discussion

We have shown that 1–10% of Bright, a B-cell-specific

transcriptional activator of IgH transcription, associates

with the BCR complex in lipid rafts prepared from trans-

formed mature B-cell lines or from primary B-cell populations

purified from mouse splenocytes or from human PBL. We

demonstrated that Bright is palmitoylated at a single cysteine

residue and that this modification is required for its localisa-

tion in lipid rafts. Our data indicate that the lipid raft

concentration of Bright is used for BCR threshold signalling,

as the sensitivity to BCR stimulation, as measured by calcium

flux and transmission of global and Btk-mediated pTyr sig-

nals, depends on the amount of Bright discharged from the

rafts. An inducible, rafts-specific association between Bright

and Sumo-I E2/Ubc-9 and E3/PIAS-1 enzymes, along with

accumulation of sumoylated Bright in the plasma membrane

only after BCR stimulation, led us to test whether this post-

translational modification triggered Bright discharge.

Signalling alterations observed in TG B cells that over-express

Bright, or in B-cells transduced with sumoylation-insensitive

and rafts localisation-defective dominant-negative Bright ret-

roviruses, support this notion. The data suggest a model in

which Bright acts as a ‘brake’ to set a signalling threshold that

is regulated by alternative post-translational modification.

The strength of BCR-derived signals determines the se-

quential development of immature to mature B cells and their

subsequent fates in the spleen (Casola et al, 2004; Gazumyan

et al, 2006; Patterson et al, 2006; Pao et al, 2007). Shankar

et al reported that T1 and MZB cells are statistically increased

relative to other B-cell populations in Bright-over-expressing

TG mice. Although serum Ig levels were increased only

modestly, spontaneous autoimmunity ensued (Shankar

et al, 2007). Petro et al (2002) showed that under conditions

of prolonged (24 h) BCR engagement with high concentra-

tions of a-m (B10 mg/ml/105 cells), normal T1 B cells undergo

apoptosis, whereas T2 B cells proliferate. Under the same

conditions, T2 B cells display a higher threshold for a-m-

elicited signals than T1 cells (Petro et al, 2002; Hoek et al,
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Figure 7 BCR-mediated activation of Btk and TFII-I depends on the levels of Bright in lipid rafts. (A) Dominant-negative Bright mutants alter
Btk phosphorylation in B-cell lines. Whole cell lysates prepared from retrovirally transduced cell lines established in Figure 4A were stimulated
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2006; Meyer-Bahlburg et al, 2008). To focus on early signal-

ling events and to circumvent apoptotic/proliferation com-

plications, we used B103-fold lower concentrations of F(ab0)2

in most of our stimulation assays. We found that over-

expression of Bright led to an elevated level of Bright in

lipid raft-associated signalosomes of all B-cell populations

except FO and increased signalling thresholds to our low

concentrations of a-m. In contrast to the imaging results of

Chung et al (2001), we found that this level of stimulation

was adequate to induce translocation of BCR components

(mIgM, CD19, and Btk) into rafts from all subpopulations.

However, our biochemical approach did not allow us to

address their contention that there are fewer lipid rafts in

immature B cells. That T1 and MZB were particularly sensi-

tive suggests that, in Bright TG mice, these populations would

be compromised in their ability to undergo appropriate

apoptotic responses to self-antigens in vivo. This would

account for the elevated numbers of TG T1 and MZB—

established predecessors for autoreactive B cells (Atencio

et al, 2004; Samuels et al, 2005; Yurasov et al, 2005a, b;

Quinn et al, 2006)—and provide a unique mechanism by

which a B-cell-restricted transcription factor could contribute

intrinsically to B-cell tolerance. On the other hand, and not

mutually exclusive, the selective production of antibodies

associated with the autoimmune syndromes of Bright TGs

(Shankar et al, 2007) could be a direct result of as yet

unidentified, non-IgH transcriptional targets of Bright.

Bright interacts with a well-defined signalling molecule,

Btk (Webb et al, 2000; Rajaiya et al, 2005, 2006). Previously

we hypothesised (Webb et al, 1999) that their interaction in

the cytoplasm allowed Bright to deliver Btk to nuclear IgH

promoters. There, Btk could phosphorylate and activate TFII-

I, which at the time, was the only defined substrate for Btk

(Novina et al, 1999). Subsequent studies by Webb and

colleagues (Webb et al, 2000; Rajaiya et al, 2005, 2006)

support the notion that Bright delivers Btk to places of active

TFII-I transcription in the nucleus.

Extension of the hypothesis would predict that Btk is

required for Bright’s inclusion into lipid rafts and, taken to

the extreme, into lipid raft-localised BCR signalosomes.

However, in Btk-deficient non-B cells, exogenously expressed

Bright accumulated within lipid rafts, indicating that its

localisation is independent of Btk or other B-cell-specific

factors. This led us to hypothesise that Bright might function

in lipid raft-localised BCR complexes to limit or increase the

concentration of Btk. Bright–Btk association was, indeed,

observed in lipid raft-localised BCR complexes. BCR engage-

ment resulted in reversed trafficking patterns in and out of

lipid rafts; that is, Btk accumulated in lipid raft-localised BCR

complexes as Bright was being depleted. Thus, Bright does

not function to limit signalosome-associated Btk.

Alternatively and in contrast to their kinase-dependent

collaboration in the nucleus (Rajaiya et al, 2006), we rea-

soned that Bright–Btk complexes in lipid rafts may be cata-

lytically inactive or compromised, such that Bright has to be

removed from Btk in order for the Tec kinase to achieve full

activity. Consistent with this notion, activation of Btk by

tyrosine phosphorylation is stimulated when Bright’s entry

to lipid rafts is blocked by palmitoylation-defective mutants

and inhibited when Bright is trapped in lipid rafts by a

sumoylation-defective mutant. In further support, we found

that loss of Btk activation occurs in lipid rafts, and inactive

Btk (non-phosphorylated) is associated with Bright there.

This suggested that Bright-containing BCR complexes are

signalling-impaired because the presence of Bright in lipid

rafts raises the threshold of Btk-dependent BCR signalling.

Accordingly, Btk phosphorylation of a direct downstream

substrate, TFII-I, was inhibited within Bright-rich lipid rafts.

The lineage relationships between FO and MZB and the

role that Btk plays in this are controversial (Matthias and

Rolink, 2005; Teague et al, 2007; Welner et al, 2008). MZB

cells have been ascribed to develop either directly from T1

cells (Debnath et al, 2007) or from a subpopulation of CD21int

T2 B cells (Meyer-Bahlburg et al, 2008). Others contend that

both MZB and FO derive from a long lived, post-transitional

follicular B-cell subset described as Follicular Type II

(Cariappa et al, 2007; Allman and Pillai, 2008). Although

Xid phenotypic CBA/N mice show significantly greater loss of

FO (Hardy et al, 1982), their MZB numbers are also reduced

(Liu et al, 1988; Cariappa et al, 2001). The enrichment of

certain Ag specificities into MZB requires functional Btk

(Martin and Kearney, 2000; Kanayama et al, 2005). Our

findings support a common progenitor model and suggest

that if MZB require an intact Btk signalling pathway, Bright

has a function in this regulation.

Bright is the first transcription factor shown to function in

lipid rafts, but its residence there is not unprecedented. Small

cytoplasmic fractions of Stat1 and Stat3 constitutively localise

to lipid rafts and have been suggested to function there

during early stages of cytokine signalling (Sehgal et al,

2002). An isoform of OCA-B, an IgH transcriptional coacti-

vator, localises as a myristoylated form to the cytoplasm and

to plasma membranes but not to lipid rafts per se (Yu et al,

2001, 2006). Similarly, TFII-I was previously detected in

cytoplasmic complexes with PLCg (Caraveo et al, 2006).

Btk-dependent phosphorylation of TFII-I was required for

its interaction with and concomitant inhibition of PLCg-

catalysed Ca2þ mobilisation (Guo et al, 2004). Both TFII-I

and Bright are regulated by nucleocytoplasmic shuttling

(Novina et al, 1999; Nore et al, 2000; Kim and Tucker,

2006). Lipid rafts-designated Bright derives from a palmitoy-

lated pool that requires continual shuttling, as neither NLS

nor NES mutants accumulate in rafts. That nucleocytopla-

smic shuttling is also required for Bright transcriptional

activity (Kim and Tucker, 2006) raises the possibility that its

occupancy in lipid rafts is prerequisite for assembly of and

subsequent transfer of Bright–Btk–TFII-I complexes to the

nucleus. Consistent with this notion, Bright is codischarged

with activated TFII-I from lipid rafts after BCR ligation as a

Sumo-I-modified form. Although sumoylation has been as-

cribed to mediate nuclear import/export and activity of

transcription factors (Liu et al, 2006), the membrane-loca-

lised metabotropic glutamate receptor is targeted by the

sumoylation machinery (Tang et al, 2005). Similarly, the

sumo pathway was shown to control the activity of the

potassium channel K2P1 (Rajan et al, 2005).

Our observations suggest a new avenue for signal propa-

gation between the membrane and the nucleus. They em-

phasise the need to describe the properties of the

compartmentalised pools, their temporal and spatial regula-

tion and the molecular requirement(s) for the signalling

networks involved. Our results extend and enrich the notion

that mice with an artificially altered BCR threshold are more

likely to display features of autoimmunity (Grimaldi et al,
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2005; Goodnow, 2007). We identify the transcription factor

Bright as an unsuspected component of such a network and

implicate it as regulator of an early event in BCR signalling

and immunologic tolerance.

Materials and methods

Cells
Raji (EBVþ; McConnell et al, 1992; Miller et al, 1993; Caldwell
et al, 1998; Cerimele et al, 2005; Bernasconi et al, 2006), Daudi
(EBVþ ; Wang et al, 1990), Ramos (EBV�; Cerimele et al, 2005) and
CL01 (EBV�; Laskov et al, 2006) were obtained from ATCC
(Manassas, Virginia) and maintained as described (Fell et al,
1986). CD43-B cells were prepared by negative selection of whole
human blood (Gulf Coast Regional Blood Center, Houston, Texas) or
from B10-wk-old BALB/c murince splenocytes (Webb et al, 1998).
Preparative sorts were executed according to Webb et al (1998) and
Shankar et al (2007). B cells were stained as described by Kim and
Tucker (2006), and deconvolution was performed according to
Kuhn and Poenie (2002) and Combs et al (2006).

Molecular and cellular biology
Mutant forms of Bright were generated using the site directed
mutagenesis kit (Stratagene, CA) and transferred into the retroviral
construct pVxy (Ngo et al, 2006).

In vitro translation, sumoylation assays and transduction of B
cells were performed as described (Kienker et al, 1998; Rosas-
Acosta et al, 2005a, b; Kim and Tucker, 2006). Specificity of
sumoylation reactions was confirmed by cleavage of modified
Bright by Ulp-1 (Li and Hochstrasser (2003). Stabilisation of Sumo-1
modified Bright was achieved by alkylation with iodoacetic acid
sodium salt (Byrd and Hruby, 2005).

To assay for palmitoylation, WT and mutant forms of Bright as
well as VSV-G were transfected into Cos-7 cells and processed as
described (Rose et al, 1984; a-VSV was kindly provided by Dr
Michael G Roth, U.T. Southwestern Medical Center, Dallas; Yu and
Roth, 2002).

Preparation of stable retrovirally transduced
dominant-negative B-cell lines
Stable transductants were established by employment of the
Phoenix-A retroviral system. We plated 3�105 amphitrophic
Phoenix-A packaging cells in 4 ml of DMEM supplemented with
10% fetal bovine serum (FBS) in 60-mm plates. After one day of
culture, cells were transfected using pBabe constructs using
FuGene6, and viral supernatant was harvested 2 days post-
transfection, centrifuged, and filtered to remove live cells and
debris. Target cells (3�105) were plated into 60-mm plates and
growth medium was replaced with viral mixture. Stable cell lines
were established by selection with 2mg/ml of puromycin from day 2
post-infection.

Transcriptional analysis
The transcriptional activity of WT Bright and mutant forms were
assayed by luciferase assays (Kim and Tucker, 2006; Rajaiya et al,
2006). Raji or Ramos cells (B5�105) stably transduced with empty
vector, WT or one of the mutant forms of Bright (401KIKK/AIAA,
C342S or C342D) were mixed with 125 ng of pRL (Renilla) and
750 ng of either pGL3 or pGL3btp in 300ml of RPMI. Cells were
incubated for 15 min at room temperature, transferred into
electroporation cuvettes and subjected to electroporation at 975mF
and 260 V. Electroporated cells were left in the cuvette at room
temperature for 15 min and cultured in RPMI complete growth
medium for 5 h. Cells were then treated with LPS (20mg/ml) for 3
days in complete growth medium to stimulate cofactors required for
Bright transactivation (Nixon et al, 2004a). Anti-IgM stimulation
was performed for 5 min using 500pg a-m for 5�105 cells.
Luciferase activity was then measured and normalised according
to the Dual Luciferase Reporter Assay Kit from Promega.

B-cell stimulation
To measure signalling effects at low doses of anti-IgM where
receptor internalisation is minimised, we used monoclonal anti-IgM
antibodies in the absence of secondary cross-linking (please see
Supplementary Figures 2B, 4B and 5 for optimisation and further

considerations). To stimulate B cells, 500 ng of F(ab’)2 fragments of
a-m (clone JDC-15; Dako [a-human]; OB1022; Southern Biotech
[a-mouse]) and a-CD19 (clone HD37; Dako [a-human]; clone SJ25-
C1 [a-mouse]) were added to 5�108 cells for 5 min at 371C (or other
times as indicated in the figures). We determined by FACS analysis
(data not shown) and semi-quantitative western of lipid raft-
associated mIgM (Supplementary Figure 5A) that under these
conditions B1–5% of mIgM in rafts and membranes are engaged.

Measurement of free intracellular calcium
Approximately 1�106 cells/ml were loaded with 2mM Indo-1
(Molecular Probes) in HEPES buffered RPMI/1% FBS (pH 7.1) for
30 min at 371C and stimulated successively with 1 ng or 40 mg
(indicated in Figures 4B and 6A as low or high a-m, respectively.
Fluorescence was excited at 340 and 380 nm, and the resulting
signal at each excitation wavelength was plotted against time.
Internal calibration was performed using final concentrations of
2 mM Ionomycin, 40mM Digitonin, 10 mM EGTA/pH 7 and 20 mM
Tris exactly as described (Vorndran et al, 1995). At the end of each
calcium trace, dye calibration to insure comparable loading and dye
responses were performed by treatment with 2mM ionomycin
followed by 40mM digitonin to release Indo-1 into the medium that
contains 1 mM calcium. These levels of calcium saturate the Indo-1
to give the apparent Rmax. Subsequently, excess EGTA/pH7 (10 mM)
is added, followed by 20 mM Tris base to convert EGTA from the -2
or -1 form at pH 7 (and below) to the -4 form, greatly increasing its
chelating ability. That this procedure was sufficient to achieve Rmin

was confirmed by the fact that, in the presence of a large excess of
EGTA (10 mM), further additions of Tris base (i.e., beyond two
equivalents) did not lower Indo-1 ratios.

Preparation of lipid rafts
Approximately 500 mg of wet cell pellet were washed twice in ice-
cold phosphate buffered solution (PBS) and homogenised in 5 ml of
10 mM Tris/Cl (pH 7.4), 1 mM EDTA, 250 mM sucrose, 1 mM
phenylmethylsulfonyl fluoride and 1mg/ml leupeptin (all from
Sigma, St Louis, Montana) in a tightly fitted Dounce homogeniser
using five strokes (Shelton et al, 1982; Short and Barr, 2000). The
resulting homogenate was centrifuged at 900 g for 10 min at 41C, the
resulting supernatant was then subjected to centrifugation at
110 000 g for 90 min at 41C (Nagamatsu et al, 1992). The resulting
membrane pellet was resuspended in ice cold 500ml TNE buffer
(10 mM Tris/Cl [pH 7.4], 150 mM NaCl, 5 mM EDTA, 1% Triton
X-100 [Sigma], 10� protease inhibitors [Complete tablets, Roche,
Indianapolis, IN]). Sucrose gradients for the preparation of lipid
rafts were assembled exactly as described in an earlier publication
(Fuentes-Pananá et al, 2005). Lipid rafts were isolated by flotation
on discontinuous sucrose gradients. Membrane pellets were
extracted for 30 min on ice in TNE buffer. For the discontinuous
sucrose gradient, 1 ml of cleared supernatant was mixed with 1 ml
of 85% sucrose in TNE and transferred to the bottom of an
ultracentrifugation tube, followed by overlay with 6 ml of 35%
sucrose in TNE and 3.5 ml of 5% sucrose in TNE. Samples were
spun at 200 000 g for 30 h at 41C; fractions were collected from the
top of the gradient and analysed using western blotting and/or
coimmunoprecipitation, as described in an earlier publication (Kim
and Tucker, 2006).

Immunoprecipitation/western analyses
Unabridged BCR complexes have been successfully immunopreci-
pitated using either stringent RIPA-based buffers (Indraccolo et al,
2002; Gazumyan et al, 2006) or mild conditions, such as Digitonin
or NP-40 (Hombach et al, 1988; Batista et al, 1996). We used a
stringent RIPA formulation of 500 mM NaCl; 10 mM Tris–Cl pH 8;
0.1% SDS; 5 mM EDTA, pH 8; 10� protease inhibitor (Complete
tablet, Roche) to solubilise lipid rafts for subsequent immunopre-
cipitation experiments. Briefly, buoyant fractions, taken from the
discontinuous gradient centrifugation, were pooled and incubated
with the same volume of RIPA buffer on ice for 15 min. Resulting
extracts were pre-cleared by rocking with 1 ml of a 5% slurry of
RIPA equilibrated Protein A beads CL-4B (Amersham Pharmacia,
Uppsala) for 4 h at 41C and removal of the precipitate. The resulting
supernatant was then subjected to IP/western assays as described
(Kim and Tucker, 2006). The following antibodies were used:
a-CD19 (clone 6D5, Dako), a-Bright, a-IgM (BD Pharmingen), a-V5
(Sigma), a-Raftlin (Dr Akihiko Yoshimura; Fukuoka, Japan; Saeki
et al, 2003), a-Sumo-1 (Sigma), a-phosphotyrosine (Sigma),
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a-caspase-3 (Cell Signalling) and anti-TFII-I (kindly provided by Dr
Carol Webb; Rajaiya et al, 2005).

Apoptosis
To assay for DNA fragmentation, 1�108 cells were treated with
100 ng a-m for 72 h and processed as described by Duke et al (1983).
In sum, cells were harvested by centrifugation (200 g; 10 min at
room temperature), washed twice with PBS and resuspended in
2 ml lysis buffer (100 mM NaCl, 10 mM Tris, 1 mM EDTA, 0.5%
NP-40, and 0.5% SDS, pH 7.4) for 10 min at room temperature. DNA
was extracted twice with an equal volume of phenol followed by a
single extraction with an equal volume of chloroform. DNA
fragments were resolved in a 0.75% agarose gel in TBE running
buffer (90 mM Tris, 90 mM boric acid, 1.5 mM EDTA pH 8.4) and
visualised by staining with ethidium bromide and photography
under UV illumination.

Note added in proof
Nixon et al (2008) recently reported that dominant inhibition of
Bright DNA binding activity in vivo inhibits antibody response to
phosphorylcholine of B1 B cells-a subset whose development and

function are highly dependent on Btk signaling. These data provide
additional support for a mechanistic link between Btk and both
nuclear and lipid rafts-localized Bright.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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