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ABSTRACT

Likelihood methods have been developed to partition individuals in a sample into sibling clusters using
genetic marker data without parental information. Most of these methods assume either both sexes are
monogamous to infer full sibships only or only one sex is polygamous to infer full sibships and paternal or
maternal (but not both) half sibships. We extend our previous method to the more general case of both
sexes being polygamous to infer full sibships, paternal half sibships, and maternal half sibships and to the
case of a two-generation sample of individuals to infer parentage jointly with sibships. The extension not
only expands enormously the scope of application of the method, but also increases its statistical power.
The method is implemented for both diploid and haplodiploid species and for codominant and
dominant markers, with mutations and genotyping errors accommodated. The performance and
robustness of the method are evaluated by analyzing both simulated and empirical data sets. Our method
is shown to be much more powerful than pairwise methods in both parentage and sibship assignments
because of the more efficient use of marker information. It is little affected by inbreeding in parents and is
moderately robust to nonrandom mating and linkage of markers. We also show that individually much less
informative markers, such as SNPs or AFLPs, can reach the same power for parentage and sibship
inferences as the highly informative marker simple sequence repeats (SSRs), as long as a sufficient
number of loci are employed in the analysis.

THE rapidly growing development and application of
molecular markers provide new possibilities in es-

tablishing the genealogical relationships among indi-
viduals (pedigree) in wild populations in which such
information is extremely difficult to collect from field
observations (Blouin 2003; Pemberton 2008). Knowl-
edge of the genealogical relationships makes possible
many studies in behavioral, ecological, and evolutionary
genetics and in conservation biology. Pedigree informa-
tion is valuable, for example, in studies of social behavior
ororganization(e.g.,Hamilton1964;Morin etal. 1994),
mating systems (e.g., Heg and van Treuren 1998; Engh

et al. 2002), dispersal (e.g., Devlin and Ellstrand 1990;
Streiff et al. 1999; Chapman et al. 2003), and isolation by
distance and spatial genetic structure (e.g., Goodisman

and Crozier 2002) in natural populations. It also finds
applications in locating genes influencing quantitative
traits (Spielman et al. 1993; Allison et al. 1999), es-
timating the total number of breeders in a population
(e.g., Nielsen et al. 2001; Pearse et al. 2001), inferring the
variance of reproductive success among individuals and
thus the strength of sexual selection (e.g., Aldrich and
Hamrick 1998; Morgan and Conner 2001), estimating
quantitative genetic parameters such as heritability (e.g.,

Ritland 2000; Garant and Kruuk 2005; Thomas

2005), and managing the conservation of populations
of endangered species (e.g., Painter 1997; Jones et al.
2002).

In parallel to the development and application of
genetic markers, many statistical methods have been
proposed to analyze marker data for pedigree informa-
tion (Blouin 2003; Jones and Ardren 2003). They are
all based on the Mendelian laws of inheritance and infer
the genealogical relationships among individuals from
the similarities in their multilocus genotypes. The ma-
jority of the methods are developed for inferring specific
types of relationships using specific kinds of marker
data. In particular, current methods have the following
limitations.

First, most methods infer a single relationship, either
parentage (Jones and Ardren 2003) or full sibship
(Blouin 2003), ignoring any other relationships pre-
sent in data. Few methods exist for estimating simulta-
neously parentage and full and half sibship among any
number of individuals (Emery et al. 2001; Jones et al.
2007). This is unfortunate because, on one hand, back-
ground relationship interferes with the inference of the
focal relationship and thus reduces the statistical power
(Wang 2004), and, on the other, taking the background
relationship into account by inferring multiple relation-
ships among three or more individuals gains enor-
mously more power (Sieberts et al. 2002; Wang 2007).
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Second, most methods estimate the relationship be-
tween a pair of individuals in isolation, causing two
major problems. In some applications such as estimating
heritability (Frentiu et al. 2008), the relationships among
more than two individuals are necessary. Assembling
pairwise relationships into a relationship structure in-
volving three or more individuals is difficult because of
compatibility problems. In a pairwise sibship analysis,
for example, individuals A and B, and A and C, may be
inferred as full sibs, while B and C may be inferred as half
sibs or nonsibs. The three pairwise relationships are
obviously incompatible when considered together. In a
pairwise parentage analysis, for example, candidate fa-
ther A and candidate mother B may be assigned pater-
nity and maternity, respectively, to offspring C. However,
when A, B, and C are considered jointly, the relationship
structure that A and B are parents of C may be rejected.
More importantly, the pairwise approach could result in
a power loss due to the insufficient use of marker data
(Wang 2004). In parentage assignments, for example,
one offspring provides information for just one allele at
a locus in the parent. The probability that both parental
alleles are present in the genotypes of a number of n
offspring is 1� 21�n , and the power of parentage
assignment rises dramatically with an increasing num-
ber of offspring whose parentage is considered jointly
(Wang 2007).

Third, most methods do not allow for mutations and
genotyping errors in marker data, which are unfortu-
nately common in practice (Bonin et al. 2004; Pompanon

et al. 2005) and cause false exclusions of parentage
(Kalinowski et al. 2007) and sibships (Wang 2004).
Ironically, more marker information (due to a greater
number of loci and polymorphism) usually comes with
more noise (mutations and genotyping errors) and thus
may lead to worse relationship estimates if the noise is not
filtered out (Wang 2004).

Fourth, most methods are designed for codominant
markers with multiple alleles (such as simple sequence
repeats, SSRs, also referred to as microsatellites) and do
not apply to other markers, such as SNPs and dominant
markers (e.g., RAPD and AFLP). The latter do, however,
find applications in relatedness analyses (Glaubitz

et al. 2003; Bonin et al. 2007; Dasmahapatra et al. 2008).
Fifth, most sibship assignment methods consider

full sibship only and require a minimum sibship size of
three individuals. These are nonlikelihood combinatorial
methods based on the assessment of individual genotypes
for compatibilities with a full sibship. Because any two
diploid individuals have multilocus genotypes that are
always compatible with a full sibship, these methods fail to
identify sibships containing fewer than three individuals
no matter how much marker information one uses.

The early work on inferring sibships from marker data
in a likelihood framework was done by Painter (1997)
and Almudevar and Field (1999). Building on this and
some more recent work (e.g., Thomas and Hill 2000,

2002; Smith et al. 2001; Almudevar 2003), Wang

(2004) developed a likelihood method for full and half
sibship reconstruction from codominant marker data
allowing for genotyping errors. In this article, we extend
the work to infer both paternal and maternal half
sibship as well as full sibship in a sample of offspring
and to jointly infer the parentage of the offspring when
candidate father and mother samples are also available.
The extension not only expands enormously the scope
of application of the method, but also increases its
statistical power. We investigate the performance and
robustness of the method by analyzing both simulated
and several empirical data sets. The method is also
compared with pairwise likelihood methods in accuracy
for both parentage and sibship assignments. The results
are helpful in understanding the behavior of the
method, in choosing the appropriate type and number
of genetic markers in practice, in designing relationship
analysis experiments, and in interpreting the results of
such experiments.

METHODS

Genetic model: We assume a large random-mating
population from which three samples of individuals are
taken for sibship and parentage analysis. The offspring
sample (OFS) consists of a number (.1) of individuals
belonging to a single cohort of the population. Off-
spring in the OFS may be paternal or maternal half sibs
who share a single parent, full sibs who share both
parents, or nonsibs who share no parent. The candidate
father sample (CFS) consists of a number ($0) of
individuals that are potential fathers of the offspring in
the OFS. The candidate mother sample (CMS) consists
of a number ($0) of individuals that are potential
mothers of the offspring in the OFS. Candidate fathers
and mothers are assumed to be unrelated within and
between them. While the OFS is essential, the CFS and
CMS are optional. Sibship is inferred among individuals
in the OFS, and paternity and maternity of the offspring
are inferred only when the CFS and the CMS are present,
respectively.

Our method is intended to use marker information to
partition the three samples of individuals into a number
of genetic groups or family clusters. Individuals within a
cluster are related directly or indirectly through shared
parentage or sibship relationships, while individuals be-
tween clusters are unrelated. Therefore, the likelihood
of a partition (relationship configuration) of the three
samples of individuals is simply the product of like-
lihoods of the independent clusters in the partition. A
cluster can be variable in size (number of individuals)
and genetic structure (types and organizations of
relationships). A cluster may contain only one individ-
ual, two individuals with a full-sib, half-sib, or parent–
offspring relationship, or three or more individuals with
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one or more types of relationships in a complex
structure. Consider, as an example, a family cluster
containing three offspring A, B, and C. In this cluster,
A and B are paternal half sibs sharing the same father but
having different mothers, B and C are maternal half sibs
sharing the same mother but having different fathers,
while A and C are nonsibs sharing no parents. Although
A and C are genetically unrelated, they are all related to
B and thus all three offspring and the four parents must
be considered jointly in a single cluster to calculate the
likelihood.

The likelihood function: For a family cluster with an
arbitrary genetic structure, R, the general form of the
likelihood function is

L ¼ Pr½R �
X

g

Pr½G j g;R �Pr½g jR �; ð1Þ

where Pr[R] is the prior probability of R, G is a vector of
observed genotypes (phenotypes, data) for all members
in the cluster, and g is a vector of their unobserved
underlying genotypes. The summation is performed
over all possible parental genotypic combinations.

Although appearing simple, (1) can be quite compli-
cated in its computational form and costly in computa-
tion. Consider, as an example, a cluster that contains 2J
possible full-sib families from 2 fathers and J mothers.
Suppose the full-sib family with father i (i ¼ 1, 2) and
mother j ( j ¼ 1 � J ) has dj,i ($0) offspring, and the lth
offspring has a phenotype Ol,j,i at a locus with k co-
dominant alleles. The phenotypes of father i, Fi, and
mother j, Mj, may or may not be available. The
probability of the data is

L ¼ Pr½R �
X

f1

Pr½f1�Pr½F1 j f1�
X

f2

Pr½ f2�Pr½F2 j f2�

3
YJ

j¼1

X
mj

Pr½mj �Pr½Mj jmj �
Y2

i¼1

Ydj ;i

l¼1

Pr½Ol ;j ;i j fi ;mj �
 !0

@
1
A:
ð2Þ

In (2), fi and mj are underlying genotypes of father i
and mother j, respectively. For a locus with k codomi-
nant alleles, there are kðk 1 1Þ=2 ordered genotypes gw,x,
where subscripts w and x index alleles with w # x ¼
1 � k. The probability of a father genotype, Pr½ fi �, is
calculated under Hardy–Weinberg equilibrium. If ge-
notype fi¼ gw,x, for example, then Pr½ fi � ¼ ð2� dwxÞpwpx ,
where pw (px) is the frequency of allele w (x) and dwx is
the Kronecker d-variable with values 1 and 0 when w¼ x
and w 6¼ x, respectively. Pr½Fi j fi � is the probability of
observing the phenotype of father i, Fi, given its
genotype fi. Pr½Fi j fi �[ 1 if the father’s phenotype is
unavailable. Otherwise, it is calculated by accounting for
genotyping errors of class I (allelic dropouts) and class
II (other errors) as in Wang (2004). Suppose fi ¼ gw,x

and Fi ¼ Gu,v; then Pr½Fi j fi � is calculated by

Pr½Gu;v j gw;x �

¼

ð1� e2Þ2 1 e2
2 � 2e1ð1� e2 � e2Þ2 fðu ¼ w; v ¼ xÞg

e2ð1� e2Þ1 e1ð1� e2 � e2Þ2 fðu ¼ v ¼ wÞ; ðu ¼ v ¼ xÞg
ð2� duvÞe2

2 fðu 6¼ w; u 6¼ x; v 6¼ w; v 6¼ xÞg
e2ð1� e2 � e2Þ fotherwiseg

8>>><
>>>:

ð3Þ

if Gw,x is a heterozygote (w 6¼ x), and

Pr½Gu;v j gw;x �

¼
ð1� e2Þ2 fðu ¼ v ¼ wÞg
2e2ð1� e2Þ fðu ¼ w; v 6¼ wÞ; ðv ¼ w;u 6¼ wÞg
ð2� duvÞe2

2 fðu 6¼ w; v 6¼ wÞg

8><
>:

ð4Þ

if Gw,x is a homozygote (w ¼ x). In (3) and (4), e1 and e2

are the rates of class I and class II genotyping errors,
respectively, e1 ¼ e1=ð1 1 e1Þ and e2 ¼ e2=ðk � 1Þ for a
locus with k codominant alleles. Pr½mj � and Pr½Mj jmj �
are defined and calculated similarly.

The probability of an offspring phenotype Ol,j,i given
its parental genotypes fi and mj, Pr½Ol ;j ;i j fi ;mj �, is
obtained by using Mendelian segregation and account-
ing for genotyping errors (Wang 2004). If fi ¼ gw,x and
mj ¼ gy,z, then

Pr½Ol ;j ;i j fi ;mj �

¼ Pr½Ol ;j ;i j gw;x ; gy;z� ¼
1

4
ðPr½Ol ;j;i j gw;y�1 Pr½Ol ;j ;i j gw;z�

1 Pr½Ol ;j ;i j gx;y�1 Pr½Ol ;j ;i j gx;z�Þ:

ð5Þ

For an offspring phenotype Ol,j,i ¼ Gu,v, each term on
the right side of (5) is calculated by (3) or (4).

The allele frequencies required in calculating (2) can
be estimated either from an external sample or from the
OFS, the CMS, and the CFS. In the latter case, we have
the choice whether or not to refine iteratively allele
frequency estimates by accounting for the recon-
structed relationships during the simulated annealing
process in search for the best relationship configuration
(Wang 2004).

The prior in (2), Pr[R], can be partitioned into a
sibship prior and a parentage prior. Following previous
work (e.g., Thomas and Hill 2000, 2002; Wang 2004),
we assume that all possible sibship structures are
equally probable so that only the parentage prior
needs to be specified. Suppose the probability that
the parent of sex s of an offspring is included in the
candidate pool is rs, determined from some prior
knowledge. It should be noted that rs is similar to the
‘‘proportion of candidate parents sampled’’ as used by
CERVUS (Marshall et al. 1998). Assuming each off-
spring in the cluster is equally probable to come from
each of the ns (¼ 2 and J for s ¼ 1 and 2, respectively)
parents, we have
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Pr½R � ¼
Y2

s¼1

ðns � NsÞ!
ns !

ðrsÞNs ð1� rsÞns�Ns ; ð6Þ

where Ns is the number of candidates of sex s who are
assigned parentage in the cluster. Other priors have also
been tried but this prior works best in most simulations.

The likelihood function for a dominant marker is the
same as for a codominant one, except the probability of
an observed phenotype given the genotype is modified.
Consider a dominant locus with two alleles, with the
dominant and recessive alleles being indexed as 1 and 2,
respectively. There are two possible phenotypes. The
dominant phenotype, denoted by G1, has two possible
genotypes g1,1 and g1,2 and the recessive phenotype,
denoted by G2, has one possible genotype g2,2. Assuming
the class II error model with an error rate e2, we can
obtain the transitional probability of an underlying
genotype to an observed phenotype:

Pr½G1 j gu;v � ¼ 1� ðe2 � d1uÞðe2 � d1vÞð1� 2duvÞ
Pr½G2 j gu;v � ¼ ð1� e2 � d2uÞð1� e2 � d2vÞð1� 2duvÞ:

ð7Þ

With (7) instead of (3) and (4), our method can utilize
dominant markers alone or together with codominant
markers in sibship and parentage inferences.

The computational cost of (1) or (2) is determined
mainly by the number of possible parental genotype
combinations, which is huge when k and the number of
parents in a cluster become large. Two major strategies
are adopted to reduce the computation. First, for each
parent, all alleles unobserved in the phenotypes of itself
and its offspring are pooled as detailed in Wang (2004).
If a parent is known or inferred to be a candidate and
there are no genotyping errors and mutations, then
only the observed parental phenotype is considered.
Second, a peeling procedure similar to that of Elston

and Stewart (1971) is adopted to reduce the pedigree
size. The procedure is based on the fact that some parts
of the pedigree are conditionally independent and the
likelihood of these parts can thus be evaluated
sequentially.

For multiple loci in linkage equilibrium, the total
likelihood of a cluster is simply the product of like-
lihoods across loci. The likelihood of the entire config-
uration is the product of the likelihoods across clusters.

Any known relationships are incorporated and used
to help infer unknown relationships. These known
relationships are simply fixed in all configurations
considered. If offspring A and B are known to be full
sibs, for example, they will never be split into different
full-sib families in constructing new configurations, and
they help the inferences of other siblings sharing one or
both parents with them and their common parentage,
especially when marker information is scarce.

Simulated annealing algorithm: The possible config-
urations are combinatorial and quickly become too

many to enumerate even for a small sample of individ-
uals. We adopt therefore a simulated annealing algo-
rithm to search for the best configuration with the
maximum likelihood. The algorithm explores a tiny
fraction of the configuration space with relatively high
likelihoods and has a fine control of the acceptance of
inferior configurations to avoid converging on a local
maximum (Kirkpatrick et al. 1983). To accommodate
the more complex relationship structure involving both
sibship and parentage in this study, the algorithm
proposed in Wang (2004) is modified as described
briefly below.

1. Generate an initial configuration by allocating each
individual in the OFS, the CMS, and the CFS to a
distinctive cluster. All known relationships should,
however, be incorporated into the initial configura-
tion. Calculate and store the likelihood of the initial
configuration.

2. Generate a proposal configuration by changing part
of the old one. A uniformly distributed random
number is generated to determine whether to reas-
sign paternity, maternity, or sibship.

a. To reassign paternity, choose at random an of-
fspring and a male. The male may be one from
those included in or excluded from the candi-
date father pool, but must have not been
assigned paternity to any offspring in the old
configuration. Assign the paternity of the off-
spring and all its paternal siblings to the selected
male.

b. To reassign maternity, use the same procedure
as 2a.

c. To reassign sibship, changes within and between
family clusters are allowed to occur at an equal
probability. For a between-cluster change, a
‘‘migrant’’ cluster is chosen at random from
the existing ones and a ‘‘recipient’’ cluster is
chosen at random from the existing ones and a
new empty one. An existing full-sib family is then
chosen at random from the migrant cluster, and
a random number of its offspring members are
chosen as migrant offspring. If the recipient
cluster is empty, the migrant offspring are moved
into it as a full-sib family. Otherwise, they are
moved into a full-sib family randomly chosen
among all existing and new families within the
recipient cluster. A new family is an empty one
that shares the father or the mother (but not
both) with an existing family. A within-cluster
change is similar to a between-cluster change,
except the recipient and migrant clusters are
the same. For both within- and between-cluster
changes, the parentage assignments of the mov-
ing offspring are also changed accordingly.

3. Check the validity of the new configuration against
known relationships. If there is any conflict, the new
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configuration is abandoned and step 2 is repeated.
Otherwise, go to the next step.

4. Calculate the likelihood (Lnew) of the proposal
configuration, and determine whether to accept
or reject the new configuration. Calculate t ¼
Min½(Lnew=Lold)1=T ; 1�, where T is the annealing
temperature governing the rate at which a new
configuration is accepted. Generate a random num-
ber uniformly distributed between 0 and 1, and
compare it with t. If it is smaller than t, the new
configuration is regarded as successful and is thus
accepted; otherwise, the new configuration is re-
jected and the old one is recovered.

5. Repeat steps 2–4 a sufficiently large number of times.
This iterative procedure ensures the likelihood to go
uphill in general, but allows it to go downhill oc-
casionally to avoid it being stuck on a local maximum.
The probability of a downhill tour is controlled by T,
which is decreased as the annealing process proceeds
so that a new configuration with a smaller likelihood
than the old one becomes less and less frequently
accepted. T is set initially as a large value to allow a
�60% acceptance rate of new configurations. It is
then reduced in multiplicative steps, each amount-
ing to an 8% decrease. Each new value of T is held
constant for 5000N reconfigurations (N is the size of
OFS sample) or for 100N successful reconfigura-
tions, whichever comes first. When efforts to improve
configurations become sufficiently discouraging, the
iterative process is stopped and the best configura-
tion with the maximum likelihood is reported.

With both males and females polygamous in a diploid
species, there could exist numerous equivalent con-
figurations with the same likelihood. For example, the
cluster of offspring A and B as paternal half sibs is equiv-
alent to the cluster of them as maternal half sibs when
both A and B have no known or inferred parentage. In
the simulated annealing process, these equivalent con-
figurations are accepted at a rate that is reduced in
multiplicative steps as T. This helps the convergence of
the algorithm for some difficult data sets.

Uncertainty estimates: The maximum-likelihood
configuration is just a point estimate. How to assess its
reliability or uncertainty is difficult and has rarely been
addressed in previous studies. The main difficulties are
that the estimates are not a few parameter values but a
complex hierarchical relationship structure and that
numerous levels of the hierarchical relationship struc-
ture may be of interest for uncertainty assessment.
Depending on the purpose of and how the analysis
results are used in a downstream analysis, the uncer-
tainties of different levels of the hierarchical relation-
ship structure might be of interest. At one extreme, one
may be interested in the lowest hierarchical level of
dyads, assessing the uncertainties of the relationship
inference for a pair of individuals. At the other extreme,

one may be interested in the uncertainties of the entire
configuration involving all individuals in the three
samples. Anything in between, such as a full-sib family
involving any number of offspring, can also be of
interest in practice.

A feature of the simulated annealing algorithm is
that, during the process of hunting for the best con-
figuration with maximum likelihood, it also finds many
plausible configurations with high likelihoods. Taking
advantage of this feature, we can archive these good
configurations with their corresponding likelihood val-
ues. On completion of the simulated annealing algo-
rithm, the archive is used to ascertain the uncertainties
of relationship structures at any hierarchical level.

As an example, suppose that offspring A, B, and C are
inferred to share a single parent (half sibs) in the best
configuration with the maximum likelihood (L0), and a
number of n 1 1 good configurations with high likeli-
hood values (say, Li . ‘�10L0, where ‘¼ 2.71828 and i¼
0, 1, . . . , n) are archived. When all possible configura-
tions are assumed equally probable a priori, the proba-
bility of this substructure (i.e., A, B, and C are half sibs)
is then calculated by

Pn
i¼0 diLi=

Pn
i¼0 Li, where Li is

the likelihood of configuration i and di ¼ 1 if the sub-
structure is fully contained in configuration i and di ¼ 0
otherwise. When all good configurations with relatively
high likelihood values are included in the archive, this
procedure provides good uncertainty estimates. Other-
wise, the probability of a substructure is overestimated
and the uncertainty estimates tend to be too conserva-
tive. To increase the accuracy of uncertainty estimates,
one could run multiple replicates for the same data set
using different starting points and different random
number generators and merge the archives of the good
configurations from different replicates before assess-
ing the uncertainty.

Inference of genotypes and genotyping errors of each
individual: Conditional on the relationship structure
of a cluster, we can obtain the marginal likelihood of a
genotype of each parent using the same likelihood
function (1). The probability of each inferred genotype
of a parent is then calculated by Bayes’ theorem. If the
parental phenotype is available and the probability of
the genotype identical to the phenotype is found smaller
than a threshold value (say, 0.05), then a genotyping
error or mutation is inferred at the threshold confi-
dence level.

We can recalculate allele frequencies using the
inferred parental genotypes and their probabilities.
The updated frequencies take into account the inferred
relationship structure and thus should be more accu-
rate than those calculated directly from the phenotypes
of the offspring and candidates assuming all individuals
unrelated. Periodically during the simulated annealing
process, we can infer parental genotypes, recalculate
allele frequencies, and use them in calculating likeli-
hood. Such an iterative procedure could improve the
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inference of both relationship and genotypes, especially
when large unbalanced families are involved in data
(Wang 2004).

Conditional on the inferred parental genotypes and
their probabilities, we can also infer offspring genotypes
at each locus using Mendelian laws of inheritance.
Genotyping errors at each locus of each offspring can
be inferred similarly.

EVALUATION OF THE METHOD

Our likelihood method described above was imple-
mented in a computer program COLONY2, which has a
Windows-based graphical user interface and is down-
loadable from website http://www.zoo.cam.ac.uk/ioz/
software.htm. The performance and robustness of the
method is evaluated by analyzing simulated and empir-
ical data sets in which genealogical relationships among
sampled individuals are known. It is also compared with
the commonly used pairwise likelihood approach to
relationship inference.

Other methods for comparison: Although many
methods are available, few allow for the inference of
sibship and parentage jointly (but see Emery et al. 2001;
Jones et al. 2007) or separately in the same framework.
The method proposed by Jones et al. (2007) has not been
implemented in any software ready to use. The method
proposed by Emery et al. (2001) is implemented in the
software PARENTAGE, but some simulations indicate
that it does not converge reliably for the joint sibship and
parentage inference except for very small samples. We
therefore concentrate on comparing our method with
the commonly used pairwise approaches to sibship and
parentage inferences.

Pairwise approaches use the multilocus genotypes of a
pair of individuals (dyad) to infer their relationships.
Typically, the probability of the marker data of a dyad
under each of a number of candidate relationships is
calculated as the likelihood of the relationship, and the
inferred relationship is the one with the maximum
likelihood (e.g., Epstein et al. 2000; McPeek and Sun

2000). Although simple to implement and potentially
capable of inferring any possible relationships between
two individuals, pairwise methods fail to use the valuable
marker information efficiently (Sieberts et al. 2002;
Wang 2007).

For comparison with our proposed method, we
implemented and applied the pairwise method to both
simulated and empirical data analyses. For sibship in-
ference, we assume candidate relationships of full sibs,
half sibs, and unrelated under polygamy and of full sibs
and unrelated under monogamy. For parentage in-
ference, we follow closely the procedure of Marshall

et al. (1998) in determining the D-statistic to resolve
parentage with a certain level of confidence. In brief,
the D-statistic is defined as the difference in LOD score

(logarithm of likelihood) between the most-likely can-
didate and the second most-likely candidate as the
parent of an offspring. Its distribution is determined
by analyzing a large number of simulated data sets
mimicking the empirical data set. Given the distribution
and a certain level of confidence (say, 80%), one can
determine a threshold D-value that can then be used in
parentage assignments of the empirical data set. This
simulation-based method for assigning parentage at a
specific level of confidence is an extremely important
development in parentage analyses ( Jones and Ardren

2003).
The pairwise approaches to sibship and parentage

assignments are implemented in COLONY2, allowing
for diploid and haplodiploid species, codominant and
dominant markers, missing genotypes, and genotyping
errors. The implementation of the pairwise approach
to parentage inference was checked against CERVUS
(version 3.0.3), using many simulated data sets. In all
cases considered, identical or very similar results are
obtained for parentage assignments. We use our imple-
mentation in analyzing simulated data and CERVUS in
analyzing the two empirical data sets. The relaxed 80%
confidence level is adopted in all analyses.

Simulations: Many factors are important in determin-
ing the power of a sibship/parentage analysis (Blouin

2003). Most of them fall into two categories, the actual
genetic structure of a sample being estimated and the
amount of marker information available in an analysis.
The genetic structure of a sample refers to the pattern
and the extent of genetic relatedness among individuals
in the sample. Marker information is determined by the
type (dominant, codominant), number, and polymor-
phism of markers and the quality of marker data. While
marker information affects all methods, the actual
genetic structure is especially important for methods
that consider directly the entire sample rather than just
pairs of individuals for relationship reconstruction. Ob-
viously it is impossible to exhaustively consider all factors
and their combinations even in a simulation study. Herein
we investigate the impacts of two genetic structures and
of different types and numbers of markers, compare our
method with the pairwise method, and evaluate the
robustness and uncertainty estimates of our method. In
each set of simulations described below, at least 20
replicate data sets are generated and analyzed.

Genetic structures and markers: Simulated data are
generated for a family cluster in which three fathers
mate with three mothers to give nine possible litters of
offspring. The number of offspring included in the
sample for relationship analysis is nij for the litter with
father i and mother j (i, j ¼ 1, 2, 3). Two family size
distributions, representing a weak and a strong genetic
structure, respectively, are considered. The family size
distribution, {n11, n12, n13, n21, n22, n23, n31, n32, n33}, is
{2, 1, 0, 0, 2, 1, 1, 0, 2} and {4, 2, 0, 0, 4, 2, 2, 0, 4} for the
weak and the strong genetic structure, respectively. For
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the weak and strong structures, 10 and 5 family clusters,
respectively, are included in the offspring sample to give
a total number of 90 offspring. Therefore, the frequen-
cies of full-sib, half-sib, and non-sib dyads are 0.75, 4.00,
and 95.25%, respectively, for the case of weak genetic
structures and are 2.62, 5.99, and 91.39%, respectively,
for the case of strong genetic structures. In both cases,
one father and one mother taken at random from the 10
(strong) or 5 (weak) family clusters are also sampled and
included in the candidate father and mother samples,
respectively. Additionally, a number of 99 males (fe-
males) who are unrelated among themselves and un-
related to any sampled individual are also included in the
candidate father (mother) sample.

Genotype data are simulated for three types of
markers at a variable number of loci. The markers con-
sidered are SSRs (representing highly polymorphic
markers having multiple codominant alleles), SNPs (rep-
resenting biallelic codominant markers), and AFLPs
(representing biallelic dominant markers). All markers
are assumed to be selectively neutral and in linkage and
Hardy–Weinberg equilibriums. The frequencies of alleles
are assumed to be equal at each locus and phenotypes are
assumed to be free from errors and mutations.

Data for method comparison: Data sets are simulated and
comparatively analyzed by the pairwise method and
our likelihood method to illustrate the importance of
jointly inferring sibship and parentage and of using
information from all individuals rather than just a pair
of individuals. A simulated data set includes a sample of
120 offspring in f full-sib families, each having a number
of n offspring. The values chosen for f and n are such
that fn ¼ 120 (n ¼ 1–6, 8, 10). The simulated data
set also includes a candidate father sample containing
on average f/2 fathers and 100 � f/2 unrelated
individuals. Candidate mothers are assumed to be
unavailable. All sampled individuals are genotyped at
four loci, each having 10 codominant alleles of an equal
frequency. The data are analyzed under the assumption
of monogamy.

Robustness: Like all previous methods, our likelihood
method has a number of underlying assumptions such
as random mating, no linkage among markers, Hardy–
Weinberg and linkage equilibriums, and only four
candidate relationships (full sib, FS; half sib, HS;
parent–offspring, PO; unrelated, UR) possible among
the sampled individuals (no background relationships
unaccounted for). In reality, some of these assumptions
may be violated. For example, when using many SNPs or
AFLPs in the analysis, some of them may be linked
closely because of the limited genome size. How robust
the method is to these assumptions is obviously of
concern. Wang (2004) investigated the effect of back-
ground competitive relationships on sibship inferences.
Herein we investigate by simulations the effects of
relatedness between parents, inbreeding in parents,
and linkage on the performance of our method.

In this set of simulations, we considered a family
cluster in which two males mated with two females to
yield a total of four matings with each having 2 offspring.
A simulated data set includes an offspring sample, a
candidate father sample, and a candidate mother sam-
ple. The offspring sample contains 80 offspring, 8 from
each of 10 family clusters. Each of the candidate parent
samples contains 10 actual parents taken at random
from the 20 parents in the 10 clusters and an additional
90 unrelated candidates. The genotypes of the sam-
pled offspring and candidates are simulated at five loci,
each having 10 codominant alleles of an equal fre-
quency. To investigate the impact of relatedness
between parents (nonrandom mating), data were
simulated assuming every parent is related with one
taken at random from the other 3 parents within the
same family cluster by a coancestry coefficient of u (¼ 0�
0.4). To assess the impact of inbreeding in parents, data
were simulated assuming all parents are inbred with an
inbreeding coefficient of F (¼ 0 � 0.4). To investigate
the impact of linkage among markers, data were
simulated assuming the five markers are equally spaced
on a chromosomal segment of map length M (¼ 0� 1.6)
morgans. Haldane’s mapping function was used to
determine whether there was recombination among
the markers in generating offspring genotypes. To assess
the robustness of our method to the sampling errors of
rs, different values of rs (0.01 � 0.99) are used in
analyzing the same data set in which the actual value of
rs is 0.5.

Uncertainty estimates: We adopt the following pro-
cedure to evaluate the quality of the uncertainty estimates
for the relationship between a pair of individuals. Recall
that using the archived configurations with their likeli-
hood values, one can obtain the probability of an of-
fspring dyad being full sibs, half sibs, or nonsibs and the
probability of a candidate–offspring dyad being parent–
offspring or unrelated. We calculate the frequency that
the actual (simulated) relationship of a dyad is correctly
inferred with a probability of at least 0.05. This frequency
thus signifies how often the true relationship is not
excluded by the inference at the 95% confidence level
and should be ideally $0.95.

To examine the quality of the uncertainty estimates
using the above procedure, we simulated 50 data sets,
each consisting of a sample of 80 offspring, a sample of
100 candidate fathers, and a sample of 100 candidate
mothers. The 80 offspring come from 10 family clusters,
each having four full-sib families (each having 2 off-
spring) resulting from each of two males mated with
each of two females. Among the 100 candidate fathers
(mothers), one is a true parent and the rest are sim-
ulated individuals unrelated to any of the sampled in-
dividuals. Genotypes of the sampled individuals at a
variable number of SSRs, each having 10 alleles of an
equal frequency, are simulated and used to infer the
relationships.
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Analyses of simulated data: In analyzing the simulated
data, we assume no information about family structure
is known and the sole information used in the analyses
is the multilocus genotypes of sampled individuals.
Allele frequencies are estimated from the samples
assuming all individuals in the samples are unrelated.
To reduce running time, allele frequencies are not
updated by taking the reconstructed family structures
into account during the simulated annealing process,
and the rates of genotyping errors are set at zero for
each locus. In parentage inference using both our
method and the pairwise method, the prior probability
that the parent of sex s of an offspring is included in the
candidate pool, rs, is assumed to be 0.5 except when we
explicitly investigate the effect of rs. This value is equal
to the actual value in the robustness simulations, but is
much larger than the actual values in other simula-
tions, which are 0.03 and 0.06 for the weak and strong
family structures, respectively. In all analyses except for
those assessing the quality of uncertainty estimates, a
single run is conducted for a single data set. For the
uncertainty analyses, five replicate runs are conducted
for each data set and the archives of configurations
from the runs are combined in obtaining the probabi-
listic estimates of the relationship between a pair of
individuals.

Empirical data sets: To demonstrate the power and
usefulness of the new method in practical applications,
two empirical data sets with known or partly known
relationships among individuals are analyzed.

A cheetah data set: This data set was from a long-term
ecological and genetic study of a cheetah population on
the Serengeti plains of Tanzania (Gottelli et al. 2007).
In summary, 41 litters of cubs, 65 candidate fathers, and
33 known mothers of the litters were sampled and
genotyped at up to 13 SSRs. These markers have 5–10
alleles per locus and could have elevated rates of
genotyping errors because genotypes were obtained
from fecal samples. The probability that a random
unrelated individual is excluded as a parent of an
offspring by using the 13 SSRs is 0.9862, calculated by
the formula in Wang (2007).

In this study, the data set is used to check the accuracy
of maternity inferred by our method and the pairwise
method using genotype data only. For this purpose, we
eliminated litters with unknown mothers to yield a
sample (OFS) of 88 cubs distributed into 34 maternal
groups, each containing $1 litters from the same known
mother. The numbers of the 34 groups having 1 �
7 cubs are {10, 6, 11, 4, 2, 0, 1}. The mother of one group
is known to be dead and not sampled. The 33 known
mothers, together with 100 simulated females constitute
the CMS. The genotypes of each simulated female are
generated assuming the female is unrelated with any
individual in the CMS or OFS, using the allele frequen-
cies of the 13 loci estimated from the observed geno-
types of all sampled individuals. The candidate fathers

are assumed to be absent. Analyzing this data set
informs us how often maternity is correctly assigned,
incorrectly assigned, and incorrectly unassigned. The
data set is also analyzed by removing all of the 33 known
mothers so that only the 100 simulated females remain
in the CMS. The analysis shows how often maternity is
correctly unassigned and falsely assigned. In both sets of
analyses, genotyping error rates are assumed to be 0.05
for each locus, and r2 is assumed to be 0.5.

The human CEPH data: The CEPH data set, in its
current version V10 available online (http://www.
cephb.fr/cephdb/php/), contains genotypes of individ-
uals from 65 families at 32,356 marker loci. Within each
family, genotypes are available for the father, the mother, a
variable number of full-sib children (1–12), and a variable
number of grandparents (0–4).

The subset of CEPH data used in this study contains
an OFS of 343 offspring taken from 59 families. The full
sibship size (number of full sibs) in the OFS varies from
1 to 12, with the corresponding counts of {1, 4, 4, 8, 13, 9,
7, 4, 4, 2, 2, 1}. The subset also contains 105 candidate
fathers in a CFS, and 119 candidate mothers in a CMS.
The actual fathers and grandfathers of the 59 families
are included in the CFS if they have genotypes missing at
most at one of the 10 SSR loci used in the analyses.
Mother candidates are selected similarly. Note that
grandparents are included in the candidate parent
samples to increase the difficulty in parentage analyses
because they compete with the actual parents for
parentage assignments.

The genotypes of sampled individuals at a variable
number of SSR loci (2–10) are used in our method and
the pairwise method for sibship and parentage analyses.
The data are analyzed assuming monogamy or polyg-
amy for both sexes, a probability of 0.5 that the parent of
an offspring is included in the candidate parent sample,
and no genotyping errors. Allele frequencies are as-
sumed unknown and calculated from the three samples.
Because most parents are included in the candidates,
parent pair assignments are used in the pairwise
approach, using CERVUS.

Our likelihood model assumes that the sampled
individuals are subdivided into three subsamples
(OFS, CFS, and CMS) from some prior information
such as the sex and age of the individuals. This is the
case for this CEPH data set and many others in which we
have a fair amount of knowledge about the population
and sampled individuals under study. In practice,
however, a more difficult situation is that, except for
the multilocus genotype data, little information is avail-
able about the sampled individuals. In such a situation,
it is difficult to partition the sampled individuals into
the three subsamples. For example, a noninvasive DNA
sampling technique (using hairs and feces, etc.) enables
many studies of animal species in their natural habitats
(Frankham et al. 2002). It provides individual multi-
locus genotype data but little other information that can
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be used to determine who the offspring are and who the
candidate parents are.

To examine the importance of the assumption of
known sex and generation of each sampled individual
and the robustness of our likelihood model to the
violation of the assumption, the CEPH data set is also
analyzed by our method assuming that no information
other than genotypes is available about the sampled
individuals. All sampled individuals (343 offspring 1

105 candidate fathers 1 119 candidate mothers) act as
each of the three subsamples. To accommodate the
unknown sex and generation of sampled individuals, a
configuration is considered feasible when no close
inbreeding (parent–offspring, grandparent–grandoff-
spring mating) exists and when an individual appears
exactly once (as an offspring or a parent) within a
cluster. An individual is, however, allowed to appear in
two separate clusters, as an offspring and a father or a
mother (but not both).

Note that with this ad hoc treatment of data, we can
still infer parent–offspring relationships, but cannot
distinguish between mother–child and father–child
relationships because of the lack of sex information.
Furthermore, it is possible to distinguish offspring
from parents only when multiple offspring are as-
signed the same parentage. Note also that the likeli-
hood of a configuration under this treatment is an
approximation because different clusters are no lon-
ger independent. However, analyses of some simulated
data sets show that our method performs well under
this approximation.

Measurement of accuracy: There are several ways of
measuring the accuracy of a reconstructed genetic
structure against the actual one known in a simulated
or empirical data set. Accuracy can be measured at the
dyad, family, or entire sample level (Wang 2004). It can
be assessed by the frequencies of different types of
pairwise relationships being correctly inferred or by the
minimum partition distance (Gusfield 2002) between
the actual and reconstructed relationship structures
(e.g., Berger-Wolf et al. 2007). In this study, we measure
accuracy by the statistic, P(a j b), the frequency of dyads
assigned relationship a when their actual relationship is
b (Thomas and Hill 2000; Wang 2004). For sibship
inference among the offspring, accuracy is measured by
P(FS j FS), P(HS j HS), and P(UR j UR). For parentage
inference, accuracy is measured by the frequencies that
parentage is correctly assigned, P(PO j PO), or correctly
unassigned, P(XO j XO), when the actual parent is
included in and excluded from the candidate pool,
respectively. An advantage of using these separate meas-
urements instead of a single one (such as the partition
distance) is that they are indicative of not only the ac-
curacy, but also the causes of the inaccuracy (e.g., whether
FS is inferred as HS) where the relationship reconstruc-
tion is imperfect.

RESULTS

Effects of types and numbers of markers: The
accuracy of sibship and parentage inferences in situa-
tions of weak and strong genetic structures using dif-
ferent kinds and numbers of markers is shown in Figure
1. As is clear from Figure 1, the actual genetic structure
has a large impact on the accuracy of the estimates.
Larger family sizes lead to much better estimates of both
parentage and sibship, regardless of the kinds and
numbers of markers used in the estimation. For exam-
ple, the simulated family structure is recovered almost
perfectly using 6 and 10 SSRs when the structure is
strong and weak, respectively. In contrast to the pairwise
approaches that consider just a pair of individuals each
time, our likelihood method partitions the entire sam-
ple of individuals simultaneously into genetic groups
with specific relationship structures. Therefore, more
sibs will shed more light on their common parents,
enabling more accurate inference of both sibship and
parentage.

Different types of markers have dramatically different
powers in sibship and parentage assignments. It can be
seen from Figure 1 that �10 SNPs or �30 AFLPs have
roughly the same power as 1 SSR for both parentage and
sibship inferences. This marker equivalence changes
slightly with allele frequency distributions and family
structures. It is encouraging that SNPs and AFLPs,
although individually much less informative than SSRs,
can reach the same statistical power in parentage and
sibship analyses when a larger number of loci are used. A
number of�60 SNPs or 180 AFLPs provide information
sufficient for a complete reconstruction of the strong
family structure.

Comparison with pairwise approaches: The accuracy
of both sibship and parentage inferences as a function
of sibship size is shown in Figure 2. As expected, the
accuracy of the pairwise method for both sibship and
parentage inferences does not change with sibship size.
This is because, no matter how many full siblings exist in
the offspring sample, the pairwise method considers
only two offspring for sibship inference and one off-
spring and one candidate for parentage inference each
time. In contrast, our method considers all sampled
individuals (offspring and candidate parents) simulta-
neously for joint assignments of sibship and parentage.
As a result, the accuracy of both sibship and parentage
inferences increases rapidly with sibship size. The
simulated genetic structure is almost completely re-
covered by our method when sibship size reaches six.

The pairwise method yields too few parentage assign-
ments, resulting in a high P(XO j XO) and a low P(PO j
PO). This is because, with only four loci and a medium
value of rs (0.5), a substantial proportion of the sim-
ulated unrelated dyads may have high D-values. There-
fore the threshold D-value determined from simulations
tends to be too high to allow any parentage assignments
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even at the relaxed confidence level of 80%. The
pairwise approach to parentage inference seems to
become increasingly too conservative with a decreasing
number of loci, except when rs is very high.

Even when the sibship size is small, our method still
performs better overall than the pairwise method.
Irrespective of sibship size, the pairwise method leaves
too many offspring’s parentage unassigned, although
their parents are included in the candidates. When
sibship size is two, the pairwise method yields a higher
P(FS j FS) and a lower P(UR j UR) than our method.
However, because UR dyads are far more numerous
than FS dyads, our method is more accurate overall.

Robustness assessments: The changes in accuracy of
sibship and parentage assignments with an increasing
value of u, the coancestry coefficient between parents,
are shown in Figure 3A. As can be seen, the perfor-
mance degenerates gradually with an increasing re-
latedness between parents, but the decrease in accuracy
is small (note the small scale on the y-axis) even when
parents are closely related. Full-sib mating (u ¼ 0.25),
for example, leads to a decrease in accuracy of only 1
and 4% for parentage and sibship inferences, respec-
tively, compared with the case of unrelated parents (u¼
0). The impact of relatedness between parents de-
creases with an increasing amount of marker informa-
tion and an increasing sibship size (data not shown). In
other words, the small decrease in accuracy due to
relatedness between parents can be easily compensated
for by using more marker information.

The accuracy of sibship and parentage inferences as a
function of F, the inbreeding coefficients of parents, is
shown in Figure 3B. As can be seen, inbreeding in
parents has almost no effect on both sibship and
parentage assignments.

Both sibship and parentage inferences deteriorate
with increasing linkage among the markers, as shown in
Figure 3C. This is understandable because the informa-
tion from different markers under linkage is no longer
independent. The total information from linked
markers is reduced compared to unlinked markers.
However, as can be seen from Figure 3C, weak linkage
(.20 cM between neighboring markers) has minimal
effect on the accuracy.

Figure 3D shows the changes of P(PO j PO) and
P(XO j XO) as a function of the value of rs assumed in
both our likelihood method and the pairwise method.
With the rs value varying in the range of [0.01–0.99], the
accuracy of our method changes little while that of the
pairwise method changes rapidly. With an increasing
value of rs, the pairwise method yields and uses a
decreasing threshold D-value to give an increasing num-
ber of parentage assignments. In other words, the
pairwise method becomes less stringent in parentage
assignments with an increasing value of rs, resulting in an
increase in P(PO j PO) and a decrease in P(XO j XO).

Uncertainty assessment: The frequencies with which
the true relationships for an offspring–offspring dyad
and an offspring–candidate parent dyad are not ex-
cluded at the 95% confidence level are listed in Table 1.

Figure 1.—Accuracy of parentage and sibship
inferences for different types and numbers of
markers. The left and right columns correspond
to weak and strong family structures, and the top,
middle, and bottom rows correspond to SSRs,
SNPs, and AFLPs, respectively. Accuracy is mea-
sured by the frequencies that simulated full-sib
(FS), half-sib (HS), and unrelated (UR) offspring
are identified as such, P(FS j FS), P(HS jHS), and
P(UR j UR). It is also measured by the frequen-
cies that parentage is correctly assigned, P(PO j
PO), and correctly unassigned, P(XO j XO),
for the offspring whose actual parents are in-
cluded in and excluded from the candidates, re-
spectively. The values of P(UR j UR) are always
close to 1 for different types and numbers of
markers and are thus not shown. Weak and
strong family structures refer to small and large
sibship sizes, respectively, and the frequencies
of all 10 codominant alleles at a locus are as-
sumed to be equal.
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As can be seen, the frequency that the true relationship
is not excluded from the inference is slightly ,0.95
when the inferences are quite inaccurate due to the lack
of marker information. Otherwise, it is .0.95. It seems
that the proposed method for determining uncertain-
ties is appropriate except when marker information is
extremely scarce.

Analyses of a cheetah data set: When the actual
mothers (determined from behavioral data) are ex-
cluded from the candidates, the numbers of offspring
whose maternity is falsely assigned to simulated females
are 6 and 8 from the pairwise method and our method,
respectively. The values of P(XO j XO) are therefore
0.9318 and 0.8864 for the pairwise method and our
method, respectively. When the actual mothers are
included in the candidates, the pairwise method as-
signed maternities to 22 offspring, among which 19
assignments are correct and 3 are incorrect. In contrast,
our method assigned maternities to 48 offspring,
among which 37 assignments are correct and 11 are
incorrect. Thus the values of P(PO j PO) are 0.2159 and
0.4205 for the pairwise method and our method,
respectively. As an overall accuracy measurement, the
total number of correct assignments (when mothers are
included) and correct unassignments (when mothers
are excluded) is 101 and 117 for the pairwise method
and our method, respectively. For parentage inference
in this data set, our method performs slightly better
than the pairwise method.

Analyses of human CEPH data sets: The analysis
results are listed in Table 2. When all sampled individ-
uals are correctly subdivided into offspring and candi-
date parent samples, both sibship and parentage are
inferred highly accurately by our method. In summary,
there are in total 998 full-sib dyads and 57,655 nonsib
dyads among the 343 offspring, 645 parent–offspring
dyads, and 76,187 unrelated candidate–offspring dyads
between the OFS and candidate parent samples. The
genetic structure of the samples is completely recon-
structed without a single dyad assigned an incorrect

relationship even when only four SSRs are used in the
analysis.

Not surprisingly, the pairwise method performs badly
for both sibship and parentage inferences because it
fails to use the information from multiple family
members of this data set. The value of P(FS j FS) is 0.8�
0.9 and increases slowly with an increasing number of
loci. Confirming the simulation results in Figure 2, the
pairwise approach to parentage assignment is conserva-
tive when the number of loci is small, leading to
unassigned parentage of many offspring whose actual
parents are included in the candidates. The value of
P(PO j PO) increases rapidly with the number of loci.
However, there are still 20 offspring whose parentage is
unassigned and one offspring whose parentage is
assigned to its grandparent even when 10 SSRs are used
in the analysis, yielding a P(PO j PO) value of 0.9674.

When each sampled individual is included in all three
samples (unable to partition sampled individuals into
OFS, CFS, or CMS because of lack of information such
as age and sex), the inference becomes much less
accurate. However, with an increasing amount of marker
information, both sibship and parentage can still be
assigned at a high accuracy by our method. When 10
highly polymorphic SSRs are used in the analysis, for
example, the sibship structure is fully recovered while
parentage assignments are almost 100% accurate (Table
2).

The extremely high accuracy of our method with the
CEPH data set no matter whether or not the sampled
individuals are partitioned into the three subsamples is
due to its strong genetic structure (large sibship size)
and the highly polymorphic SSRs. It should be noted
that, when most sibships in a data set are small, the
partition of the three subsamples is crucial for accurate
inference of both sibship and parentage. Without such a
partition, it is difficult to distinguish between full-sib
and parent–offspring relationships when most sibships
are small. For the same reason, the pairwise method
performs badly for the CEPH data set for sibship and

Figure 2.—Accuracy of parentage and sibship
inferences as a function of full sibship size. A sim-
ulated data set contains a number of f full-sib fam-
ilies, each having a number of n offspring
(sibship size). The total size of the offspring sam-
ple is nf ¼ 120. A simulated data set also contains
a candidate father sample consisting of on aver-
age f/2 fathers and 100 � f/2 unrelated males.
Candidate mothers are assumed unavailable. All
sampled individuals are genotyped at four loci,
each having 10 codominant alleles of an equal
frequency. The data sets are comparatively ana-
lyzed by our likelihood method and the pairwise
likelihood method, denoted as ‘‘Colony2’’ and
‘‘Pairwise,’’ respectively. Inference accuracy is
measured by P(FS j FS) and P(UR j UR) for sib-
ship and by P(PO j PO) and P(XO j XO) for par-
entage.
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parentage inferences if the sampled individuals are not
partitioned into the three subsamples (results not
shown).

DISCUSSION

In this article, our previous method for sibship
inference using the multilocus genotypes of individuals
from a single generation cohort is extended to over-
come two major limitations. First, we removed the
constraint that at least one sex must be monogamous.
The constraint dictates that there can be paternal or
maternal half sibships but not both in the sampled
individuals. In many plant and animal populations,
however, this assumption is violated. Blindly using the
previous method for the analysis of data from these
populations may lead to erroneous results. Second,
we extended the method so that it could analyze a
two-generation sample of individuals for sibship and
parentage simultaneously. This not only broadens en-
ormously the application scope of the method, but also
empowers it substantially because the inference of multi-
ple relationships among multiple individuals jointly is
demonstrated to be much more powerful than the in-
ference of a single relationship between a single pair of
individuals (Sieberts et al. 2002; Wang 2007). Indeed, as
verified by simulations, strong genetic structures result
in much better estimates of both parentage and sibship
(Figure 1) and the contrast between the current and
pairwise methods increases with an increasing sibship size
(Figure 2).

Our method is well converged as multiple runs of the
same data set with different initial configurations and
different random number seeds yield the same or very
similar results. Large data sets, consisting of hundreds of
loci (as in Figure 1) and up to 1500 individuals in each of
the three subsamples have been run successfully. The
computational burden is increased greatly when both
sexes are polygamous, because a family cluster for which
likelihood is calculated independently can become very
large. For the CEPH data set analyzed using five SSRs
and assuming individuals’ sex and age were known, it
took 30 min and 3 days, respectively, for a 2.16-GHz CPU
to finish the analysis for the two cases of both sexes
assumed monogamous and both sexes assumed polyg-
amous. When only three SSRs were used, it took the
same CPU almost 4 days to complete for the case of both

Figure 3.—Robustness of the method with inbreeding in
offspring, inbreeding in parents, linkage among loci, and
the sampling errors of rs. Accuracy is measured by the fre-
quencies that simulated full-sib (FS) and half-sib (HS) off-
spring are identified as such, P(FS j FS), P(HS j HS). It is
also measured by the frequencies that parentage is correctly
assigned, P(PO j PO), and correctly unassigned, P(XO j
XO), for the offspring whose actual parents are included in
and excluded from the candidates, respectively. Details about

how simulated data sets were generated are described in the
text. (A) Accuracy is plotted against the coancestry coeffi-
cients among the parents in a family cluster; (B) accuracy is
plotted against the inbreeding coefficients of the parents;
(C) accuracy is plotted against the map length (in morgans)
of the chromosomal fragment on which all five SSRs are as-
sumed to be equally spaced; (D) accuracy is plotted against
the value of rs assumed in both our likelihood (denoted as
Colony2) and the pairwise (denoted as Pairwise) methods.
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sexes assumed polygamous. Fewer loci lead to more
computing time because when marker information is
scarce, unrelated individuals may possess similar or even
identical genotypes and are thus assigned into the same
cluster. The results in Table 2 were obtained from
analyses assuming no genotyping errors. Allowance of
genotyping errors in the analyses would increase the
computational time dramatically.

In the most difficult case of a large OFS, both sexes
being polygamous, just a few informative loci and high
genotyping error rates, all sampled offspring tend to be
partitioned into a single cluster and how to speed up the
computation becomes a serious problem. Three possi-
ble solutions can be envisioned. The first is to split the
offspring sample into several smaller ones and analyze
each separately. However, this strategy implicitly as-
sumes that we have sufficient knowledge about the
sampled individuals (e.g., their geographic locations) so
that the division into subsamples splits few sibships.
Sibship splitting into subsamples may reduce the
statistical power of parentage and sibship analyses but

is not necessarily to yield biased estimates. Note too that
pairwise methods always split the sample into the smallest
unit, a pair of individuals. Second, more efficient algo-
rithms may be investigated for calculating the likelihood
function and for searching for the best configuration in
simulated annealing. Currently, likelihood is calculated
by summing over all possible parental genotype combi-
nations in a cluster, and thus the computational load
increases roughly exponentially with the number of
parents in a cluster. If parental genotypes are used as
latent variables and inferred jointly with relationships, as
in Emery et al. (2001), the computation may be reduced
dramatically. However, all parental genotypes in a cluster
are highly dependent. This, together with the thousands
of variables to be inferred, may result in the searching
algorithm becoming stuck on a local maximum of the
complex likelihood surface. Further work in this area is
required. Third, parallel computation using multiple
CPUs is obviously another possible solution, which is im-
plemented in COLONY2 using message-passing interface
(MPI).

Currently, the most popular markers used in parent-
age and sibship analyses are SSRs because they are
highly polymorphic codominant markers (Blouin

2003; Jones and Ardren 2003). Other markers such
as SNPs and AFLPs are less informative per locus. They
are, however, highly abundant in many organisms and
permit high-throughput genotyping at low cost and at
high accuracy (SNPs, Jones and Ardren 2003), or they
can be easily genotyped (without cloning) at a large
number of anonymous loci without prior knowledge of
the genome (AFLPs, Dasmahapatra et al. 2008). The
paucity of information at individual loci does not nec-
essarily lead to inaccurate parentage/sibship assign-
ments because it can be compensated for by using an
increased number of loci in an analysis. However, one
needs to be careful to adopt an appropriate method
for the efficient use of such markers. Nonlikelihood

TABLE 1

Frequency of simulated dyadic relationships being not
excluded by inferences

No. loci P (offsping–offspring) P (offsping–candidate)

3 0.9212 0.8850
4 0.9353 0.9600
5 0.9786 0.9875
6 0.9985 0.9987

P (offsping–offspring) is the frequency that the actually
simulated relationship (FS, HS, UR) in an offspring dyad is
not excluded by the inference at the 95% confidence level be-
cause the estimated probability of the relationship is .0.05.
P (offsping–candidate) is similarly defined for an offspring–
candidate parent dyad. For each number of loci, 50 replicate
data sets are simulated and analyzed.

TABLE 2

Accuracy of parentage and sibship inference for the human CEPH data set

Colony2 Pairwise methods

No. loci P(FS j FS) P(PO j PO) P(FS j FS) P(PO j PO)

Sex and age known 2 0.9473 0.9364 0.8073 0.0078
3 0.9818 0.9876 0.8734 0.2666
4 1.0000 1.0000 0.8696 0.7860
5 1.0000 1.0000 0.8936 0.8837

Sex and age unknown 2 0.5266 0.2538
3 0.7164 0.3356
4 0.8407 0.4519
5 0.9228 0.8316

10 1.0000 0.9746

P(FS j FS) and P(PO j PO) are frequencies that full-sib dyads and parent–offspring dyads are inferred as such.
The probabilities that a random unrelated individual is excluded as a parent of an offspring are 0.971015,
0.994597, 0.998701, 0.999717, and 0.999999 when the numbers of loci are 2, 3, 4, 5 and 10, respectively.
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methods, such as exclusion-based methods for parent-
age (e.g., Danzmann 1997) or sibship (e.g., Berger-
Wolf et al. 2007) analyses, cannot use dominant
markers and have little power for biallelic codominant
markers. Similarly, pairwise likelihood methods also
have difficulty in using the information from AFLPs and
SNPs efficiently. The method presented in this article is
the first that allows the use of dominant markers in a
joint parentage and sibship analysis. Simulations verify
that indeed both parentage and sibship can be inferred
accurately by using a sufficient number of AFLPs or
SNPs. This is encouraging because these markers, either
used alone or in combination with SSRs, may make
relationship analyses in many organisms possible or
more powerful when SSRs are lacking.

In simulations, we assumed an equal allele frequency
at each SSR, SNP, or AFLP locus. This allele frequency
distribution yields the maximal power for codominant
markers, but slightly lower than the maximal power for
dominant markers in parentage and sibship assign-
ments. For a biallelic dominant marker, the optimal
recessive allele frequency is �0.7, which leads to the
maximal phenotypic polymorphism and thus the max-
imal power in relationship inference. Simulations with
other allele frequency distributions, such as a uniform
Dirichlet distribution, were also conducted but the
results are not shown. Other things being equal, more
markers in suboptimal allele frequency distributions are
needed to reach the same power for sibship and parentage
assignments than markers in the optimal allele frequency
distribution.

We showed results from simulations with relatively
small family clusters involving a small number of fathers
and mothers. Other things being equal, our method
becomes more accurate with an increasing cluster size.
In some simulations (not shown), we considered a
family cluster with 20 fathers mated with 20 mothers.
Each of the 400 possible matings has 2 full-sib offspring
included in a sample. Using 10 markers (each having 10
alleles of an equal frequency), our method recovers
completely the genetic structure of the 800-offspring
sample. Similarly, the full-sib family size assumed in our
simulations is generally small compared with that of
some highly prolific species such as some fish and
insects. Larger family sizes actually render our method
more powerful, as shown in Figure 2. There are some
claims that large families tend to be split by our method
(e.g., Jones et al. 2007). However, our analyses of both
simulated (100 offspring per full-sib family) and empir-
ical [e.g., 44 � 47 offspring per full-sib family of an ant
data set (Wang 2004)] data sets show that our method
recovers large families completely even when a moder-
ate number of six SSRs are used. However, when marker
information is very scarce, large families tend to be split
and small families tend to be merged in reconstruction.
Indeed, with few informative markers, unrelated indi-
viduals may have similar or even identical genotypes to

justify them to be inferred as sibs, while sibs in a large
family may have genotypes compatible with a sibship but
dissimilar enough to be split into separate families. For
example, all offspring in a large full-sib family may be
homozygous for 2 different alleles at a locus. While the
data can be explained by a single full-sib family with
both parents being heterozygous for the 2 alleles, it is
more plausible (in terms of likelihood) that the off-
spring come from two families homozygous for different
alleles. Of course one can adopt a prior favoring large
sibship sizes to reduce the split of large families.
However, such a prior will inevitably encourage the
merge of small families. Therefore, except in the rare
case that all families in a sample are known to be large,
there is no benefit in using such a prior.

Our method is developed for sibship and parentage
assignments in dioecious species without selfing. With
slight modification, the method can be extended to the
case of a monoecious population with mixed selfing and
biparental mating. It can then be used to estimate the
effective rates of selfing and outcrossing using off-
spring’s multilocus genotypes with or without parental
information. More work is needed in this direction in
the future.

Like many previous methods of relationship analyses,
our method assumes no linkage among the markers to
simplify the computation of likelihood. The assumption
is roughly satisfied in studies employing a small number
of loci (such as SSRs), but is likely to be violated in
studies using many less informative markers (such as
SNPs and AFLPs). The simulations show that relation-
ship inferences by our method deteriorate with an
increasing linkage among all the markers employed
(Figure 3). This is understandable because all markers,
when linked tightly, tend to behave like a single marker
and give a similar amount of information to a single
marker. However, the simulations also indicate that
loose linkage does not affect relationship assignments
substantially. Furthermore, the simulations considered
the worst scenario in which all markers are located in
the same small chromosomal segment. More realisti-
cally, the markers taken at random from the genome
may fall into several different linkage groups that are
independent in inheritance. For the weak genetic
structure considered in Figure 1, the percentages that
full-sib, half-sib, and parent–offspring dyads are cor-
rectly inferred are 97.3, 91.8, and 100%, respectively,
when 300 unlinked AFLPs are used, and become 95.3,
91.5, and 100%, respectively, when 300 AFLPs equally
spaced in a 30-M genome are employed. There are
almost no decreases in accuracy due to linkage in this
example. This is because although many closely linked
markers act as a single pseudomarker, such a pseudo-
marker becomes far more polymorphic and informative
than a single AFLP. Methods accommodating linkage
among markers have been developed for inferring the
relationships between two (e.g., Epstein et al. 2000;
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McPeek and Sun 2000) or three (Sieberts et al. 2002)
individuals. In principle, the same technique can be in-
corporated in our method to deal with linkage. How-
ever, the additional computational burden incurred may
be too prohibitive. More work in this direction is needed
in the future.

In addition to no linkage, several other assumptions
made in the current and previous methods may rarely
be satisfied in practical applications. Our simulations
(Figure 3) indicate that inbreeding in parents has little
effect, while inbreeding in offspring (or relatedness
between parents) has a small effect on the accuracy of
our method. Like linkage, inbreeding in parents and
offspring can be potentially accommodated and esti-
mated by the method. The questions are how much
reward of accuracy one gets by using a more compli-
cated (albeit more realistic) method, and at what cost. It
seems that the gain in accuracy is quite limited, given
the results shown in Figure 3. However, we surmise that
these assumptions may become more important with an
increasingly large and complicated family structure.

In addition to the quantity, the quality of marker data
has a large impact on the performance of parentage
(Marshall et al. 1998; Kalinowski et al. 2007; Hill et al.
2008) and sibship (Wang 2004) assignment methods.
To avoid false exclusions of sibship and parentage,
various models of genotyping errors have been pro-
posed and applied. Although differing in details, they
all have the same spirit that, by allowing for a small
probability of erroneous data, the likelihood is de-
termined by data from the majority of loci rather than
just one or a few incorrectly genotyped loci. In this art-
icle, the same error models proposed in Wang (2004)
for SSRs are adopted for all kinds of markers. Strictly
speaking, the mechanisms and thus patterns of geno-
typing errors are different for different kinds of
markers. Null alleles or allelic dropouts, for example,
are especially common for SSRs when cross-species
primers are used or when DNA quality and quantity
are low (Bonin et al. 2004), but may not apply to other
markers such as AFLPs and SNPs. The other error
model, which assumes that any allele can mutate to or be
observed as any other allele at an equal probability,
applies approximately to all kinds of markers.

The method described in this article is flexible and
can deal with many special cases in sibship and parent-
age analyses. Any known relationship in the sampled
individuals, for example, can be utilized together with
genotype information to infer unknown relationships. A
common situation in practice is that the sampled
individuals can be partitioned into mother–offspring
groups because mothers are known (e.g., when a litter of
offspring is guarded by a female or seeds are collected
from a tree). In such a case, we can use the known
maternal half sibship and maternal genotypes to parti-
tion each maternal half-sib family into full-sib families
and infer the father of each (Gottelli et al. 2007).

We thank Andrew Bourke, Bill Hill, Bill Jordan, and two anonymous
referees for valuable comments on earlier versions of this manuscript.
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