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Abstract
Porphyromonas gingivalis is a Gram-negative anaerobe that populates the subgingival crevice of the
mouth. It is known to undergo a transition from its commensal status in healthy individuals to a highly
invasive intracellular pathogen in human patients suffering from periodontal disease, where it is often
the dominant species of pathogenic bacteria. The application of mass spectrometry-based proteomics
to the study of P. gingivalis interactions with model host cell systems, invasion and pathogenicity is
reviewed. These studies have evolved from qualitative identifications of small numbers of secreted
proteins, using traditional gel-based methods, to quantitative whole cell proteomic studies using
multiple dimension capillary HPLC coupled with linear ion trap mass spectrometry. It has become
possible to generate a differential readout of protein expression change over the entire P.
gingivalis proteome, in a manner analogous to whole genome mRNA arrays. Different strategies
have been employed for generating protein level expression ratios from mass spectrometry data,
including stable isotope metabolic labeling and most recently, spectral counting methods. A global
view of changes in protein modification status remains elusive due to the limitations of existing
computational tools for database searching and data mining. Such a view would be desirable for
purposes of making global assessments of changes in gene regulation in response to host interactions
during the course of adhesion, invasion and internalization. With a complete data matrix consisting
of changes in transcription, protein abundance and protein modification during the course of invasion,
the search for new protein drug targets would benefit from a more comprehensive understanding of
these processes than what could be achieved prior to the advent of systems biology.
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Diseases that originate at mucous membranes and involve constituents of the normal
microbiota are often multifactorial in origin. Nowhere is this more apparent than in the human
oral sub-gingival crevice. In this environment, hundreds of bacterial species interact with the
multicompartmental periodontal tissues that provide supporting structures for the teeth. Under
normal conditions, the host tolerates this microbial burden and the periodontal tissues remain
healthy. However ecological shifts can occur that cause the microbiota to acquire a pathogenic
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potential, which in a susceptible host, will result in tissue destruction with ultimate exfoliation
of the teeth. Adaptation of host and microbial cells to the changing ecological parameters
involve a coordinated series of regulatory networks that control and fine tune the phenotypic
status of the cells. This degree of microbial and host complexity renders investigation of
individual virulence factors or host effector molecules insufficient to fully comprehend the
molecular basis of health and disease. Rather, emerging technologies for global analysis of
transcriptional and protein expression levels are now providing insights into the profiles of
mRNA and proteins that characterize states of health or disease. As steps toward applying a
systems biology approach to interactions of host and bacteria in the subgingival crevice,
transcription microarrays and mass spectrometry-based proteomics have been applied to
genome wide studies of P. gingivalis protein expression and host interactions. Here we review
developments in proteomics as it has been applied to studies of P. gingivalis in human
periodontal disease. A number of reviews have been published in recent years dealing with
mass spectrometry-based proteomics and microbiological applications [1–3] and the related
topic of posttranslational modifications (PTMs) in lower organisms [4]. A short primer on mass
spectrometry-based peptide sequence analysis, the basic technology behind most proteomics
studies, has recently been published by Coon and coworkers [5]. The efficient global
assessment of PTMs has been restricted by the absence of computational tools for mining large-
scale proteomic data sets. Recent developments through 2005 in this area are also described.
The ability to determine PTMs is one of the key differences in terms of biological information
that separates proteomics data from gene expression studies based on mRNA detection [6].
Within the field of oral biology, the use of proteomic methods has thus far largely been confined
to the use of 2D polyacrylamide gel electrophoresis (PAGE) [7,8]. Okano and coworkers
recently applied 2D PAGE and peptide mass mapping [9] to studies of oxidative stress defense
mechanisms in P. gingivalis.

Model System for P. gingivalis-host interactions
A bacteria-host cell model has been developed that involves one of the predominant periodontal
pathogens, P. gingivalis, and primary cultures of epithelial cells from the gingiva. P.
gingivalis rapidly and efficiently invades these gingival epithelial cells (GEC). The
internalization process is complete within 15 min and large numbers of bacteria congregate in
the perinuclear area. Both the bacteria and the host cells remain viable for extended periods
indicating mutual adaptation to their co-habitation [10]. This model has been exploited to
determine the proteins of P. gingivalis that are differentially regulated as the organisms make
contact with, invade and adapt to the intracellular environment. Proteins that are differentially
regulated are important components of the in vivo survival strategy of the organism. Much of
the analytical and bioinformatics methodology reviewed here has been implemented in the
context of this model [11–13], also using information derived from study of P. aeruginosa
secreted virulence factors [14] and protein expression in the methanogen Methanococcus
maripaludis [15,16].

Proteome of P. gingivalis during early stages of host cell interaction
In order to begin studies of P. gingivalis proteins differentially regulated in the context of an
epithelial cell environment, the response to soluble factors produced by the GEC [11,17] was
examined. P. gingivalis cells were exposed to conditioned GEC media (media removed from
GEC after culture for 48 h: designated conditioned KGM (cKGM) or to fresh KGM media, for
18 h. Technologically, these early studies were within the reach of 2D gel analysis and tandem
mass spectrometry (MS/MS, MS2) incorporating data-dependent scanning techniques
employed with a single dimension of capillary HPLC [18–21]. An early concern during this
period was the ability to apply protein identification techniques based on tandem mass
spectrometry to hydrophobic portions of the expressed proteome of P. gingivalis. This problem
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yielded to rather modest changes in extraction and isolation procedures, coupled with the
fortuitous observation that the vast majority of P. gingivalis hydrophobic and membrane bound
proteins had sufficient hydrophilic domains to allow digestion with trypsin or a combination
of trypsin and Lys-C, without having to take more extreme measures to insure adequate
recoveries of proteolytic fragments for each expressed ORF [12]. This has also proven to be
the case with proteomic studies of other microbial systems, e.g. M. maripaludis [15,16] and
Agrobacterium tumefaciens (unpublished data). The experimental design involved tandem
mass spectrometry coupled to three dimensions of HPLC [12,13], see Figs. (1–4) and (6). The
separation scheme consisted of a single dimension of reversed phase HPLC using conventional
columns (2.1 mm i.d.) and a two stage capillary column inlet to the mass spectrometer, based
on the MudPIT method described by Yates and coworkers [22,23], see Fig. (3). 1014 proteins
(46% of the total theoretical proteome) were identified in four independent analyses; 479 of
these proteins showed evidence of differential expression after exposure of P. gingivalis to
either conditioned epithelial cell growth medium or control conditions: i.e., they were only
detected under one set of conditions. Moreover, 276 genes annotated as hypothetical were
found to encode expressed proteins. These results suggest that adaptation to an epithelial cell
environment induces a major shift in the expressed proteome of the organism.

Proteome of Internalized P. gingivalis
Bacteria (15N labeled, or unlabeled using spectral counting methods described below) were
allowed to invade GECs, the GECs with internalized P. gingivalis were collected at different
times, lysed, the bacterial cells were collected and their proteins assayed by a direct approach
using 2D microcapillary chromatography with tandem mass spectrometry [13,14 ] for purposes
of recovering the widest range of proteolytic fragments, see Fig. (3).

STRATEGIES FOR QUANTITATION, 15N LABELING OF P. GINGIVALIS PROTEINS
One strategy for tracing the fate of P. gingivalis proteins in the GEC environment and acquiring
more quantitative data regarding protein expression consists of using stable isotope dilution
mass spectrometry, see [24] for a review. See Figs. (1),(5),(7) and the references from which
the figures were taken [16,25]. Uniformly labeled 15N ammonium sulfate and uniformly 15N-
labeled peptone nitrogen sources in minimal media have been used to grow P. gingivalis prior
to exposure to GEC, but so far without a great deal of success due to poor growth on in-house
developed 15N yeast extract. This approach is a common method for producing proteins labeled
with heavy isotopes in the structural biological and NMR communities as well. 15N has major
advantages over deuterium in that: i, the difference in mass between 14N and 15N is sufficiently
slight that changes in metabolism due to kinetic isotope effects should be minimal, ii, the cost
of the labeled ammonium sulfate and peptone is modest and iii, deuterium can potentially
“scramble” in tandem mass spectrometry experiments in ways that can sometimes complicate
interpretation of the data. 15N, incorporated into the polypeptide backbone, is easier to trace
in this regard. Breakdown products from P. gingivalis that are incorporated into the metabolism
of the GECs can potentially be identified using this approach, if the level of isotopic
incorporation is high enough. The incorporation of the 15N label also can allow convenient
quantitative comparisons of P. gingivalis proteins that differ in their expression levels. For
example, proteins of interest that are upregulated in the GEC environment can be labeled and
mixed with a preparation from a control population of P. gingivalis grown under standard
conditions. Taking into account the number of cells sampled in each case and the per cent
incorporation of the label, one can then calculate the relative expression levels using the
methods of quantitative mass spectrometry [24,25]. This can be accomplished by comparing
the peak areas of representative ions from the “heavy” labeled peptide and the “light” unlabeled
peptide [18,26] in a single LC/MS analysis, in a manner conceptually similar to classic small
molecule isotope dilution mass spectrometry [24]. See Fig. (5) for an example of such data. It
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is also possible to generate expression ratios from peak area measurements without the use of
stable isotopes, although this type of approach is usually viewed as being less desirable. Non-
label peak intensity methods for relative quantitation in proteomics have recently been
evaluated by Old and coworkers, in comparison with spectral counting approaches [27].

SPECTRAL COUNTING
As an alternative to calculating relative protein expression ratios based on metabolic stable
isotope labeling procedures, there are spectral counting methods of the type proposed by Gao,
Hefta and coworkers [28]. Spectral counting refers to a process in which the discrete number
of peptides observed for a given protein is used to estimate the relative abundance of that
protein, as opposed to the strength of the observed signals associated with the protein. There
are several variants of this approach in the literature, and the nomenclature is not consistent.
Among the other terms used have been “peptide hits” [28], “peptide hits technology” [29], and
“spectral sampling” [30]. As suggested by the plots in Fig. (7) and (8), spectral counting has
proven to correlate well with other measures of protein abundance [31,32], and in the case of
P. gingivalis, to be highly reproducible in the context of the invasion studies reviewed here,
see Fig. (8). The disadvantages of the approach include the lack of a mass label to easily
distinguish proteins derived from one set of conditions from the other in a “two state,” array
like experiment, and the small number of quantized expression ratios that are calculated for
low abundance proteins. The quantized nature of expression ratios based on low abundance
peptide counts inevitably take on a limited range of discrete values that are less informative
than ratios calculated using isotopic labels, e.g. 15N, introduced metabolically, see Fig. (9).
The spectral counting technique bases quantitation on the number of peptides recovered, and
generates very similar expression ratios compared to more traditional metabolic labeling stable
isotope experiments, provided the proteins are at high enough abundance to avoid the quantized
expression ratios mentioned above. Even so, some kind of correction is required for protein
molecular weight, because the number of peptides detected from a given protein scales with
the size of the protein as well as abundance. Spectral counting approaches have been described
as having a wider dynamic range relative to those based on ion chromatographic peak detection,
and this suggestion is plausible and worthy of further investigation. Initial impressions of the
spectral counting approach, based on data from the methanogen M. maripaludis [16] and the
data shown in Figs. (8) and (9) for P. gingivalis, are that it does extends the high end of the
dynamic range of quantitative measurements for many proteins. However, at the lower end of
the scale, i.e. proteins that produce small numbers of proteolytic fragments or are present at
low abundance (see above), spectral count methods perform poorly, with limited quantitative
reproducibility. Under these circumstances metabolic labeling procedures yield more reliable
data. The number of peptides required from a given protein to achieve a level of reproducibility
adequate to detect a two-fold change in expression levels is higher with spectral counting
methods than it is with metabolic labeling. From the isotope labeling data shown in Fig. (7D),
about 10 heavy-light pairs (n1) were required to reach this level of confidence. From the spectral
counting data shown in Fig. (9), that number would appear to be larger, on the order of 50 total
peptides. If the results shown in Fig. (9) were perfect, the result would be a flat horizontal line
at zero on the y-axis, because the samples being compared are identical replicates. Thus, the
data shown can be used as a general yardstick to gauge the level of quantitative reproducibility.

SIZE OF CELL PREPARATIONS
In order to have abundant P. gingivalis protein in terms of the sensitivity of proteomic methods
(high attomole to low femtomole), preparations were scaled such that in each case recovery
was at least 109 P. gingivalis cells per prep. If one makes the simplifying assumptions that the
average protein MW is ~40 kDa, with an average copy number of 1000/per cell, 40 tryptic
fragments per whole protein, and a highly conservative detection limit of 400 fmol for the mass
spectrometer (1.0 μl injection volume, out of 50 μl), then one is looking at approximately 20
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ng per each polypeptide in a proteolytic digest. It is common to successfully match peptides
with a database using the Thermo-Finnigan LTQ mass spectrometer and other recent vintage
instruments with just a few hundred attomoles of peptide, suggesting that many low abundance
proteins are being detected by the 3D HPLC direct analysis approach [33,34].

PROTEINS FROM P. GINGIVALIS CELLS AND HUMAN PROTEINS, TELLING THEM APART
In general, it is possible pick out signals for P. gingivalis proteolytic fragments in a human
background up to a limit of about 1 part in 10,000, in excess of what is required in most cases,
based on the specificity of the peptide sequence derived from the MS2 mass spectrum. As a
general strategy for sorting out laboratory contamination and mammalian proteins from any
source, and differentiating those proteins from ORFs in the P. gingivalis genome, the use of
larger general protein databases for searching the collision spectra are necessary, as described
in greater detail below in the section on computational procedures.

2D OR NOT 2D: GEL ANALYSIS, HPLC AND MASS SPECTROMETRY
Much of the data collection for early proteomics work with P. gingivalis consisted of 2D gel
maps coupled with tandem mass spectrometry [11,12,17]. The 2D gel electrophoresis protocol
was originally described in Qi et al. [35], with minor changes introduced according to the
protocols described by Sherman and Kinter [36] and modified as necessary to get the most
reproducible results for P. gingivalis. The method of Qi was originally developed for analysis
of S. typhimurium proteins, and has also been employed for analysis of proteins from P.
aeruginosa and other bacteria. The variations contained in the protocol of Kinter and Sherman
have been applied to a variety of cell types. A partially automated method for the mass
spectrometric analysis and database searching of spots from 2D polyacrylamide gels was
established, based on prior work in the laboratories of Yates [37,38] and Aebersold [18] and
in situ proteolytic digestion protocols developed by Kinter and Sherman [36] at the University
of Virginia Medical School. The general topic of 2D gel protein mapping as applied to
functional genomics (proteomics) has been reviewed by Wilkins and coauthors [39]. Protein
gel spots were digested, typically with trypsin, the peptides were then extracted from the gel.
The tryptic fragments were loaded into a reversed-phase microcapillary HPLC column that
served as the inlet to an LCQ ion trap mass spectrometer (ThermoFinnigan) which was
optimized for peptide sequencing. Product ion mass spectra (see the review [40]) generated by
the ion trap were searched automatically against existing database archives using the
SEQUEST computer program [37,38], see Fig. (4), or interpreted manually using the de
novo approach developed in Hunt’s laboratory for low energy CID data [41,42]. The use of
tandem mass spectrometry with peptides has as its great strength the fact that there are usually
many redundant measurements for each protein to generate sufficient partial sequence
information to match with a database, or alternatively, to develop the necessary primers to
locate an unknown gene using the tools of molecular biology. When 2D gel maps for P.
gingivalis were compared with a MudPIT type approach [12], see Fig. (3), the results were
overwhelmingly superior using the multidimensional chromatography method. There exists a
broad consensus within the proteomics community that 2D gels are biased towards proteins
expressed at high abundance [18]. Also, 2D gels tend to have problems with proteins that are
very large (>100 kDa), very acidic or very basic, or that possess extensive hydrophobic
domains.

CONNECTING TANDEM MASS SPECTROMETRY WITH THE P. GINGIVALIS GENOME IN A
SEMI-AUTOMATED FASHION

The approach diagrammed in Fig. (4) has been used to map uninterpreted peptide CID data
back to specific locations in the P. gingivalis genome. In other words, we can take the mass
spectral fragmentation pattern derived from a proteolytic fragment and map it back to a specific
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genome location, thereby establishing the protein’s identity if it is known or an experimentally
observed ORF if it is unknown. This process has been described as “reverse genomics” in that
it starts with experimentally observed protein and works back to the gene using computational
methods, rather than the more familiar tools of molecular biology. Briefly, proteins from P.
gingivalis were digested and the fragments analyzed by tandem mass spectrometry as described
above. The fragmentation data implicitly contains, within certain limitations, the sequence of
the peptide [41]. One limitation is the inability of low energy CID processes in the mass
spectrometer to distinguish the amino acid residues Leu and Ile, that share a common residue
m/z value of 113.16 (average mass). There are a number of other such redundancies as well
[37], but Leu/Ile is perhaps the most significant. The SEQUEST computer program [38,39]
and others reviewed below can then match the fragments with theoretical mass spectra from
the genome sequence (as inferred amino acids) that are calculated internally. The matches are
then mapped back to the genome using our locally implemented suite of BLAST tools. This
scheme has been used for studies with Pseudomonas aeruginosa [14], Mycobacterium
tuberculosis, Mycobacterium avium, and others, in addition to studies of P. gingivalis response
to the GEC environment. For most purposes, a match with an inferred protein expressing ORF
database entry derived from the genome annotation is adequate, as the discovery of ORFs
completely missed during the annotation process is a rare event.

COMPUTATIONAL HARDWARE, SOFTWARE AND PROCEDURES
One approach to the genome-as-mass spectral-database problem is to use ORF databases for
P. gingivalis provided by TIGR and LANL, with a subset of the nrdb human proteins to enlarge
the database for purposes of avoiding statistical problems that can arise from searching large
datasets against very small databases, such as the ORF database for P. gingivalis. The putative
ORF database is searched by SEQUEST directly, see Fig. (3) and (4). General protein database
searches are conducted using Swiss-Prot or nrdb. The P. gingivalis ORF database is based on
the latest release of the P. gingivalis genome (www.tigr.org). SEQUEST runs were controlled
using the DQS or other queuing systems in early work (Florida State University, Tallahassee,
FL, USA), but more recently using the tools provided with the commercial implementation of
SEQUEST Cluster (ThermoFinnigan, San Jose, CA). The search results are fed into HTML-
based data summary tools such as DTASelect (http://fields.scripps.edu/DTASelect/, [43]) and
presented using standard HTML browsers. Searches of several hundred thousand CIDs, the
number acquired in a complete MudPIT analysis of P. gingivalis, can take days to search against
the entire nrdb database, even using a cluster computer. Although the searches of the P.
gingivalis ORF database are relatively quick, the necessary searches to screen for background
contamination, GEC host cell proteins, and P. gingivalis proteins not present in the genome of
W83 require the use of much larger databases, and search time is proportional to database size.
An 8 node, 16 CPU computer cluster [44–46] has drastically reduced the time for searches,
thus allowing the facile use of larger databases that allow detection of both P. gingivalis and
GEC proteins when the two are mixed, as in the invasion studies. A typical database search of
one fraction from the SCX resin used in the 2D capillary HPLC separation, ~300 P.
gingivalis derived proteins (as proteolytic digest fragments), against a database consisting of
all known P. gingivalis ORFs, the human subset and the bovine subset of the nrdb, takes on
the order of 40 minutes. The downloadable database files can be found at
ftp://ftp.ncbi.nih.gov/blast/db/FASTA/ and at TIGR.

VISUALIZING TRENDS IN THE DATA
For the 2D gel maps of P. gingivalis proteins, the complexity of the gels are such that most
patterns of interest can be addressed by simple inspection of the silver stained gels themselves,
or the electronic archives we prepare using Adobe Photoshop and a scanner. Triplicate analyses
of the gels were run to monitor their reproducibility. Because mass spectrometry was used as
the end readout, and 2D gels are not reproducible with respect to subtle changes in migration,
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most attention was focused on the mass spectrometry readout. These can be tabulated
electronically with hot links to the putative assignment in the P. gingivalis genome or other
database on our local servers, homology search results, and any other annotation judged to be
of interest. This task is now largely performed by two software programs written by David
Tabb (now at Vanderbilt University) in the Yates laboratory, DTASelect and Contrast [43],
and two programs written in-house, d2g and add-intensity, see Figs. (4) and (6). These
programs allow the hot links and the tabulation of rank-ordered hits according to a common
set of criteria over many data sets, limited only by memory size and CPU speed. What this
does is create an HTML-based list of high scoring matches and (or) quantitation information
for positive hits that in turn links back to the P. gingivalis genome or other source of electronic
information about the gene. This is shown visually as a reconstructed protein array, see Fig.
(6). Table 1 represents a summary by protein class from an experiment performed in the course
of developing a 3D HPLC assay for the P. gingivalis proteome. Although it is not realistic to
achieve the ideal of measuring every single protein expressed by the organism under a particular
set of conditions, it should be possible to measure most of them. It is reasonable to suggest that
the MudPIT assay measures a sufficient number of proteolytic fragments to identify on the
order of 1,000 P. gingivalis proteins from a given preparation [12,13], see Figs. (6) and (8) and
Table 1 below. The most recent estimates from TIGR are that P. gingivalis W83 contains about
2,227 protein encoding ORFs. The number expressed under any given regulatory state is likely
to be somewhat smaller.

Another issue critical for understanding the strengths and limits of the protein-centric approach
is the difference in complexity between identifying a protein in a database (often
straightforward, requires a small number of partial sequences) and the work required for further
characterization of a given protein of interest. Detailed characterization of posttranslational
modifications, multi-protein complexes, etc. is still painstakingly slow and labor intensive. For
proteins associated with virulence or invasion that are not coded for in the W83 (database
strain) P. gingivalis genome, one is left with the options of doing what are essentially homology
searches or using de novo peptide sequencing to develop primers to search for the unknown
genes using molecular biology. This is a limitation likely to arise in a number of studies as
W83 is poorly invasive, and is deficient in expression of both the long and short fimbriae. Most
investigations of P. gingivalis pathogenicity thus require the use of alternative strains. Although
no plasmids have thus far been associated with P. gingivalis in its native state, our methods
are sensitive enough to detect such extrachromosomal genes if they are expressed. Much work
remains to automate many of the more tedious aspects of proteomics studies, most glaringly
at the data reduction and mining stages. Advances in robotics and automated sample
preparation are leading the way towards dealing with the “front end” sample handling and
chemistry issues. The problems of data reduction and interpretation are more complex, and
represent major areas of effort by a large number of research groups. Functional genomics with
respect to data reduction strategies for protein structure and function has been reviewed by
Gerstein and Jansen [47]. Although this review was written with a transcription focus, the ideas
expressed are highly relevant to the proteomics world. Perhaps the most significant unmet need
is the lack of database search software that can reliably detect posttranslational modifications
(PTMs) on a global scale, a topic of great interest for those using proteomic methods in the
context of host-pathogen interactions and studies of global gene regulation. Recent progress
in this area is reviewed in the following section.

Mass Spectrometry-based proteomics and the challenge of search strategies for
posttranslational modifications

Peptide sequencing and database search algorithms for proteomics that use tandem mass
spectrometry for inputs fall into three categories, depending on what they assume about the
unknown protein. Database search algorithms assume that the protein to be identified belongs
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to a given database [37], usually derived by transcribing DNA sequences into amino acid
sequences. Under this paradigm, one generates a theoretical spectrum for each candidate
peptide, which is compared with the observed spectrum of the unknown peptide. The closest
matches are then reported, together with scores that indicate their quality. Matching partial
sequences to a database [48,49], when only a portion of a peptide collision spectrum can be
matched to a database sequence, is a second type of approach. Sometimes the unknown peptide
does not match any sequence in the database. This can happen because of small differences at
the genome level (mutations, polymorphisms), or because of errors in genome sequencing and
in annotating all protein coding genes (this is particularly difficult in the presence of alternative
splice sites [50]). Another reason for mismatch is PTMs, as in phosphorylation, acylation, etc.
They do not change the protein amino acid sequence, but change the apparent mass of specific
amino acid residues, which, in turn, produces dramatic shifts in the observed spectrum. Hence
the previous approach of matching a theoretical spectrum derived from a database of
transcribed DNA with an observed spectrum will fail. One solution to this problem is to use
programs like GutenTag [49] to extract possible partial sequences, or tags from the observed
spectrum, then search the database for peptides that contain a sufficient number of tags made
up of ordinary amino acids. Thirdly, de novo sequencing aims to reconstruct as much as possible
of the sequence from the observed spectrum only, without referring to any database. Globally
mining whole proteome datasets from P. gingivalis and other microbes for PTMs is not feasible
at present, but remains an active area of research. Future work should focus on database
matching of both complete and partial sequences, because this approach is more
computationally tractable for the large-scale analysis of proteomes and microbial communities.
De novo approaches do not appear to be practical on this scale at the present time.

The database search systems in widest use are SEQUEST [37,38] and Mascot [51]. The
matching score of a theoretical spectrum to the observed one is computed by a function derived
heuristically and validated empirically. In addition to the matching score, both algorithms
provide some protection against spurious matches and false positives. Such a measure is
necessary in any peptide identification algorithm. It is a normalized cross-correlation difference
for SEQUEST and a p-value derived from a simple probabilistic model for Mascot. Other
algorithms that use simple, empirically derived probabilistic models are OMSSA [52], and the
work of Havilio and coworkers [53]. ProbID [54] uses a simplified probabilistic scoring where
every m/z peak is counted independently of other m/z peaks. Several authors have attempted
to use Machine Learning methods like decision trees [55] and radial basis functions to leverage
additional information provided by the peak intensities.

The programs SCOPE [56], OLAV [57] and MassLynx [58] use a probabilistic fragmentation
model to produce the theoretical spectrum. The methods using partial sequence tags like
PeptideSearch [48] and GutenTag [49] combine a phase of extracting small subsequences from
the spectrum (the tags) with a data base retrieval and scoring phase. These methods can be
made very efficient and can also tolerate small numbers (1 or 2) of PTMs or substitutions.
Adaptations of the database search methods that handle small variations with respect to the
database include SALSA [59,60], which accepts partial sequences and other information
supplied by the user, PEDANTA [61] which can accommodate up to two mass shifts. We also
mention FindMod [62], which will identify a protein with up to 3 PTMs from its mass-
fingerprint spectrum. A recent method that can in theory handle a significantly larger number
of PTMs comes from Pevzner’s group [63]. The most notable de novo sequencing methods
use the “sequence graph” of Bartels [64]. The best known are Lutefisk [65,66] and Peaks
[67]. They can handle only a small number, three or less, of PTMs or substitutions. Pepnovo
[68] uses a probabilistic fragmentation model to obtain scores for the nodes in the spectrum
graph. Fischer [69] recently proposed a Hidden Markov Model (HMM) approach. This method
is limited by the number of possible states in the HMM and so it cannot both incorporate more
precise fragmentation models and handle PTMs in its present stage of development. According
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to the recently published RESID [70] database of known PTMs, the average peptide can be
modified in 10–100 different ways. It is not feasible to try them all explicitly. Any program
aiming at detecting PTMs globally will need to overcome this inherent complexity.

THE CHALLENGE OF SINGLE SCAN SPECTRA
Proteomic studies using an LTQ linear ion trap mass spectrometer [71,72] now often use single
scan mass spectra for rapid throughput. In contrast to spectra that are obtained by averaging
over a several scans of the m/z range selected, single scan spectra have more variability. Peak
intensities in particular vary widely, and often peaks are missing [44]. A quantitative evaluation
of the noise in the peak intensities for LTQ single-scan spectra [34] supports these observations.
For increased accuracy of identification, the information in the peak intensities should not be
ignored, nor should low intensity mass peaks. These sources of information being noisy, their
contribution must be weighted with care, and fused with other weak sources. A study of the
stochastic variation of the peak locations and intensities of LTQ single scan spectra [34]
produced a probabilistic model that will be used in a future search algorithm optimized for the
global identification of PTMs in P. gingivalis and other prokaryotes. Typical spectra from
current instruments contain many more peaks than the theoretical spectra, due mainly to the
incompleteness of existing fragmentation models. Thus, even in the case of a successful match,
only a fraction of the peaks are identified and the more peaks, the slower the matching.
Conversely, a “false match” can occur because of spurious matches with the theoretical
spectrum. The probability of a random match was estimated to be as high as 23% in one study
[73]. The effect is a systematic increase of all matching scores with the number of peaks.
Peptides with more amino acids will have theoretical spectra with more peaks. Consequently,
the matching scores will tend to favor longer peptides. The common remedy is to apply a
correction that discounts random matches [37,68].

INSPECT AND PTMs
InsPecT [63] is a program that considers PTMs and builds upon the innovations described in
[56] and by others. The recent InsPecT algorithm performs database peptide identification in
the presence of a small number of PTMs (up to 4 in the published paper) out of a given set (of
up to 10 at the time of this writing). The steps of the algorithm can be summarized as: a
probabilistic fragmentation model, tag generation by the de novo algorithm of [68], with an
elegant adaptation for the presence of PTMs [74], selecting candidate data base sequences
based on tags and a mass “spectrum graph” dynamic programming [75] matching algorithm
that also locates the PTMs, scored using a probabilistic model and score adjustment (computing
p-values). The InsPecT program is being evaluated for global PTM analysis of P. gingivalis
under different regulatory states in the context of interactions with GECs.

The challenge of reproducibility
Proteomics in general has reproducibility problems, particularly with respect to more ambitious
whole proteome or other large-scale analyses that have become more common in the world of
systems biology. The type of “bottom up” proteomics. i.e. digesting the whole cell and
reassembling the proteins computationally from peptide tandem MS data, applied to P.
gingivalis and other prokaryotes lacks reproducibility when applied to cells from higher
organisms, but often works well in the hands of specialists for organisms with small genomes
and relatively uncomplicated gene regulation. These problems extend to both qualitative
reproducibility in terms of correct protein identification and quantitative accuracy of expression
measures, based primarily on signal intensities observed for proteolytic fragments, that are in
turn used to infer relative abundance information regarding the protein from its constitutive
fragments. A significant contributing factor to these problems is the relative ease with which
such data can be generated relative to past years. This tends to promote a lack of understanding
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with respect to “what is underneath the hood” in such complex experiments and an uncritical
approach to instrumental output. The fundamental data structure (a CID spectrum derived from
a precursor ion isolated from thousands of other precursors), the way that the microbe was
isolated and the proteins extracted, the HPLC technology used to separate a complex
proteolysate into its individual peptides, the mass spectrometer and the database searching tools
employed, all require a fairly sophisticated level of understanding in order to generate results
that are biologically meaningful and reproducible. The tools are rapidly maturing in terms of
ease of use, to the point that workers unable to interpret the mass spec readout in a critical
manner can generate poor data that to the naive eye is indistinguishable from that generated
by an expert. Validation, as well as better training, is a key to minimizing such problems. Global
proteomics studies work best when conceived from the beginning in the broader context of
systems biology and functional genomics, where all available tools are brought to focus on the
problem at hand. It is necessary to make extensive use of transcription arrays, real-time
quantitative PCR, functional assays, bioinformatics and other appropriate tools to verify
biologically significant findings in whole microbial proteome assays. As suggested by the
results shown in Panels C and D of Fig. (7), it is wise to be skeptical of protein level expression
ratios based on a small number of peptides measured for a given ORF. Rather than focus on
more sophisticated statistical approaches applied to data that is fundamentally weak and
technically noisy, an alternative emphasis is to improve coverage of the proteome. The ultimate
goal would be to recover all peptides from all proteins in the prokaryote under investigation,
thereby giving a complete map of the proteome based on complete information. This is not
achievable at present with any technology, but it nonetheless suggests the direction the field
needs to take. Cataloging this volume of data is not as difficult as it might seem at first, and
terabyte disk storage devices are now low cost commodity items. Attempts to substitute a
smaller number of precursor ion measurements (MS1 only) made at very high resolution have
yet to demonstrate practical utility for the type of large-scale experiments reviewed here. As
discussed in [16], regardless of the particular strategy employed, attempts to infer protein
expression levels based on one, two, or even four or five, peptide pairs comparing two
conditions are not likely to be successful. The results shown in Fig. (7) are indicative of a
general phenomenon, not limited to the particular study from which the data was taken. This
is a conservative view based on data from biologically based studies of whole microbial
proteomes, as opposed to less complex test samples that inevitably yield more impressive
appearing figures of merit. Although expression ratios based on fewer than roughly seven or
eight peptide pairs can yield good precision as defined by a standard deviation, experience has
shown that such data tends not to be validated by further investigation. As coverage increases
beyond seven or eight pairs, true expression changes tend to stand out from the many sources
of noise as the number of pairs used in the calculation increases. This relationship is visualized
by contrasting the grey data points (validated by more than one method) with the others (black)
in Fig. (7). The LTQ mass spectrometer has dramatically increased the reproducibility of unit
resolution proteomics data, as illustrated by the statistical analysis of three replicate MudPIT
runs for internalized P. gingivalis proteins shown in Fig. (8). This is due primarily to higher
throughput [33,34] and better signal/noise relative to older instrumentation.

Biological relevance
Proteomic analyses have the potential to uncover a large number of differentially regulated
proteins. The question then arises of how to interpret the data in a biologically meaningful way.
For eukaryotic systems there are several ontology tools, whereby biological pathways are
populated with differentially regulated gene or proteins and pathways that are significantly
modulated can then be studied in more detail. This provides a convenient way to focus on a
subset of the data that is consistent and likely to be biologically relevant. Computational tools
that have a history with prokaryotic biology are those associated with the BioCyc database
collection [76]. At the present time the level of curation required to use BioCyc for display of
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whole cell differential proteomics data has been achieved for only a few microorganisms, but
this is changing rapidly as more scientists participate in the curation process. However, as a
short term solution, given the relatively small size of prokaryotic genomes it is possible to take
an empirical approach and assess the relevance of individual regulated proteins in the context
of the overall expression pattern. For organisms such as P. gingivalis, that have limited genetic
tools, the next step is essentially back to “hand to hand combat’ with individual genes through
the use of gene mutations, quantitative RT-PCR and promoter-reporter systems. For example
in the proteomic analysis of P. gingivalis invasion, manual inspection of the differentially
regulated protein set revealed that a series of proteins of the Clp family, ClpC, ClpP and ClpX,
were upregulated in cKGM. In Listeria, the ClpC ATPase is required for adhesion and invasion
of host cells and the protein modulates the expression of other virulence factors including InlA
and InlB [77]. ClpC also promotes the early escape of Listeria from the phagosomal
compartment of macrophages [78]. The serine protease ClpP is involved in the rapid adaptive
response of Listeria within macrophages [79]. This led to speculation that the Clp proteins may
play an important role in P. gingivalis invasion and intracellular survival. As a representative
of the Clp system, a ClpP deficient mutant was constructed in P. gingivalis and tested for
association with gingival epithelial cells. In an antibiotic protection assay, invasion/
intracellular survival of the clpP mutant was decreased by approximately 50% in comparison
to the parent [13]. Immunofluorescence microscopy revealed that fewer mutant cells located
intracellularly compared to the parent and that fewer epithelial cells contained mutant P.
gingivalis above the threshold detection level [13]. This defect was not the result of reduced
adhesion to the epithelial cells as mutant and parent showed similar adhesive capacities. Thus,
the clpP mutant has a diminished invasive, but not adhesive, capacity for GEC. In this manner
proteomic analysis has provide the basis for further insight into the biology of the organism.
A logical next step would be the use of global proteomic approaches conceived specifically
with the idea of identifying new drug targets for antimicrobial therapy. However, at least in
terms of antimicrobial therapies, progress will be challenging. For example, Becker and
coworkers [80] recently surveyed 700 Salmonella enterica metabolic enzymes as expressed
in vivo within a model host system, and came to the conclusion that of the subset of genes that
played a role in virulence, almost none were likely to yield new targets for antibiotics. This
study emphasized a further subset of enzymes associated with virulence that were also
conserved across other human pathogens. The obvious candidates were either already subject
to inhibition by known antimicrobials or had been rejected for various reasons as candidates
for further development. Despite the often noted lack of promising targets for antimicrobial
therapy [81,82], independent of the experimental means used to identify them, the authors note
that a small number of enzymes, although previously known, have not been studied sufficiently
to draw any firm conclusions regarding their suitability for further evaluation as drug targets.
Most ominously, this last group had the highest level of sequence similarity with human
metabolic enzymes, suggesting a high probability of undesirable side effects by any inhibitors
that might be developed for therapeutic applications. Nonetheless, organisms that have been
less well studied than Salmonella enterica in terms of their virulence properties may yield more
promising leads.

Conclusions and future research directions
It is expected that the demand for high throughput protein expression applications at the level
of measuring actual protein will only continue to rise. The long-term goal of globally describing
the response of P. gingivalis to its human host during the various stages of invasion and
internalization requires a complete dataset, including transcription measurements for each gene
that is differentially expressed, quantitative protein measurements and differential
measurement of the modification status of each protein. From this extensive data matrix one
can in theory derive most of the important regulatory relationships that govern response to the
host environment. Transcription array technology has matured to the point that such
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experiments are feasible. Proteomics has developed more slowly and high coverage
quantitative analysis on a global scale is non-routine, even for prokaryotes with relatively small
numbers of protein encoding ORFs, such as P. gingivalis. The global differential analysis of
PTMs associated with gene regulation cannot be done in a reproducible or complete fashion
at present, but progress in this direction continues at a rapid pace from both analytical and
computational/bioinformatic points of view. The global assessment of PTMs and investigation
of spectral counting methods as an alternative to metabolic labeling for quantitation are active
areas of investigation from both perspectives.

Interest in the emerging field of community proteomics will likely be the driver for much future
development work, both in terms of analytical methods and software. The improved
quantitative analysis of particular gene products in the context of community proteomics will
also be a priority. As the research emphasis expands to microbial communities, the questions
being addressed by proteomics will broaden to describe quantitative and qualitative changes
to the composition of oral biofilms that parallel the progression from health to disease. In other
words, how much of a given organism or phylotype is present relative to all other organisms,
rather than how much of a given protein is being expressed by a single organism. At the level
of global proteomic studies of tractable individual prokaryotes, such as P. gingivalis, software
is badly needed that has been written from the ground up to accept MudPIT data and genomic
databases as inputs, and to provide as outputs a probabilistic assessment as to whether a protein
encoding ORF is being expressed, the protein’s modification status, and its degree of
expression relative to the same ORF expressed under a different set of conditions or multiple
conditions. The present generation of software for post acquisition mass spectral data
processing of whole cell proteolytic digests has a decidedly “peptide centric” and analytical
chemical frame of reference, and is thus cumbersome for global studies. This typically involves
requiring a great deal of in-house programming and the use of many individual software
programs to yield a biologically useful dataset. The mass spectrometer and associated
separations technology has evolved beyond the ability of existing software tools to easily or
efficiently convert this mountain of raw data into useful information. The status quo at present
is for each specialist lab in the field to patch together their own solution--standardization, even
in terms of data formats, is almost nonexistent, although there is a clear trend towards XML-
based file formats (http://www.w3.org/XML/).

The probability of actually detecting new drug targets based on this type of research is
dependent first of all on generating complete and reproducible datasets, a challenge that only
recently has met with real success for any prokaryote. It has not been done for a human host
cell proteome and is not likely to be without major progress in several areas. Secondly, it
depends on recognizing significance through the use of better data mining procedures that can
allow the informed biologist, the person who has the necessary background and experience
with a particular organism to recognize an important result, to organize and view the data in
more useful ways. Tools for the visualization of regulatory relationships among genes are
evolving, but at present few such tools easily accept proteomic datasets as inputs, and none of
them has found widespread acceptance for this purpose. Most successful applications of
proteomics technology to date aimed specifically at drug targets have generally been focused
on a subset of proteins rather than the entire proteome of a cell or tissue. Also, the proteomics
technology was successfully integrated into the broader range of experimental tools commonly
used in drug discovery and pharmacology, where protein mass spectrometry has been an
established method among many for a number of years before the term proteomics was coined
in 1994. One recent example is the identification of specific enzymes targeted by Ezetimibe,
an inhibitor of cholesterol transport in the intestine that is used clinically to reduce blood serum
cholesterol levels [83,84].
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ABBREVIATIONS
2D  

two dimensional

3D  
three dimensional

CID  
collision-induced dissociation

GEC  
gingival epithelial cells

HPLC  
high performance liquid chromatography

HMM  
hidden Markov model

KGM  
keratinocyte growth medium

LANL  
Los Alamos National Laboratory

MS2  
second dimension of mass spectrometry

MS/MS  
tandem mass spectrometry

MudPIT  
multidimensional protein identification technology

nrdb  
non-redundant database

m/z  
mass-to-charge ratio

ORF  
open reading frame

ORNL  
Oak Ridge National Laboratory

PAGE  
polyacrylamide gel electrophoresis

PCR  
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polymerase chain reaction

PTM  
posttranslational modification

SCX  
strong cation exchange

TIGR  
The Institute for Genomic Research

XML  
Extensible Markup Language
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Figure 1.
The different approaches to differentially labeling proteins with stable isotopes are reviewed
in [25], and shown here. The preferred approach used for studies of P. gingivalis invasion is
metabolic labeling. Copyright American Chemical Society, Anal Chem. 2002, 74, 1650–1657.
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Figure 2.
Processing of P. gingivalis whole cell protein extracts to yield tryptic fragments prior to
analysis using 2D capillary HPLC and tandem mass spectrometry (MudPIT).
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Figure 3.
Diagram showing the original MudPIT method [23], consisting of a single capillary packed
with a strong cation exchange resin (SCX) and and a reversed phase packing (RP). We have
adapted this technology to our studies of P. gingivalis and other prokaryotes. Reprinted by
permission from Macmillan Publishers Ltd., Nat. Biotechnol. 2001, 19, 242–247.
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Figure 4.
Flow chart describing the order of events when SEQUEST [38,39] was used in our laboratory
to search the P. gingivalis ORF database directly, through 2003. Prior to the ORF search the
CID data were normally searched against a large protein database (e.g. Swiss-Prot or nrdb) to
identify any non-P. gingivalis proteins that were present. More recently, d2g and add_intensity
have been replaced by scripts written in Filemaker Pro.
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Figure 5.
Representative mass spectral data used to identify proteins and calculate expression ratios.
Here we illustrate the logic flow used by our quantitation software with a single ratio
calculation. Details for the chromatographic, data-dependent mass spectral data acquisition
and database searching parameters are given in the original paper cited below. Briefly, after
separation of peptides by liquid chromatography, two kinds of mass spectral scans were
obtained. The primary (MS1) scans contained intact parent ions from peptide mixtures. The
collision-induced dissociation (CID, MS2) scans contained fragmentation ions derived from
individual parent ions of the MS1 scans. In addition, single ion chromatograms were generated
which plot the intensity of a single MS1 ion vs. time. In the data analysis, peptide sequences
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belonging to predicted ORFs were identified in both “heavy” 15N and “light” 14N forms. In
this example, the identified peptide was KPIEEYLK, a peptide derived from the methanogen
M. maripaludis. A, CID spectrum (MS2 scan # 664) from the doubly charged parent ion 510.4
identifying it as 14N KPIEEYLK. B, CID spectrum (MS2 scan #660) from the doubly charged
parent ion 515.3 identifying it as 15N KPIEEYLK. The nomenclature used to designate key
peptide sequence ions is that of Biemann [85]. Ions labeled y and b indicate sequence-specific
ions containing carboxy and amino termini, respectively, and * indicates a loss of water or
ammonia. The CID spectra (MS2) were used to generate a table of identified peptides. Each
MS2 spectrum was linked by the data system with a specific MS1 ion, i.e. parent ion. Next,
single ion chromatograms were checked for each parent ion to determine which MS1 scan
contained the maximum signal intensity. C and D, single ion chromatograms of MS1 m/z 510.4
+/−0.5 and MS1 m/z 515.3+/−0.5 respectively, showing that both intensities were maximum
at scan # 661 (numbers by peaks indicate scan number). Having identified the MS1 scan with
the maximum observed intensities of the parent ions, this scan was measured for the intensities
of the signals at m/z 510.4 and 515.3. E, MS1 scan # 661 in bar graph format, showing the two
signals used in the ratio calculation. The intensities were 5.14 × 107 counts and 2.40 × 107

counts respectively, yielding a “heavy”: “light” ratio of 2.14. In total there were 76 ratios
calculated (n1) from heavy-light signal pairs that were acquired from eight unique peptide
sequences for this ORF, yielding an average ratio of 2.68. If the average ratio from all
measurements +/− the standard deviation did not overlap with a ratio of 1.0, the ratio was
judged to indicate a significant difference in expression at the protein level. Reprinted from
[16], Molecular and Cellular Proteomics, 2006, 5, 868–881, with permission of the ASBMB.
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Figure 6.
Reconstructed semi-quantitation map of the P. gingivalis proteome. Each spot represents an
ORF in the Pg database. ORFs are ordered according to their TIGR numbers. KEY: ORFs that
were uniquely identified in cKGM (red spots), ORFs that were uniquely identified in KGM
(green spots). The red and green spots with thick black circles represent the ORFs that were
semi-quantitatively identified; ORFs that were identified in both cKGM and KGM (yellow
spots). The yellow spots with thick black circle represent the ORFs that were semi-
quantitatively identified in both samples and show no significant difference. The yellow spots
with thick red or green circles represent the ORFs that have been semi-quantitatively identified
in both samples and are up-regulated in cKGM or KGM respectively. The yellow spots with
a thick red or green circle and thin black circle represent the ORFs that were semi-quantitatively
identified only in cKGM or KGM respectively. This representation of the proteome, while rich
in information, was subsequently abandoned due to its excessive visual complexity.
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Figure 7.
Scatter plots illustrating relationships among total signal intensity, the number of heavy/light
isotopic peptide pairs recovered per ORF (n1), the number of redundant peptides recovered per
ORF (n2), and the relative standard deviations for the protein level expression ratios calculated
for each ORF in a typical whole proteome analysis for a prokaryote. A, correlation of the
number of redundant peptides (n2) observed for each protein with the number of peptide pairs
(n1) for the same protein. Observations from 939 proteins were used to generate the plot. B,
correlation of total signal intensity observed for all peptide “hits” associated with a given ORF
and the number of observed redundant peptides (n2). C, relative standard deviation (RSD) of
the mean expression ratio for 688 proteins (n1≥3). The average RSD was 44%, which is driven
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largely by the data points in the upper left. Many of the data points with larger RSD values
share a common characteristic, a non-detect in either the numerator or the denominator, e.g.
instances in which a strong signal was observed for one condition but only baseline noise or a
weak signal was observed for the corresponding peptide in the other condition. At high values
of n1 the RSD converges to about 35% in this dataset. D, distribution of the 688 average protein
expression ratios (n1≥3) as a function of n1. The 15 data points marked in grey are the genes
that are considered as up-regulated in a mutant with respect to the wild-type organism, as
determined by both cDNA microarrays and proteomics., The 15 genes for which there was a
consensus for up-regulation yielded mean protein expression ratios ≥2. Statistically and
biologically significant expression changes stand out more clearly as n1 and n2 go to higher
values, see text discussion. Taken from [16], Molecular and Cellular Proteomics, 2006, 5,
868–881, with permission of the ASBMB.
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Figure 8.
Scatterplot matrix of the spectral counts of the common 751 proteins from three replicate
MudPIT runs of P. gingivalis proteins internalized within GECs. This plot was generated in
S-PLUS 6.0 (www.insightful.com). The x-axis, from left to right, shows the protein level
spectral counts from run1, run2 and run3; the y-axis, from top to down, are the protein level
spectral counts from run1, run2 and run3. Each panel thus contains the scatter plot of the
corresponding x- and y-axes. 751 P. gingivalis proteins were always identified in all of the
three runs, out of a total of ~900. Protein level spectral counts [28–32] were calculated for each
protein in each run by summing the number of redundant CID spectra associated with that
protein and that passed the DTASelect [43] filtering criteria. The DTASelect filter criteria we
used were: 1.9 for XCorr for singly charged peptide ions; 2.0 for doubly charged; 3.3 for triply
charged and fully tryptic peptides. Pearson correlation coefficients were calculated between
every two sets of data and noted in each scatterplot panel. As shown in the scatterplots, all
three runs showed a high Pearson correlation coefficient with each other. Both the protein
identifications and the spectral counts for quantitation were highly reproducible in these
datasets (Xia and coworkers, unpublished data). These data were acquired with an LTQ mass
spectrometer.
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Figure 9.
Scatterplot of log2 of the total spectral counts from replicate analyses (run1, run2) of PG_IHGK
(P. gingivalis internalized within GECs) versus log2 of run1/run2 spectral count ratios. The
plot shows 987 data points. The ratios are quantized when the spectral count value for both
runs goes below a total of about ~3.4 on the log2 scale, which corresponds to a sum of spectral
counts from run1 and run2 of approximately 10 peptides. These data were acquired using an
LTQ mass spectrometer coupled with a 2D HPLC system as described [16].
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Table 1
PG ORFs identified were categorized to 20 functional classes according to TIGR class definitions.

Functional Class Databasea cKGMb KGMc Commond

amino acid biosynthesis 18 12 (66.7%) 9 (50.0%) 6 (33.3%)

biosynthesis of cofactors, prosthetic
groups, and carriers

74 41 (55.4%) 39 (52.7%) 29 (39.2%)

cell envelope 119 68 (57.1%) 70 (58.8%) 48 (40.3%)

cellular processes 50 33 (66.0%) 36 (72.0%) 28 (56.0%)

central intermediary metabolism 24 13 (54.2%) 15 (62.5%) 10 (41.7%)

DNA metabolism 75 50 (66.7%) 57 (76.0%) 48 (64.0%)

disrupted reading frame 41 12 (29.3%) 10 (24.4%) 9 (22.0%)

energy metabolism 126 102 (81.0%) 97 (77.0%) 91 (72.2%)

fatty acid and phospholipid metabolism 16 12 (75.0%) 12 (75.0%) 11 (68.8%)

hypothetical proteins-conserved 197 102 (51.8%) 93 (47.2%) 64 (32.5%)

hypothetical proteins 808 187 (23.1%) 181 (22.4%) 122 (15.1%)

other categories 133 65 (48.9%) 77 (57.9%) 57 (42.9%)

protein fate 75 60 (80.0%) 56 (74.7%) 49 (65.3%)

protein synthesis 114 89 (78.1%) 84 (73.7%) 77 (67.5%)

purines, pyrimidines, nucleosides and
nucleotides

44 27 (61.4%) 31 (70.5%) 25 (56.8%)

regulatory functions 44 17 (38.6%) 17 (38.6%) 7 (15.9%)

signal transduction 12 10 (83.3%) 9 (75.0%) 7 (58.3%)

transcription 32 22 (68.8%) 20 (62.5%) 18 (56.3%)

transport and binding proteins 110 70 (63.6%) 53 (48.2%) 76 (69.1%)

unknown function 198 115 (58.1%) 115 (58.1%) 88 (44.4%)

a
Number of ORFs that consist of a given functional class. (Some proteins may belong to more than one functional class)

b
Number of ORFs that were identified in cKGM sample for a given functional class.

c
Number of ORFs that were identified in KGM sample for a given functional class.

d
Number of ORFs that were identified in both cKGM and KGM samples for a given functional class.

Infect Disord Drug Targets. Author manuscript; available in PMC 2009 April 7.


