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Light during embryonic development modulates
patterns of lateralization strongly and similarly

in both zebrafish and chick
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Some aspects of lateralization are widespread. This is clear for the association between left-eye (LE)
use and readiness to respond intensely to releasing stimuli presented by others, which has been found
in representatives of all major groups of tetrapods and in fishes. In the chick, this behavioural
asymmetry is linked developmentally to greater ability to sustain response against distracting stimuli
with right-eye (RE) use, in that both reverse with the reversal of the normal RE exposure to light. In
the zebrafish, the same two asymmetries (normally) have similar associations with the LE and the RE,
and both also reverse together (owing to epithalamic reversal). Here, we show that light exposure
early in development is needed in zebrafish to generate both asymmetries. Dark development largely
abolishes both the enhanced abilities, confirming their linkage. Resemblance to the chick is increased
by the survival in the chick, after dark development, of higher ability to assess familiarity of complex
stimuli when using the LE. A somewhat similar ability survives in dark-developed zebrafish. Here, LE
use causes lesser reliance on a single recent experience than on longer term past experience in the
assessment of novelty. Such resemblances between a fish and a bird suggest that we should look not
only for resemblances between different groups of vertebrates in the most common overall pattern of
lateralization, but also for possible resemblances in the nature of inter-individual variation and in the
way in which it is generated during development.
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1. INTRODUCTION
Some features of lateralization are widespread among

vertebrates (Andrew & Rogers 2002). The left-eye

system (LES) has an advantage in the analysis of

topography and position (chick: Rashid & Andrew

1989; Tommasi et al. 1997; marsh tit: Clayton & Krebs

1994; rat: Bianki 1988; human: Kosslyn et al. 1992).

Furthermore, the LES is more likely to respond to

various releasers. This is true of attack and sexual

behaviour, when it is the left eye (LE) that sees the

stimulus rather than the right (e.g. toad: Robins et al.
1998; lizard: Deckel 1998; chick: Rogers et al. 1985;

baboon: Casperd & Dunbar 1996).

By contrast, the right-eye system (RES, left hemi-

sphere) use is associated with a response to an identi-

fied target such as a prey item (zebrafish: Miklósi &

Andrew 1999; toad: Vallortigara et al. 1998; chick:

Andrew et al. 2000). In the rat, the left hemisphere is

especially involved in a rapid choice of the correct

response (Bianki 1988).

Now that it is clear that cerebral lateralization is very

widespread among vertebrates, the next objective must

be to understand the extent to which it varies between

individuals and between species. A major obstacle is

that the observed behavioural asymmetries may be
tribution of 14 to a Theme Issue ‘Mechanisms and functions
and behavioural asymmetries’.
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affected by factors that are not themselves integral to
lateralized brain mechanisms. Moreover, such factors
may affect different behavioural asymmetries differ-
ently. It is very clear in fishes, for example, that
motivational differences, which change the significance
of test stimuli, can also change the observed beha-
vioural asymmetries; thus, the evocation of sexual
motivation can bring different brain mechanisms to
bear, generating behavioural asymmetries of a different
kind (Bisazza et al. 1998). A promising simplification is
to study the effects on well-established behavioural
asymmetries of known changes in brain lateralization.

Here, we present evidence for unexpected resem-
blances between the domestic chick and zebrafish in
behavioural lateralization. In both, the same two
asymmetries are tightly linked in development, in
that both reverse their allocation together: when
one shifts from association with right-eye (RE) use
to association with the LE, the other shifts in the
opposite direction.

In the chick, the first asymmetry (visual control of
response, VCR) is the use of the RE to select and
sustain an approach to a target (Andrew et al. 2000),
and to sustain selection of targets rather than
distractors (Rogers & Anson 1979); this bias is present
also in the zebrafish (Miklósi & Andrew 1999). The
second is the readier evocation of responses when
appropriate and highly effective stimuli are perceived
with the LE rather than with the RE. The examples
so far described chiefly relate to the releasers of
This journal is q 2008 The Royal Society
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responses such as attack and sexual behaviour (chick:
Rogers et al. 1985; many groups of vertebrates:
reviewed in Vallortigara & Bisazza 2002). The wide-
spread use of the LE when a fish views its own reflection
(Sovrano et al. 2000) suggests that the releasers of
social responses are also more effective when seen with
the LE. This use of the LE is also present in the
zebrafish (Andrew et al. in press).

Here, we add an additional class of releasers for the
zebrafish: we used a simple pattern providing visual
heterogeneity, such as might serve to identify a
potential refuge, and showed that there was an
asymmetry of response according to which eye saw it.
A convenient overall term for such a feature of
behaviour is a ready response to releasers (RRR).

In both species, VCR and RRR are linked in
development. In the chick, they both reverse their
allocation as a result of experimental reversal of the
normal asymmetric exposure of the eyes late in
development (Deng & Rogers 1997). The RE normally
faces outwards, and so receives light entering through
the shell. If the LE is exposed to light instead, then
VCR and RRR shift in the opposite directions (Rogers
1990). In the zebrafish, the reversal of the habenular
asymmetry results in exactly the same shifts as in VCR
and RRR (Barth et al. 2005). Eye use in mirror tests
reverses, and the LE is used instead of the RE in an
approach to a target.

Developmental effects of light in the zebrafish during
development have already been demonstrated. These
include the loss of bias to LE use in the mirror test
when light is absent during development (Andrew et al.
in press), and elevation of boldness in fry exposed to
light (Budaev & Andrew in press). A major component
of the boldness syndrome was elevated locomotion in a
strange environment, which correlated with the degree
of approach to a predator model. Both these features of
behaviour would be well explained by an enhanced
ability to sustain a response (i.e. elevated VCR), once
initiated, which is present in light- but not dark-
developed zebrafish.

In the chick, the absence of light late in development
minimizes (or perhaps abolishes) both behavioural
asymmetries (Rogers 1982; Zappia & Rogers 1983).
Here, we provide similar evidence for zebrafish.
This is important because it suggests that light is
involved in the generation of the specific brain
asymmetry (or asymmetries) that generates VCR and
RRR, rather than in some way reversing the direction of
brain lateralization as a whole. This conclusion is
reinforced in dark-developed chicks by the presence of
some clear differences between behaviour shown with
the LE or the RE in use (Mascetti & Vallortigara 2001;
Deng & Rogers 2002; Chiandetti et al. 2005). It is
particularly important that higher interest in novelty
when the LE is in use is present in dark chicks (Rogers
et al. 2007).
2. MATERIAL AND METHODS
Breeding zebrafish came from a pet shop (Brighton, UK).

They were maintained in aquaria (300!155!155 mm) at

288C on a 14 L : 10 D cycle, and fed daily with dry zebrafish

pellets (ZM-400; ZM Ltd, Winchester, England, UK). We
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used fry from four different batches coming from the

spawning of one female with two males. We did not note

pronounced differences in behaviour or other characteristics

between these batches. Approximately 3 hours after fertiliza-

tion, the eggs were removed from the parental aquarium and

transferred to white plastic boxes (140!80!50 mm). The

eggs and the larvae (‘fry’) were maintained in these boxes in

groups of approximately 15–20. For protection against

fungi, a few drops of methylene blue solution were added

to each box.

Approximately 6 hours after fertilization, the eggs were

divided into two experimental groups, held in boxes in

separate aquaria at 288C. The first group was maintained

under the normal 14 L : 10 D cycle. The second group

developed in darkness (!0.01 lux measured with Extech

EasyView EA30 digital light meter). The eggs and fry of the

dark group were taken to light only for a short time (!2 min

each time) every second day for maintenance, inspection

and cleaning.

The dark group was returned to the normal 14 L : 10 D

cycle in the evening of the day 6 post fertilization. On the 8th

day post-fertilization (DPF), both the light and dark groups

were further divided into two treatments. The first treatment

(EXPER) had home-box experience of the vertical black

stripe stimulus used in subsequent behavioural experiments,

whereas the second (NO EXPER) had no such experience.

The black stripe was inserted in the middle of the longer walls

of the white maintenance boxes of the EXPER group,

whereas NO EXPER fry were maintained in empty boxes.

The behavioural experiments were conducted on 11 DPF, so

that the EXPER group had 3 days experience of the

black stripes in their home boxes. The fry were not fed

prior to the tests.

All tests used a white plastic swim-way (320!125 mm)

with seven compartments (50!40 mm, from which we used

only four) filled with water to a depth of 25 mm (figure 1a).

All adjacent compartments were connected by vertical 5 mm

slits in the middle of the connecting walls. Two plastic bars

were attached at each side of the slit to create a 9 mm long

corridor (figure 1b). Each compartment contained two lamps

mounted above the left and right sides, which could not be

directly seen by the fry. The lighting of each compartment

was controlled by switches and a rheostat. A small video

camera could be slid along a glass sheet covering all the

compartments and monitoring each in turn. The whole

apparatus was covered by black cloth to exclude light from

other sources. The individuals were tested only once and

water in the experimental swim-way was changed after

each fry. Full details are given by Watkins et al. (2004) and

Budaev & Andrew (in press).

The testing procedure is schematized in figure 1a. At test

each fry was sucked into a large pipette (entrance diameter

6 mm), together with an adequate amount of water, and

released gently into the first compartment of the swim-way,

which was lit by the lamps. All other compartments were

darkened. The fry was left undisturbed for 4 min. Sub-

sequently, the light in the test compartment was slowly

dimmed to darkness over 20 s. The video camera was

immediately shifted to monitor the second compartment.

Illumination was then similarly raised in this second

compartment. The fry entered this novel compartment

under positive phototaxis.

After entering the second compartment, the fry was left to

explore it for a further 1 min. Thereafter, the same sequence

of changes in lighting was used to attract the fry into

subsequent compartments (figure 1b). The third and fourth
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Figure 1. Scheme of the experiments. (a) An outline of the swim-way used in the experiments with the sequence of tests
(indicated by an arrow, from top down); (b) the stimuli used in the STR1 and STR2 tests: (i) hatched and (ii) black stripes; and
(c) an outline of the groups used in the study. Ha, hatched stripe; Bl, black stripe.
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compartments had a large vertical stripe at the closest end of

the entry wall, which was on the left or the right, keeping the

same position for the first and second stripe tests (STR1 and

STR2). The stripe was placed so that it could be seen

monocularly before entry, but only when the fry had arrived

at the end of the short between-compartment corridor. Two

stripes were used: a hatched stripe made up of alternating

black and white lines, 5 mm wide and angled at 458, and a

uniformly black stripe of the same size (figure 1b). After entry,

the fry was left to explore the compartment and stripe for

1 min. Three designs were used (figure 1c). The EXPER fry

saw a hatched stripe in STR1 and a black stripe in STR2,

while NO EXPER saw either a hatched stripe, followed by a

black, or a black in both the tests. One reason for this design

was that it was already known (Andrew et al. in press) that RE

use tended to be dominated by immediately prior experience,

whereas LE use was more affected by long-term experience.

The behaviour of the fry in both the stripe tests was

video recorded and analysed using an on-screen measure-

ment software. We recorded distances between the fry and

the stripe every 10 s. In the following analysis, we use the

minimum distance achieved during the test between the

fry and the stripe. This allowed us to measure whether the fry

responded differently to the stimuli presented to the LE or the

RE. The sample sizes within each experimental combination

were slightly different (nZ4–7) because of fry availability.

The total number of fry was 42. We used ANOVAs and

randomization tests for statistical comparisons (R software

package; p-values are two-tailed).
3. RESULTS AND DISCUSSION
(a) Overall analyses

Light and dark fry showed different left/right patterns
(figure 2). Overall, the experimental groups exhibited
significant differences in their responses in the STR1 test
(experience, EXPER or NO EXPER; side, stripe on the
left or the right; development, light or dark: experi-
ence!side!development F1,22Z5.194, pZ0.033).
This was partly due to the different responses of the
NO EXPER fry (stimulus, hatched or black; stimulus!
side: F1,34Z7.037, pZ0.012; side!development:
F1,34Z4.941, pZ0.033). There was no overall signi-
ficant differences between the groups in the second
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stripe (STR2) test, but the two NO EXPER STR2
groups still showed significant differences (side!
development: F1,35Z6.676, pZ0.014).
(b) Light fry
Within the NO EXPER groups, the left/light fry
showed a close approach to the hatched but not to
the black stripe, while the right/light fry showed if
anything the reverse (figure 2). In the STR1 test for the
light fry, there was, as a result, a significant interaction
in the NO EXPER condition for stimulus!side
(F1,17Z10.459, pZ0.005). The close approach by
the left/light fry to hatched in the STR1 test was
unaffected by EXPER, when STR1 hatched tests were
compared between EXPER and NO EXPER (figure 2).
The right/light fry, by contrast, showed a striking close
approach in the EXPER condition, when compared
with NO EXPER. As a result, the interaction for side!
experience, in the hatched tests, was suggestive
(F1,12Z4.64, pZ0.052), entirely due to the change in
the right/light groups.

The absence of a close approach in the NO EXPER
condition was accompanied by pronounced inter-
individual differences in the pattern of the latency
distribution: some individuals showed very long
latencies, although most came out quickly as usual.
This wide spread was completely absent in the EXPER
condition (and in left/light in both conditions),
suggesting that some right/light individuals had diffi-
culty in assessing the hatched stripe when seen in the
absence of any comparable experience. The difference
in variances between the EXPER and NO EXPER
conditions in right/light was significant (Ansari–Brad-
ley (AB) test, nZ28, ABZ132, pZ0.0129). The very
different behaviour in the EXPER condition is perhaps
due to a combination of readiness to accept before the
emergence a crude match with the record from home-
tank experience, coupled with a high ability to sustain
an approach to examine further (see §4).

The special response of the left/light fry to hatched
stripes was absent in left/dark (figure 2). A comparison of
the response to the black or hatched stripes in STR1 NO



0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

left right left right left right left right

m
in

im
um

di
st

an
ce

 (
cm

)
m

in
im

um
di

st
an

ce
 (

cm
)

m
in

im
um

 d
is

ta
nc

e 
(c

m
)

(a)

(b)

(c)

(d )

(e)

( f )

Figure 2. The minimum distance to the stimulus in the different experimental groups. (a–c) The first stripe test (STR1) and
(d– f ) the second stripe test (STR2). The plots include experience, condition and the type of the stimulus (e.g. EXPER, hatched
for experienced fry in test with the hatched stripe): (a) EXPER, hatched; (b) NO EXPER, hatched; (c) NO EXPER, black;
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EXPER in the left tests produced a significant interaction
(stimulus!development: F1,19Z5.145, pZ0.035),
owing to the anomalous approach by left/light.

The special response of light fry to the properties of
hatched when seen by the LE is probably one aspect of
greater responsiveness of the LES to valent stimuli: in
this case, visual heterogeneity of the environment, such
as might be presented by potential refuges or land-
marks (see §4).
(c) Dark fry

An important issue here is whether there are any
left/right differences in the dark fry. The left/dark and
right/dark fry were affected differently by home-tank
experience (figure 2). A comparison of the EXPER
group with both NO EXPER groups in the STR2 test
showed a significant interaction (experience!side:
F1,24Z5.739, pZ0.025). The experience of black in
the home tank caused left/dark to approach, presum-
ably because the stripe was assessed to be a familiar
refuge or landmark. In the absence of home-tank
experience, black was not approached. The right/dark
fry showed a quite different pattern: they approached
closest when they had had one previous experience of
the same stripe (i.e. in the NO EXPER group with
black in the first and second emergence) and least when
they had home-tank experience of black.

These results are best explained by supposing that,
in the dark fry, the LES relies to a marked degree on the
use of established traces in assessing the stripes. The
left/dark fry were unaffected by a single experience of
either a black or hatched pattern in a second encounter
with a stripe: whether there had been home-tank
experience or not, the STR1 and STR2 responses
were almost identical. If the black stripes had been
present in the home tank, then the stripes (whether
Phil. Trans. R. Soc. B (2009)
black or hatched) were approached, presumably
because they were judged (relatively) familiar and
interesting. Even in the case of the black stripes, the
stimulus was a familiar object in a strange place. If no
stripe had been seen in the home tank, then avoidance
was persistent.

The right/dark groups clearly differ. In the NO
EXPER condition, a prior brief exposure to black
caused approach to appear in STR2, quite unlike
the absence of change in left/dark. By contrast, after
home-tank experience of black, black is not approached
in STR2, (unlike both NO EXPER groups). This may
represent the assessment as a familiar landmark or
obstacle, which should be ignored; in any event,
EXPER affects the right/dark fry, but quite differently
from the left/dark fry.

It is impossible to tell whether a comparable
left/right difference is present in the light groups,
because of the special response of left/light to hatched.
This does not apply to the NO EXPER condition, with
black in both STR1 and STR2. Here, there was a
change in the pattern of response owing to the first
exposure (figure 2), with left/light increasing approach
in STR2 and right/light avoiding more (side!test:
F3,47Z3.417, pZ0.025, repeated-measures ANOVA).
This was chiefly due to the change in left/light (two-
sample permutation test: left/light nZ14, TZ1827,
pZ0.002; right/light nZ13, TZ1081, pZ0.677).

Here, the STR1 exposure changes behaviour in
STR2 in both left/light and right/light, but not in the
corresponding dark groups. Only a tentative interpre-
tation is possible and the effects require replication.
The marked shift to approach shown in STR2 (black)
by left/light may represent treating black as a refuge,
once it is familiar. This would probably be advan-
tageous: taking up a position against a large dark fixed
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object would make the fry less conspicuous. The
avoidance shown by right/light in STR2 may reflect a
decision taken in the first emergence that the black
stripe is an obstacle, which is strongly sustained in the
second emergence. Another odd result, which also
requires further work, is the fact that the right/light
groups differ suggestively between EXPER and
NO EXPER for STR1 hatched. Hatched is avoided
in the NO EXPER condition, but approached very
close in the EXPER condition (side!experience:
F1,12Z4.641, pZ0.052). Here, home-tank experience
may allow a judgement of sufficient novelty as to cause
a close approach in investigation, which is then
sustained by high VCR.
4. GENERAL DISCUSSION
The abilities that in both a fish and a bird depend on
the effects of light during development (VCR and
RRR) are linked in the zebrafish to the habenular
asymmetry, in that both reverse in association with the
reversal of the habenular asymmetry (Barth et al.
2005). The normal asymmetry of the zebrafish
habenula is for lateral habenula enlargement on the
left and medial enlargement on the right (Aizawa et al.
2005). Outflow is strikingly separate, with the left
lateral habenula predominantly supplying the dorsal
division of the main relay nucleus (the interpeduncular
nucleus, IPN), and the right medial habenula the
ventral IPN. There is a striking resemblance between
the functions of the lateral habenulae in zebrafish and
mammals: in rats during a targeting and pursuit task,
firing in the lateral habenular units correlates with
targeting head movements (Sharp et al. 2006). The use
of the RE in the selection and pursuit of targets by
zebrafish (Barth et al. 2005) is clearly comparable, as is
the ability to sustain choice by inhibiting pecks at
irrelevant stimuli shown by chicks when using the RE
(Deng & Rogers 1997, 2000). The lateral habenulae
are also concerned in mammals, with the inhibition of
response to the stimuli that predict the absence of
reward in a task where reward is expected (Matsumoto &
Hikosaka 2007), and with the inhibition of premature
responses (Lecourtier & Kelly 2005). These two
functions can be reconciled if it is supposed that one of
the ways in which the lateral habenulae sustain an
ongoing response is to inhibit a response to other stimuli,
which are potentially powerful in evoking a response.

The medial habenulae are involved in reward in
mammals (as shown by the effects on self-stimulation
for morphine; Taraschenko et al. 2007). The zebrafish
findings suggest an extension of this function to the
promotion of response to any stimulus that is
intrinsically powerful in evoking a response. The LE
viewing of a mirror reflection is shown only by the light-
developed fry (Andrew et al. in press). Such persistent
bias strongly suggests that a response is here being
driven by especial interest of the LES in the motivating
properties of social fellows. The dark fry do not lack
interest in their reflection. They show persistent
viewing, but with alternating long periods of LE or
RE use, allowing both eye systems an opportunity to
assess. It is thus chiefly the asymmetry that is lacking.
Phil. Trans. R. Soc. B (2009)
Here, we have shown that the left/light, but not the
left/dark, fry respond strongly (and innately) to proper-
ties, which are likely to be associated with potential
refuges. The dissected character of the stimulus
matches the properties of vegetation or debris. Small
fishes are often attracted to visually heterogeneous
patterns such as alternating stripes in a novel
environment and begin to feed earlier in their proximity
(Mikheev et al. 1997). Also, the presence of visual
heterogeneity may reduce the fear response of fishes to
the predator’s odour (Afonina et al. 2005). Approach-
ing such potentially camouflaging heterogeneous
patterns should therefore be adaptive for small fry.
On the other hand, fry should avoid visually homo-
geneous areas where they would be more conspicuous
to predators. Taken together, the evidence suggests that
after light, but not dark, development, the LES has
heightened interest in, and response to, motivating
stimuli. It will be interesting to see whether this extends
to conditioned stimuli that were originally neutral, but
have become very valent.

(a) Asymmetry present in the dark fry

Zebrafish fry show some behavioural asymmetry after
dark development. Here, we have shown that the
left/dark fry are strongly affected by long-term experi-
ence of stripes in the home tank, but (unlike right/dark)
hardly at all by the nature of the stripe seen in the
first emergence.

Such an asymmetry is likely to interact with the
assessment of novelty and complexity. The preferential
and sustained use of established long-term records
would promote such assessment. Greater use of
recently elaborated records (such as is present in the
right/dark, and perhaps in the right/light fry) would
oppose accurate evaluation of identity, both in the long
run by making difficult use of records that allows many
experiences to be taken into account, and in the short
term by making records based on current experience,
the main determinants of judgements of familiarity.
However, it would, at the same time, promote
continuing choice of a particular stimulus or type
of stimulus.

Dark-developed chicks show a greater interest in
and ability in assessing novelty when using the LES
(Deng & Rogers 2002; Andrew et al. 2004; Rogers et al.
2007). This is thus another probable resemblance
between a fish and a bird.

(b) Functions of lateralization

A number of functions have been suggested, which
may all be to some extent true. The existence of
(basically) similar suites of structures on the right and
the left probably does ‘increase capacity’ when the two
are independently searching different areas of space. It
is also likely that some functions require neural
organizations incompatible with other functions, if
they are to be well performed. Establishing the identity
of a complex stimulus with past experience requires
extensive use of a detailed record, in which the
properties of the record determine the analysis. The
behaviour of the left/dark fry, which is reported here,
may provide an example of a high degree of such use.
This is quite different, for example, from the use of
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a particular cue to select possible targets efficiently and
quickly. Here, the choice of eye with which to view
allows appropriate abilities to be brought to bear.

However, it is likely that the determination of the
sort of behaviour that is likely to be evoked is an
additional important function. The sort of variation
that is important here is whether initiated responses are
sustained against distraction and danger, or whether
much time is spent investigating slight change. The
effects on such suites of behaviour might act over
relatively short intervals: motivational factors such as
being frightened are an obvious example. Alternatively,
the effects might act over longer periods or a complete
lifetime. Here, long-acting physiological conditions
such as levels of sex hormones, or genetic and
environmental effects during development (such as
are considered here) are likely causes.

Variations in boldness are a revealing example since
their consequences under natural conditions have
been extensively studied in great tits. Drent et al.
(2003) summarized the properties of the two extreme
personality types. Active (bold) individuals take rapid
decisions, establish routines based on past success and
are aggressive to fellows. Passive (shy) individuals are
cautious, responsive to external stimuli rather than
sustaining routines (so that exploration is thorough)
and less aggressive.

The light fry are bold and the dark fry are shy, as
measured by a ‘shyness’ construct, derived from the
tests in the same apparatus as that used in the present
study (Budaev & Andrew in press). The construct was
derived from levels of locomotion after entry to
compartments, and the degree of approach to a crude
model of the front view of a larger fish, measures which
showed a positive correlation. Boldness in the light fry
is likely to be due to the developmental effects of light
on VCR, making it easier for locomotion to be initiated
and sustained in a novel environment, including
approach to a potentially dangerous stimulus. The
effects on the development of an environmental factor,
which could act in the field, offers a source of inter-
individual variation, which may be more resistant than
genetic control to fixation of one or other extreme
pattern of behaviour, to fixation within a population by
strong selective pressures.
5. CONCLUSION
Past speculation (e.g. Andrew 2002) has raised the
possibility that a single pattern of lateralization is at
least widely characteristic of vertebrates. It is now
necessary to change this hypothesis by adding that
there is commonly inter-individual variation in some
aspects of this pattern, which, however, may itself be
relatively standard. The resemblances set out here
between a fish and a bird suggest a specific hypothesis.
When there is a marked behavioural asymmetry in
VCR and RRR in an individual, LE use (right brain
control) will go with elevated RRR, and RE use (left
brain control) with high ability to sustain an initiated
response. Inter-individual variation will involve
shifts between behavioural asymmetry and near
symmetry in these behavioural patterns. At the same
time, other aspects of lateralization, in particular the
Phil. Trans. R. Soc. B (2009)
LES assessment of novelty or identity, will not vary

(except as an indirect consequence of change in VCR
and RRR).

All experimental work was carried out under Home
Office licence.

We gratefully acknowledge support from the EU Sixth
Framework Programme.
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