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ABSTRACT

A mutator is an allele that increases the mutation rate throughout the genome by disrupting some
aspect of DNA replication or repair. Mutators that increase the mutation rate by the order of 100-fold have
been observed to spontaneously emerge and achieve high frequencies in natural populations and in long-
term laboratory evolution experiments with Escherichia coli. In principle, the fixation of mutator alleles is
limited by (i) competition with mutations in wild-type backgrounds, (ii) additional deleterious mutational
load, and (iii) random genetic drift. Using a multiple-locus model and employing both simulation and
analytic methods, we investigate the effects of these three factors on the fixation probability Pfix of an
initially rare mutator as a function of population size N, beneficial and deleterious mutation rates, and the
strength of mutations s. Our diffusion-based approximation for Pfix successfully captures effects ii and iii
when selection is fast compared to mutation (m=s > 1). This enables us to predict the conditions under
which mutators will be evolutionarily favored. Surprisingly, our simulations show that effect i is typically
small for strong-effect mutators. Our results agree semiquantitatively with existing laboratory evolution
experiments and suggest future experimental directions.

THE most evolutionarily important characteristic
that an individual inherits from its parents is

the average number of offspring that it will leave in the
next generation, i.e., its fitness. But, is fitness the only
evolutionarily relevant heritable trait? The ultimate fate
of an individual depends not only on its immediate
properties, but also on those of its entire lineage of
descendants. Therefore, the genetic system that shapes
the statistical properties of this lineage is also an
evolutionarily relevant, selectable trait.

In this article we study one such property, namely a
globally elevated mutation rate. In practice this property
is inherited via a mutated copy of a gene, called a
mutator allele, involved in DNA copy or repair. We ask
the following basic question: What is the fixation pro-
bability of an initially rare mutator? This is a general-
ization of the classic population genetic calculation for
the fixation probability of a static mutant with selection
coefficient s (Fisher 1930). If the fixation probability of
a mutator allele differs from that of a neutral one (i.e.,
1/N), then the average mutation rate of the population
will be under selective pressure.

The selective forces acting on mutators is not purely
a theoretical issue. Natural populations quite often
contain a mixture of wild-type and mutator strains
(LeClerc et al. 1996, 2000; Matic et al. 1997; Oliver

et al. 2000; Giraud et al. 2001; Richardson et al. 2002;

Prunier et al. 2003; Björkholm et al. 2004; del Campo

et al. 2004; Watson et al. 2004). Furthermore, the
somatic tissues of multicellular sexual organisms com-
prise populations of asexually reproducing cells pos-
sessing opportunities for an increased growth rate.
Correspondingly, tumorigenesis has been associated
with mutator alleles (Loeb 1991). Even more strikingly,
laboratory-scale evolution experiments (Treffers et al.
1954; Miyake 1960; Mao et al. 1997; Sniegowski et al.
1997) have resulted in examples of spontaneous muta-
tor fixation. Several experimental studies (Chao and
Cox 1983; Mao et al. 1997; Giraud et al. 2001; Shaver

et al. 2002; Labat et al. 2005) indicate that mutators
achieve fixation because of the adaptive mutations
they generate and not because of any intrinsic fitness
advantage. Thus, selection on mutator alleles occurs via
an indirect mechanism. One of the goals of our work is
to make semiquantitative contact between our model of
indirect selection and the existing data of mutator
fixation in laboratory experiments.

The evolution of mutation rate is a problem that dates
back to the 1930s. The general issue was articulated by
Sturtevant (1937), and important theoretical contri-
butions date back to Kimura (1967) and Leigh (1970).
Theoretical studies proliferated during the last decade,
and the field is reviewed by Sniegowski et al. (2000) and
also by Denamur and Matic (2006). Given the abun-
dance of existing theoretical articles, it is critical to
understand how our work relates to and improves upon
this body of literature. We address this issue in detail in
the discussion. For now, we merely provide a brief
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sketch. First, we neglect the complicating influences
of recombination and environmental fluctuations. This
allows for a direct and comparatively precise treatment
of the simplest situation: a strictly asexual population
adapting in a constant environment. Even this simplest
scenario has rich and often counterintuitive behavior.
Second, our methods naturally treat both strong (e.g.,
100-fold) mutators and weak modifiers of mutation rate.
Third, unlike most previous work, we combine fully
stochastic simulations with an analytic approach. Our
analytic results for weak modifiers are a generalization
of previous work by Andre and Godelle (2006), but we
find that both approaches often fail to match simula-
tions. However, our work for strong mutators does match
simulations over the expected parameter range. The
simulations thus provide vital checks and guidance for
the analytic approach. Conversely, the analytic approach
deepens our understanding of mutator fixation and
makes predictions in parameter regimes that are com-
putationally inaccessible via simulation. Finally, unlike
previous work, our diffusion-based analytic approach
captures the effects of random genetic drift. This allows
for not only exploration of regimes where random drift
is important, but also a quantitative understanding of
when it can be neglected.

The outline of this article is as follows. We begin with
a heuristic discussion of mutator dynamics. Next, we
construct and simulate a stochastic model of asexual
populations that include mutator alleles. We do not
explicitly allow for the formation of mutators, merely
the competition between mutators and wild-type strains
once mutators arise. Afterward, steered by the outcome
of simulations, we develop a quantitative understanding
of the results of the stochastic simulations. Although a
full mathematical treatment turns out to be intractable,
we are able to devise an approximation scheme that
captures many features of the simulation results. We
then solve our approximation scheme, both numeri-
cally and analytically. The resulting expressions allow a
comparison to the Escherichia coli experiments of Lenski
and co-workers (Table 1) (Sniegowski et al. 1997).

HEURISTIC ANALYSIS

Here we briefly explain the conceptual factors un-
derlying mutator fixation. The equations in this section
should be considered merely as heuristic guides and not
formal results.

Since mutator alleles do not directly affect fitness,
their dynamics must be guided by association with other
genes that do have a direct fitness effect. In asexuals, all
loci sharing the same genome with a sweeping benefi-
cial mutation will also become fixed via ‘‘hitchhiking’’
(Maynard-Smith and Haigh 1974). Whereas most
alleles hitchhike completely passively, the mutator allele
plays a somewhat active role in facilitating its own

hitchhiking by increasing the probability of a beneficial
mutation elsewhere in the genome. This well-known
mechanism occurs in our simulations and is evident in
Figure 1.

At the same time, the wild-type subpopulation also
generates advantageous mutations. When this occurs,
mutators become extinct due to fixation of their coun-
terpart wild-type alleles. Although the wild type gener-
ates mutations more slowly on a per capita basis, if it
vastly outnumbers the mutator subpopulation, then the
total mutation rate in the wild-type background may be
larger. Along these lines, it is tempting to think of the
number of mutators as initially constant and that the
mutator will achieve fixation if and only if it generates a
sweeping beneficial mutation before the wild-type
background does. This means that

Pfix ¼ xo
m1

m
¼ xom1

xom1 1 ð1� xoÞm�
; ð1Þ

where xo is the initial frequency of mutators and m1

(m�) is the genomewide mutator (wild-type) mutation
rate. This equation has striking qualities. First, it is
independent of the following prima facie important
parameters: population size N, selection coefficient of
mutations s, and the fraction of mutations that are
beneficial vs. deleterious. Second, and more subtly, the
equation is explicitly frequency dependent. It will turn out
that Equation 1 arises as a limiting form of our analytic
expression, but does not typically match the results of
simulations.

TABLE 1

Commonly used notation

Symbol Usage

N Total population size
m� Wild-type mutation rate per

genome
m1 Mutator mutation rate per

genome
U Mutation rate into mutator

state
L Length of genome
b Number of 1’s in genome
d Fraction of mutations that

are lethal
x Mutator frequency
m [ ð1� xÞm�1 xm1 Average mutation rate per

genome
R [ m1/m� Mutator strength
r [ b/L Growth rate per individual per

simulation time step
s ¼ 1/b Selection coefficient of

nonlethal mutation
a [ 1 � b/L Fraction of 0’s in the genome
ae [ a(1 � d) Fraction of mutations that

are beneficial
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In contrast to the frequency-dependent Equation 1,
a classic result from population genetics (Fisher 1930)
is the fixation probability of a mutant with a simple
selective advantage:

Pfix ¼
1� e�NxoS

1� e�NS : ð2Þ

This result holds for haploid populations using Moran
process dynamics and merely requires factors of 2 in the
exponents to handle diploids or Wright–Fisher dynam-
ics. In Equation 2, Pfix depends on the frequency of
mutants only via the product Nxo, i.e., the initial number
of mutants. Thus, Equations 1 and 2 scale differently
with population size. The form of Equation 2 implies
that (when NS ? 1) Pfix � 1� e�NxoS � 1� ð1� SÞNxo

and we can think of each mutant as an independent
‘‘trial’’ with fixation probability S. In other words, if the
fraction xo is kept constant and N is increased, Equation
1 says that Pfix should remain unchanged whereas
Equation 2 says that Pfix should increase. On the other
hand, if Nxo is held constant as N is increased, Equation
1 predicts a decrease in Pfix whereas Equation 2 predicts
that Pfix remains unchanged. Since mutators achieve
fixation by hitchhiking with mutations that are them-
selves governed by Equation 2, perhaps we should a
priori view Equation 1 with suspicion. Indeed, our sim-
ulation data and analytic methods will show that mutator
fixation is often governed by an equation with the form
of Equation 2.

While Equation 1 completely neglects deleterious
mutations, they are the basis for another heuristic line of
thought. In any realistic biological population, regard-
less of how maladapted, deleterious mutations vastly
outnumber advantageous ones. Because of this, upon

first thought, one might think that the mutator allele
will do more harm than good and therefore be selected
against. Although it is true that an elevated mutation
rate will quite likely cause an immediate decrease in the
population’s mean fitness, evolution does not always act
to maximize this quantity. The situation is understood
more clearly in the following game theoretical context.
A beneficial mutation often greatly increases the prob-
ability that a lineage will achieve complete evolutionary
success by sweeping through the entire population,
whereas a deleterious mutation only slightly decreases
the low probability of a neutral sweep. More quantita-
tively, we can think of the ‘‘payoff’’ for a sweeping ad-
vantageous mutant as the entire population size N. For
this to occur, the mutator must generate a beneficial
mutation that must then survive in spite of random drift.
In contrast, the payoff for a deleterious mutant is merely
a single individual who is destined to die out with near
certainty. The mutation strategy is favored when its
expected payoff is greater than zero; i.e.,

N � pðsÞ � mben � 1 � mdel . 0; ð3Þ

where p(s) is the fixation probability of a simple mutant,
given by Equation 2 and mben (mdel) are the beneficial
and deleterious mutation rates, respectively. Note that
this expression weights beneficial mutations N � p(s)
times more heavily than deleterious ones, underscoring
their asymmetric effects. Later in this article, we show
that Equation 3 also follows from a rigorous mathemat-
ical analysis.

Thus far we have argued that the fate of mutators is in
principle limited both by competition with wild type and
by their increased load of deleterious mutants. Addi-
tionally, random genetic drift is commonly a potent

Figure 1.—Some sample runs
from simulations where the wild--
type mutation rate is zero. (Top)
The number of mutators in the
population vs. rt=N , where r is
the birth probability per time step
that is proportional to the (ini-
tial) mean population fitness.
(Bottom) The average number
of beneficial mutations in the
mutator subpopulation is shown.
The solid lines resulted in fixa-
tion of the mutator allele,
whereas the shaded lines resulted
in its loss. When the mutation
rate of the mutators (m1) is not
too large, the mutator hitchhikes
to fixation with a single beneficial
mutation (left). When m1 is
larger, many beneficial mutations
occur during the fixation process

(middle and right). Our analytic approximation scheme assumes that the fixation process is triggered by merely the first beneficial
mutation to survive drift. Note that in each case the population is always far from the fitness maximum when the mutator achieves
fixation since there are 80 possible beneficial mutations. Parameters are N¼ 105, xo¼ 0.005, d¼ 0, wild-type mutation rate m� ¼ 0,
and m1 ¼ 10�5 (left), m1 ¼ 10�3 (middle), and m1 ¼ 1 (right). a ¼ 0.4, s ¼ 1

120 (initial values).
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force acting on rare subpopulations. Each mutator
begins its existence selectively neutral. It can be shown
that random drift eliminates neutral alleles from the
population with a high probability ¼ 1 � 1/N and that
the average time taken to do so is merely �ln(N)
generations (Crow and Kimura 1970). Although we
cannot write down a ‘‘back of the envelope’’ estimate of
this effect, we later derive a formula that fully incorpo-
rates random drift and specifies the parameter regimes
in which it dominates mutator fixation.

Our analytic work results in a formula for the mutator
fixation probability in terms of simple parameters.
Examining this expression yields a quantitative sense
of the relative importance of random drift, deleterious
mutations, and beneficial mutations. This allows us to
define ‘‘strong-effect’’ and ‘‘weak-effect’’ mutator re-
gimes in terms of the model parameters. In the strong-
effect regime, mutations in the wild-type background do
not affect mutator success and our analytic approach
works well. In the weak-effect regime, mutations in wild-
type backgrounds are predicted to be the dominant
influence on mutator fixation. However, in the case of
weak-effect mutators, we will show that our analytic
approach, like existing work by Andre and Godelle

(2006), typically overestimates the competitive effects of
mutations in wild-type backgrounds. When this is true,
Equation 1 provides a poor description of mutator
fixation. We now turn toward a discussion of our
stochastic simulations that provide an invaluable refer-
ence to which we compare our analytic work.

DESCRIPTION OF STOCHASTIC SIMULATIONS

We model haploid asexual populations of fixed size N
undergoing stochastic processes of birth, death, and
mutation. Initially, a fraction xo > 1 of the population
are mutators and all individuals have the same fitness.
The birth–death–mutation process is iterated until the
population consists entirely of either mutators or wild
type. Transitions between the mutator and wild-type
states are not allowed. We do not model environmental
changes explicitly, thereby assuming that the process of
mutator fixation occurs on a timescale much shorter
than that associated with environmental changes.

Our stochastic simulations are based on the well
known ‘‘Moran process’’ (Moran 1992). The following
sequence of actions occurs every discrete time step:

1. A randomly selected individual is chosen as a po-
tential parent.

2. The chosen individual gives birth with probability
proportional to its fitness. If it does not give birth, the
simulation advances to the next time step.

3. A randomly chosen individual, other than the baby, is
killed.

4. The baby undergoes a deleterious (beneficial) mu-
tation with probability equal to its deleterious (ben-

eficial) mutation rate. This mutation rate of course
depends on whether the baby is a mutator or a
wild type. Mutations between mutator and wild-type
alleles are not allowed. In effect, this assumes that
mutators are generated on a timescale much longer
than that of the entire ‘‘competition experiment.’’

We model the genome of each individual as a string of
L bits (Crosby 1970; Tsimring et al. 1996; Woodcock

and Higgs 1996). A fraction d of these bits correspond
to critical sites in the genome that, when mutated, cause
a lethal phenotype. In this case, the baby is never born,
and the simulation simply advances to the next time
step. Changing the value of d in effect allows for some
adjustment of the distribution of deleterious mutational
effects. The birth probability per unit time, which we
denote r, is proportional to the log-fitness of the chosen
individual and equals the fraction of 1’s in the genome,
denoted by b/L. Key parameters are a [ 1 � b/L and
ae [ (1 � d)a, i.e., the fraction of sites that would be
beneficial if mutated. Thus, all nonlethal mutations
have the same strength and genes do not interact. This
scheme for assigning fitness to genotypes is known as a
‘‘multiplicative Fujiyama’’ fitness landscape and is the
K ¼ 0 version of Kaufman’s ‘‘NK’’ model (Kauffman

1993). This toy landscape is obviously a useful mathe-
matical simplification. Additionally, recent experimen-
tal work by Hegreness et al. (2006) and Desai et al.
(2007) shows that some dynamics of real bacteria and
yeast populations can be captured by considering
mutations of only a single strength.

Mutation is implemented by ‘‘flipping’’ bits with a
probability m6=L per bit per birth event, depending on
whether the baby is a mutator (1) or a wild type (�).
The total number of flips is determined by drawing a
binomially distributed random number with success
probability m6=L and number of trials L. Each mutation
has a probability d of being lethal. If no mutations are
lethal, the number that are beneficial is determined by
drawing another binomially distributed random num-
ber with success probability a and number of trials equal
to the number of flips. Unless m6 is O(1), the probability
of more than one mutation occurring during a single
birth event is negligible and we refer to the genomewide
mutation rate as m6.

Another useful parameter is s ¼ ð1=LÞ=ð1� aÞ,
which, like a and ae, changes throughout the simula-
tion as the population evolves. We emphasize that this
fitness-dependent value of s does not represent an
epistatic effect. Rather, it is a consequence of mutations
that result in a fixed, additive increment in ‘‘log-fitness.’’

A consequence of our genomic model is that both
the beneficial and the deleterious mutation rates will
be larger than values encountered in biological pop-
ulations unless L is extremely large. While this may
seem like an unnecessary and undesirable restriction,
it will turn out that our analytic results, which readily
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handle arbitrary values of the mutation rates, are
insensitive to these details of our bit-string simulation
model.

SIMULATION RESULTS

To simplify matters, we first investigate the case where
the wild-type mutation rate is zero; results for the more
general case are given later. Figure 1 shows typical runs
for this case. The graphs make it clear that if the mutator
mutation rate, m1, is sufficiently small, the mutator
allele hitchhikes to fixation with a single beneficial
mutation. This simple observation reminds us that
mutator fixation or loss is not the result of winning
the race up the fitness landscape, but rather hitchhiking
with beneficial mutations. Thus, mutator alleles are
better thought of as consequences of asexual evolution
than causes of more rapid evolution (Sniegowski et al.
2000). When m1 is larger, the dynamics are more
complex. Despite this complexity, we later show, via
the success of our analytic approximation scheme, that
the fixation process is triggered mostly by the first
beneficial mutation to escape random drift.

Dependence on m1: Figure 2 presents simulation
results for three different population sizes and two dif-
ferent degrees of adaptation. The fundamental mea-
sured quantity is the fixation probability Pfix of an
initially rare mutator. When Pfix > 1, the mutators are
completely independent of one another and Pfix in-
creases linearly with xo (data not shown). To normalize
against the effect of xo, we consider the slope of said
linear increase, dPfix/dxo, which equals the mean
number of mutator descendants left by each mutator,
as our preliminary measure of mutator success. Figure 2
(left) shows how dPfix/dxo depends on m1. The small
and large m1 limits make qualitative sense: as m1/0,
the mutator phenotype is ‘‘turned off’’ and therefore
neutral, resulting in dPfix=dxo/1. On the other hand
when m1 * 1, a mutation occurs nearly every birth
event and the fitness of an evolutionary line of in-
dividuals takes a biased random walk toward the
much lower fitness of a completely random genome.
Thus, although it is computationally prohibitive to
measure a negligible fixation probability, it is clear
that the mutator allele is nearly lethal at sufficiently
large m1.

Dependence on N, and mutator effective selection
coefficient: Figure 2 also shows that dPfix/dxo increases
with increasing N. This behavior is incompatible with
Equation 1, which is independent of N, but is fully
consistent with Equation 2:

Pfix ¼
1� e�NxoS

1� e�NS :

We now quantitatively consider whether Equation 2,
which applies to mutants with a direct fitness advantage,

also describes mutators with indirect fitness effects. For
this to be the case, the fixation probabilities measured
from simulations with differing values of N and xo would
all correspond to a single value of Sm(a, s, m1, m�, d).
Using the values of Pfix measured from simulations, we
used a computer to invert Equation 2, thereby obtaining
corresponding values of Sm. Figure 2 (right) shows that,
when NSm ? 1, there indeed exists an underlying
quantity Sm, which we call the ‘‘effective mutator
selection coefficient,’’ that remains invariant as N, xo,
and Pfix change.

There are several advantages to using Sm as the
measure of mutator success. First, it allows Equation 2
to determine in advance how Pfix depends on N and xo,
thereby reducing our number of parameters by two.
Second, it allows us to apply aspects of our conceptual
understanding of direct mutants to the fixation of
indirect mutators. For example, when NSm ? 1, Pfix for
a single mutator becomes independent of N; i.e., the
notion of a frequency independent per capita fixation
probability makes sense. Third, the existence of Sm, in
the sense of Equation 2, invites future questions. For
example, one may wonder whether Sm, in addition to
determining Pfix, also describes the average dynamical
behavior of the mutator subpopulation, e.g., whether
ÆxðtÞæ � eSmt when rare. In this article we do not apply
such an interpretation on Sm. Rather, we merely in-
terpret it as a succinct descriptor of mutator success.

Dependence on strength of mutations: Figure 3
shows how Sm depends on the strength of the mutations
on our fitness landscape, as measured by s. Figure 3
(left) shows that as s is increased, Sm also increases and
reaches its maximum value at a faster mutation rate.
Figure 3 (right) demonstrates that the curves in the left
panel are not as different as they appear: when Sm and
m1 are each scaled by s, the curves become nearly
identical. This means that Sm is directly proportional to s
and that Sm is governed by the single composite
parameter m1/s rather than m1 and s separately. Thus,
an examination of the simulation data has allowed us to
reduce our number of parameters by three.

INSTANTANEOUS SINGLE-LOCUS
APPROXIMATION

Stochastic simulations provide valuable signposts
along the way to understanding mutator fixation.
However, a deeper understanding, and the ability to
probe computationally prohibitive regions of parame-
ter space, requires an analytic approach as well. At a
given time, the state of the population is fully specified
by (i) the number of mutators, (ii) the fitness distribu-
tion of the wild-type subpopulation, and (iii) the fitness
distribution of the mutator subpopulation. A complete
solution to the stochastic process requires an enumer-
ation of the transition probabilities between each of
these states at each point in time. The problem with
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such an approach is the extremely large number of
possible fitness distributions and the correspondingly
high dimensionality of the resulting governing differ-
ential equations. To make progress, we note the heuris-
tic rule that deleterious mutations are rapidly removed
from the population, whereas beneficial mutations, and
all loci linked to them, become rapidly fixed. This
observation motivates the following approximations
that handle mutations, which are the ultimate source
of the aforementioned daunting multiplicity of fitness
distributions.

Approximation 1: We assume that when a beneficial
mutation arises, it instantly becomes fixed with a pro-
bability given by the classical fixation probability p of a
beneficial mutation in a static, homogeneous environ-
ment. For our Moran process dynamics, this probability
is simply s if s > 1 and Ns ? 1. All loci in the genome in
which the beneficial mutation arose also achieve fixa-
tion via hitchhiking. This represents the most common
process by which the mutator allele achieves fixation or
loss.

Approximation 2: The remaining fraction 1 � s of
beneficial mutations is simply ignored and treated as if
no mutation occurred. This approximation is necessar-
ily somewhat awkward. On the one hand, approxima-
tion 2 (A2) is unnatural in that it allows lineages that are
destined to be extinguished by random drift to remain
in the population and potentially generate their own
beneficial mutants. An alternative, which we call A2*, is
to immediately kill the beneficial mutants that do not
sweep, which is clearly too harsh. These two alternatives
lead to a trivial difference in our formulas and are
discussed in the supplemental material.

Approximation 3: Deleterious mutations are treated
as effectively lethal, since their descendants are quickly
removed from the population. This results in an effec-
tive reduction in the birthrate of the mutator strain.

Since these approximations preclude fitness poly-
morphism over finite time intervals, they allow us to
describe the dynamics of the entire population with the
single time-dependent random variable x, i.e., the
frequency of the mutator locus. Approximating x as a

Figure 2.—Averaged results of simulations, and the utility of Sm as the measure of mutator success. When Pfix > 1, Pfix increases
linearly with xo (data not shown). (Left) The (least-squares) slope of said linear increase when the population is well adapted (bot-
tom) and poorly adapted (top) to its environment is shown. The data on the bottom row are quite noisy because of the small num-
ber of trials resulting in fixation. (Right) The same data are expressed, but in terms of the effective selection coefficient Sm of the
mutator allele obtained by inverting Equation 2. Whereas the values from the left obviously depend on N, the values on the right
panels are independent of N when NSm ? 1. This suggests that Sm, which exposes an underlying simplicity to the simulation results, is a
more natural measure of mutator success than Pfix. Note that when the mutator is favored, Sm is always less than the selective ad-
vantage s of a single beneficial mutation; this is due both to deleterious mutations and to loss due to random drift. Parameters are s¼
1

120 , m� ¼ 0, d ¼ 0, and a ¼ 0.4 (top) and 0.008 (bottom). See the supplemental information for details concerning averaging.

1600 C. S. Wylie et al.



continuous variable, and expressing time in ‘‘genera-
tions,’’ the diffusion equation governing P(x, t) is

@P

@t
¼ 1

N

@2

@x2 ½xð1� xÞP �

1 ðm1 � m�Þ½1� aeð1� sÞ� @
@x
½xð1� xÞP �

� N aes½xm1 1 ð1� xÞm��P ð4Þ

(see the supplemental information for a detailed
derivation). Each of the three lines in Equation 4 has
a straightforward physical interpretation. The first line
represents ‘‘random genetic drift.’’ The second line
represents the mutational load of the mutator. The final
line represents the ‘‘decay’’ of probability from the open
interval x 2 (0, 1) due to beneficial mutations that
instantaneously sweep.

An approximation to a limited version of Equation 4
is solved in the supplemental information. However, we
can write anequivalent ‘‘backward Kolmogorov’’ equation
that is often more mathematically convenient than Equa-
tion 4. Defining G(xo, t) as the probability that the muta-
tor has been lost by time t, given that x¼ xo at t¼ 0, we find

@Gðxo; tÞ
@t

¼ 1

N
xoð1� xoÞ

@2

@x2
o

Gðxo; tÞ

� ðm1 � m�Þ½1� aeð1� sÞ�xoð1� xoÞ
@

@xo
Gðxo; tÞ

� N m1aesxoGðxo; tÞ1 N m�aesð1� xoÞð1� Gðxo; tÞÞ:

ð5Þ
The backward equation is primarily useful in its steady-
state form. Defining Gðxo; t/‘Þ[ G‘ðxoÞ and taking
the continuum limit, we obtain the ordinary differential
equation (ODE)

0 ¼ 1

N

d2

dx2
o

G‘

� ðm1 � m�Þ½1� aeð1� sÞ� d

dxo
G‘

� N m1aes
G‘

1� xo
1 N m�aes

1� G‘

xo
: ð6Þ

Solution and analysis without wild-type mutations:
We return for now to the simpler case m� ¼ 0, deferring
until later the more general situation. Equation 6 can
be solved exactly in terms of the Whittaker M function
(Abramowitz and Stegun 1965). This exact solution
is, however, not immediately instructive (and in any case
cannot be generalized to the case of finite wild-type
mutation rate). It is simpler in practice to solve Equation
6 numerically (see the supplemental information). It is
also possible to extract some useful information directly
from the differential equation.

First, we note that a simple analysis reveals when the
mutator allele will be favored. For notational conve-
nience we define the constants

B [ m1½1� aeð1� sÞ�
C [ m1aes:

According to instantaneous single-locus approximation
(ISLA), the mutator is neutral for all m1 when G‘(xo) ¼
1 � xo. Plugging this into Equation 6, we find that this
requires B ¼ NC, or

acrit
e ¼ 1

1 1 ðN � 1Þs �
1

1 1 Ns
: ð7Þ

It is easy to check that this expression also holds for the
m� . 0 case. First note that Equation 7 is equivalent to
our heuristic guess, Equation 3, if Ns ? 1. Examining
Equation 7, we see that conditions that favor the

Figure 3.—Dependence on the underlying selective advantage s. The data corresponding to two values of s, i.e., two values of L,
approximately collapse onto a single curve when Sm and m1 are each scaled by s. The scaling of the independent variable under-
scores the fact that mutator success for fixed a is largely controlled by the ratio of timescales for mutation (1/m1) and selection
(1/s). In particular, the sharp decrease in Sm at large m1 occurs when these timescales become comparable, i.e., when deleterious
mutations accumulate in an expanding lineage before it has sufficient time to achieve fixation. Parameters are N ¼ 5000, m� ¼ 0,
a ¼ 0.4, and d ¼ 0.
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emergence of mutators (at least when the resident
mutation rate m� is negligibly small) are large popula-
tion size, potent mutations, and a relatively large
fraction ae of sites that would be beneficial if mutated,
perhaps due to an environment to which the organism is
not well adapted. The fact that large ae favors mutators
is obvious. The dependence on N is simply a result of
the fact that as population size increases, the neutral
fixation probability 1/N becomes an easier benchmark
to exceed. The qualitative dependence on s is also
straightforward in hindsight, given approximations 1–3
(A1–A3): increasing s increases the fraction of ben-
eficial mutations that achieve fixation, but does not
affect the fate of deleterious mutations, all of which are
treated as lethal. Also note that for sufficiently large N
the mutator is always favored, although its fixation
probability may be very small: it is favored only in the
sense that it fares better than a neutral allele whose
fixation probability is 1/N. Figure 4 demonstrates the
success of Equation 7 when m1=s > 1. The failure of
ISLA for larger m1/s is discussed later. We next develop
approximate solutions to Equation 6, with m� ¼ 0.

Strongly favored mutators (NSm ? 1): In this regime, we
expect Pfix to increase rapidly with xo. Therefore, we
expect the loss probability G‘(xo) to decrease rapidly,
and 1/(1 � xo) to differ significantly from 1 only when
G‘ � 0. Then, for xo > 1, we can approximately take
1� xo/1, and the solution to Equation 6 with m� ¼ 0 is
simply

G‘ðxoÞ ¼ e�Nzxo

z [

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 1 4C
p

� B

2
: ð8Þ

Our approximation is self consistent if indeed G‘ decays
rapidly; i.e., Nz ? 1. This solution does not satisfy the

boundary condition at xo ¼ 1 since our solution is only
valid for xo > 1. Beyond this region the structure of
the solution is more complicated, which need not con-
cern us here since fixation is essentially total in this
regime. We then have for the fixation probability of the
mutator

PfixðxoÞ ¼ 1� e�Nzxo ðNz ? 1Þ: ð9Þ

A comparison with Equation 2 shows that, according to
A1–A3 and in the limit Nz ? 1, the mutator effectively
behaves like a simple advantageous mutant with a well-
defined selection coefficient Sm ¼ z:

Sm ¼ z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 1 4C
p

� B

2

� m1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� aeÞ2 1 4aes=m1

q
� ð1� aeÞ

� �
NSm ? 1:

ð10Þ

A comparison of the stochastic simulation data with
both a numerical solution of Equation 6 and this
approximate analytic expression (Equation 10) is given
in Figure 5. We see that our approximate Sm/s depends
only on m1/s rather than m and s separately, as we noted
in simulation results.

For small m1 > aes, C ? B2 and Sm �
ffiffiffiffi
C
p
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

m1aes
p

,
and thus only advantageous mutations are relevant to
mutator success. This result (which is directly supported
by Figure 7 to be discussed later) shows that in this
regime, random drift, and not deleterious mutations, is
the only check on mutator success.

In the complementary regime where m1 ? aes; jSmj
approaches its maximum value Sm* with respect to m1.
Here, the solution is the same as if the second derivative
term, which represents random drift, were dropped
from Equation 6 (see below). Therefore, random drift is
irrelevant in this regime and deleterious mutations
alone limit mutator success, giving

Sm* ¼
C

B
� ae

1� ae
s: ð11Þ

The factor in Equation 11 multiplying s is the ratio of
beneficial mutations to deleterious and lethal muta-
tions. In real biological populations, this ratio is
certainly less than one, and hence Sm* > s.

Marginal mutators (NSm & 1): We can readily make
progress in this regime if N m1 ? 1 and N 2m1aes ? 1. In
this case, the B and C terms dominate Equation 6 and
the solution for G‘ is simply

G‘ðxoÞ � ð1� xoÞNSm* ð12Þ

with a fixation probability PfixðxoÞ � NxoSm*. In obtain-
ing this solution, we dropped the second derivative
term in Equation 6, which could in principle introduce

Figure 4.—Behavior near the transition from favored to
disfavored mutators. When ae is greater than a critical value
acrit

e , the mutator allele is favored (Sm . 0) for small enough
m1. Our analytic approach (ISLA) predicts that the transition
occurs at (Ns 1 1)acrit

e ¼ 1, which agrees extremely well with
simulation data. Parameters are N¼ 5000, s¼ 1

120 , m� ¼ 0, and
d ¼ 0. The numbers of available beneficial mutations are, in
order of decreasing mutator success, 10, 5, 3, and 1.
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large errors near xo ¼ 1, where G$(xo) from Equation
12 is in fact large. Nonetheless, it turns out that
Equation 12 satisfies the boundary condition at xo ¼ 1
and thus remains a valid leading-order approximation
for all xo. Since Pfix is comparable to 1/N in the present
marginal case, we cannot interpret Sm* as a mutator
selection coefficient here. Rather, we have Pfix ¼ xo(1 1

NSm/2), from which we obtain NSm ¼ 2ððaeðNs 1 1Þ�
1Þ=ð1� aeÞÞ, independent of m1. The numerator of
this expression makes clear the agreement with our
previous estimate for the critical value of ae given by
Equation 7.

The case where Nm1 & 1 and NSm & 1 requires a more
lengthy analysis and is presented in the supplemental
information.

EFFECT OF WILD-TYPE MUTATIONS

We now turn our attention to the more complicated
case when mutations in wild-type backgrounds are
allowed; i.e., m� . 0. We begin by solving Equation 6
for m� . 0 in the large Nm6 limit, where the second
derivative term can be neglected. Working in this limit
simplifies the mathematics and is sufficient for illustrat-
ing the points that we intend to make. An approxima-
tion that incorporates the second derivative term and
random drift is included in the supplemental informa-
tion. In the large Nm6 limit,

0 ¼ �ðm1 � m�Þ½1� aeð1� sÞ� d

dxo
G‘

� N m1aes
G‘

1� xo
1 N m�aes

1� G‘

xo
:

This first-order, linear ODE can be solved by standard
methods. Defining R [ m1/m�, we obtain

Pfix � Nxos
ae

1� ae
1 1

aeðNs 1 1Þ � 1

Rð1� aeÞ

� ��1

1 Oðx2
oÞ:

ð13Þ

The prefactor in Equation 13 is identical to our previous
expression for the m� ¼ 0 case (Equations 11 and 12)
when xo > 1. Recall that the sign of the quantity ae(Ns 1

1) � 1 � Naes � 1 determines whether mutators are
favored (Equation 7). Therefore, mutations in wild-type
backgrounds decrease Pfix when mutators are favored
and increase Pfix when they are disfavored. This latter
effect occurs because mutating is generally a losing
strategy when ae(Ns 1 1) � 1 , 0 (see Equation 3): the
small persistent cost of deleterious mutations exceeds
the huge occasional benefit of a selective sweep. Thus,
in this regime the wild type aids the mutator by
participating in this losing strategy.

Equation 13 also determines when R is sufficiently
large to ignore mutations in wild-type backgrounds. In
other words, Equation 13 allows us to define natural
strong-effect and weak-effect mutator regimes. For weak-
effect mutators, ðaeðNs 1 1Þ � 1Þ=ð1� aeÞ � N aes ? R ,
and Equation 13 reduces to Pfix ¼ xoR, which is in-
dependent of N. This is the same as Equation 1 for xo > 1.
Thus, in this regime, ISLA predicts that mutational
competition with the wild type is the dominant factor
limiting mutator fixation, and we recover the explicitly
frequency-dependent heuristic picture. In the opposite
extreme of strong-effect mutators, regardless of the sign
of ae(Ns 1 1) � 1, we recover our m� ¼ 0 result
(Equations 11 and 12) where deleterious mutations are
the dominant factor limiting mutator fixation.

These are pleasing mathematical results that seem to
reconcile opposing heuristic viewpoints. However, they
do not always match simulations in the weak-effect mu-
tator regime. Figure 6 (right) shows numerically gener-
ated solutions to Equation 6 (Equation 13 gives the

Figure 5.—Comparison of simulation, numerical solution of Equation 6, and the analytic approximation Equation 10. The
exact numeric solutions to our ISLA Equation 6 for different N converge to the analytic approximation Equation 10 when
NSm ? 1 (left). Solutions to Equation 6 show, in agreement with simulation, that Sm/s depends on m1/s rather than m1 and s
separately (right). Parameters are those used in Figures 2 and 3.
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large m limit of these curves) as compared to the
outcome of simulations. The disagreement is obvious:
ISLA drastically overestimates the effect of the muta-
tions in wild-type backgrounds. Figure 6 shows that
beneficial mutations in wild-type backgrounds eventually
decrease Sm for large enough R, although the decrease
here is smaller than what ISLA predicts. The small effect
of these mutations persisted even when we used param-
eters such that the wild-type subpopulation generated
mutations at a rate N(1� xo)m� that was equal to or even
greater than the corresponding rate Nxom1 in the
mutator subpopulation. Although we do not fully un-
derstand this discrepancy, we can point to its source: there
is a subtle error involving the final term of both Equations
4 and 5, which states that during a single time step the
mutator has a probability (1 � x)m�aes of becoming
instantly lost. This is incorrect. The correct statement is
that (1� x)m�aes is the probability that during one time
step the wild type generates a beneficial mutation that will
eventually escape loss to random drift. Such mutations
sweep through the population during a mean time
interval tsweep� lnðNsÞ=s generations, which is typically
much longer than the time to extinction of a mutator due
to random drift, �tdrift � lnðN Þ (Crow and Kimura 1970).
However, for sufficiently large s, tsweep is small, A1
becomes a better approximation, and ISLA more closely
matches simulations. An example of this agreement is
presented in the supplemental information, where s¼ 1

3 ,
N ¼ 1000, ae ¼ 0.4, and R ¼ 10. Thus, ISLA provides
accurate results except in the weak-effect mutator regime
with sufficiently small s. Unfortunately, we do not have a
quantitative sense as to how large s must be to achieve
accuracy. We plan to address this issue in future work.

In the supplemental information, we more closely
examine the role of m� by presenting and interpreting
the distribution of fixation and loss times for mutators
when m� ¼ 0 and m1/m� ¼ 100.

COMPARISON OF ISLA TO SIMULATION

We now return to the case m� ¼ 0, where the results
of ISLA agree with simulations when R [ m1/m� is
sufficiently large. Figures 4 and 5 illustrate the agreement
between ISLA Equation 6 and simulations, whenever
m1/s is not too large. However, for larger m1/s, we see
the emergence of two qualitatively distinct discrepancies
between ISLA and simulations. For m1/s & 1, a relatively
small difference accumulates, whereas when m1/s rea-
ches values of O(1), a drastic difference emerges. In this
section, we analyze the sources of these discrepancies.

The broad reason that ISLA and simulation do not
agree for all m1 is simply that A1–A3 and the resulting
transition probabilities are only an approximation of
the complex stochastic process executed by the simu-
lations. Indeed, strictly speaking, the simulation does
not even undergo a Markov process with respect to
the variables x, t: one must also consider the fitness
distributions of the subpopulations to write down the
exact transition probabilities. When viewed this way, it is
perhaps surprising that A1–A3 work as well as they do.
We now specifically point out the errors introduced as a
result of A1–A3, all of which are associated with
mutational processes.

A3 is accurate when m1/s & 1: We first analyze the
way that ISLA treats deleterious mutations, which
includes both A3 (which treats all deleterious mutations
as lethal) and A1 (which does not allow deleterious
mutations to arise in the course of fixation of an
‘‘evolved’’ clone). Figure 7 (right) compares simulation
results from two sets of parameters with identical
beneficial mutation rates (aem1) but different alloca-
tions of lethal and deleterious mutations via a difference
in the parameter d. The results are essentially identical
as long as m1/s & 1. This shows that as far as mutator
fixation is concerned, mutations of effect �s can be
considered lethal; i.e., A3 is accurate in this regime.

Figure 6.—Small effect of mutations arising in wild-type backgrounds. ISLA predicts that these mutations will become important
in the weak-effect mutator regime defined by Rð1� aeÞ=N aes & 1, where R [ m1/m�. However, the simulation data show that
mutations in wild-type backgrounds sometimes have a negligible impact even in the weak-effect mutator regime. (Right) Rð1�
aeÞ=N aes has the values 18, 3.6, and 0.18, respectively, as N is increased. Accordingly, ISLA predicts a decrease in Sm, but Sm did not
change in simulations. (Left) Beneficial mutations in wild-type backgrounds eventually decrease Sm for large enough R, although
the decrease here is smaller than what ISLA predicts. Parameters are a ¼ 0.4, s ¼ 1

120 , d ¼ 0, and m1/m� ¼ 100 (right).
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A1 is accurate when m1/s & 1: Furthermore, we can
test all the effects of deleterious mutations by removing
them from both the simulations and ISLA: the delete-
rious mutation rate is set to zero whereas the advanta-
geous mutation rate is left unchanged. The results of
this case are presented in Figure 7 (left). Predictably, Sm

increases monotonically with m1 in this case (data not
shown). To compare the effect of deleterious muta-
tions in simulations against those same effects accord-
ing to ISLA, Equation 6, we plot the difference DSm [

Sm,no deleterious � Sm,deleterious between results with dele-
terious mutations ‘‘off’’ and those with deleterious
mutations ‘‘on’’ in the two cases. We see in Figure 7
(left) that DSm from ISLA matches that from simulation
until m1=s/1. Also note that DSm � 0 for m1=s > 0:1,
illustrating the negligible effect of deleterious muta-
tions in this regime. Thus, both A1 and A3 are accurate
when m1/s & 1.

A2 fails when m1/s & 1: Since A1 and A3 remain
valid in this regime, the mild discrepancy between
simulations and ISLA must originate in A2, which
handles beneficial mutations. Specifically, the fraction
(1� s) of advantageous mutants that are lost to random
drift is treated as neutral mutators that can later give rise
to beneficial mutants that may sweep through the
population. In some sense, this overstates the potential
of these mutants because, in fact, they are typically lost
to random drift within a few generations (Crow and
Kimura 1970). There is no simple remedy for this
deficiency in A2, but an alternative, which we denote
A2*, is to immediately kill these advantageous mutants,
thereby treating them equivalently to deleterious and
lethal mutants. Whereas A2 overestimates Sm in this
regime, A2* underestimates it. Thus, the simulation
data are bounded by the predictions of A2 and A2*

when m1=s > 1. See the supplemental information for a
graphical comparison and further discussion of A2*.

A1 fails when m1/s � 1: We now turn to the large
discrepancy between ISLA and simulations when m1/s
is O(1), as seen in Figure 7. Roughly speaking, this
occurs when the timescales of (deleterious) mutation
and selection become comparable. In this regime,
members of an expanding evolved clone are ‘‘lost’’
due to deleterious mutations faster than they are
‘‘added’’ due to selection. Consequently, the fixation
probability of an advantageous mutant in a homoge-
neous genetic background p(s) , s and A1 fails.
Semiquantitatively, we expect this effect to set in when
(1 � ae)m1/s � 1. The ae dependence can be seen by
comparing Figures 4 and 5.

COMPARISON TO EXPERIMENT

As mentioned previously, the spontaneous emergence
of mutator alleles has been documented in laboratory
evolution experiments with E. coli (Sniegowski et al.
1997; Shaver et al. 2002). In this experiment, mutator
alleles with R � 100 became fixed in 3 of 12 inde-
pendently evolving E. coli populations within 10,000
generations. The total number of mutators generated
among 12 lines during 10,000 generations is �Ne 3

U 3 (104 3 12), where U is the mutation rate into the
mutator state and Ne is the effective population size
(Wahl and Gerrish 2001; Wahl et al. 2002). U has been
measured between 5 3 10�7 (Taddei et al. 1997a) and
5 3 10�6 (Boe et al. 2000), and we find Ne¼ 6.3 3 107 (see
the supplemental information). Since 3 of these muta-
tors achieved fixation, the experimental fixation prob-
ability Pfix,expt is approximately given by 3/(Ne 3 U 3

104 3 12) and bounded by

Figure 7.—The role of nonlethal deleterious mutations. We ‘‘turned off’’ deleterious mutations, both in simulations and in
ISLA, by setting the deleterious mutation rate to zero and leaving the beneficial mutation rate unchanged (left). The difference
between these results and the corresponding ones with deleterious mutations is plotted on the vertical axis on the left. For m1/s &
1, deleterious mutations have the same effects in ISLA Equation 6 as in simulations (left). ISLA essentially treats deleterious mu-
tations as lethal (A3), instead of merely having a selective disadvantage �s. We tested this approximation directly in simulations by
varying the parameters a and d while holding the product a(1� d) [ ae constant (right). Parameters are s¼ 1

120 , N¼ 5000, m� ¼ 0,
and a ¼ 0.4 and d ¼ 0 (left only).
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7:9 3 10�8 , Pfix;expt , 7:9 3 10�7: ð14Þ

This value is 5–50 times that of a neutral allele (1/Ne).
To compare this value to the predictions of ISLA, we

need experimental values for the parameters m1, ae,
and s. It turns out that the equivalent set of parameters s,
the beneficial mutation rate mben,1 ¼ aem1, and the
deleterious mutation rate mdel,1¼ (1� ae)m1 are more
readily available in the literature. A survey of these
parameter values, as well as a more careful discussion of
their meaning, can be found in the supplemental
information. Presently, we use the beneficial mutation
rate mben ¼ 2.8 3 10�8 and selection coefficient s ¼ 0.1
obtained by Lenski et al. (1991). Following Keightley

and Eyre-Walker (1999), we take mdel ¼ 1.6 3 10�1.
These mutation rates are based on the measured wild-
type values and assume R ¼ 100. Since Nemdel;1 ? 1,
N 2

e mben;1s ? 1, and Neaes > R , these populations are in
the drift-less, strong-effect mutator regime. Therefore,
the appropriate formula is either Equation 12 or
Equation 13, which gives the same results. Plugging
our parameter values into ISLA, we obtain

Pfix;isla ¼ 1:8 3 10�8 ð15Þ
in reasonable agreement with the rough experimental
value (Equation 14). Other choices for parameter values,
particularly mben,1, would result in less impressive agree-
ment with experiment. See the supplemental informa-
tion for further discussion.

It is also interesting to note that, according to these
experimental parameters, Naes � 1.1, indicating that
these E. coli populations only very marginally favored
mutators. This could explain why no mutators fixed
during the next 25,000 generations: Naes decreased
below the threshold value of one as fewer, and less
potent, beneficial mutations became available.

Due to the relatively large population size Ne ¼ 6.3 3

107 and the anticipated small fixation probability, we
cannot obtain an accurate measurement of Pfix using
our simulation method. However, for these experimen-
tal parameters, m1(1 � ae)/s ¼ mdel,1/s ¼ O(1) and
therefore we expect the data to lie in the decreasing
portion of curves such as in Figure 5. Thus, our ISLA
estimate of Pfix is probably much larger than what
simulations would yield. We briefly return to this issue
in the discussion.

DISCUSSION

Relation to previous theoretical work: As mentioned
in the Introduction, there are many existing theoretical
models of mutator evolution. Here we briefly review the
existing body of knowledge and place our work in this
larger context. Studies are discussed roughly in order of
increasing similarity to our work.

Models with explicit environmental change: Leigh (1970)
endeavored to calculate the mutation rate that max-

imizes the growth rate of its corresponding modifier
locus. An infinite population with this wild-type (‘‘resi-
dent’’) mutation rate is evolutionarily stable in the sense
that it cannot be invaded and swept by any modifier of
mutation rate. Such an evolutionarily stable strategy
(ESS) is referred to as the ESS mutation rate. Leigh

(1970) developed a simple two-locus, two-allele model
of mutator dynamics in an environment that regularly
alternates between two states. One locus is under
selection, and its two alleles are alternately favored in
the two different environments. The second locus is
not under direct selection and merely modifies the
mutation rate at the selective locus. The dynamics of
the mutator allele are deterministically governed by
two effects. First, immediately after the environment
changes, the mutator increases its frequency because
the small population of mutants, which is favored in the
new environment, is overrepresented in the mutator
background. This favors the higher mutation rate.
Second, after the mutant sweeps through the popula-
tion, the frequency of the mutator decreases due to
association with the deleterious mutants that it gener-
ates at its new fitness peak. This favors the lower
mutation rate. The cycle repeats itself many times, and
Leigh (1970) finds that the long-term ESS mutation
rate is equal to the rate of environmental change. Over
the years, this basic model was improved by incorporat-
ing the effects of timing of environmental changes,
varying selective coefficients (Ishii et al. 1989), inter-
mediate genotypes (Travis and Travis 2002), and
multiple mutable sites (Palmer and Lipsitch 2006).

While these models doubtless provide valuable in-
sight into certain biological scenarios, they are rather
orthogonal to our work. Three differences seem espe-
cially important. First, most obviously, mutator success
requires repeated environmental changes in these mod-
els. In contrast, our model shows that environmental
change is necessary only for mutator fixation insofar as
it provides a rationale for having a population dis-
placed from its fitness peak. Second, they endeavor to
find the global ESS mutation rate whereas we focus on
quantifying, via fixation probability, the probabilistic
result of a single competition experiment. While full
knowledge of Pfix(N, s, a, m1, m�, d) implies the value of
the ESS, the converse is not true. Third, their mecha-
nism of mutator success is very different from ours.
Whereas they rely upon the alternating selective effects
of existing mutants to boost mutator frequency, our
model analyzes the dynamic, stochastic interplay be-
tween random drift, deleterious mutations, and ad-
vantageous mutations in a constant environment. We
propose that, on the whole, our model contains fewer
special assumptions than models with explicit environ-
mental change. Regardless of whether fluctuating or
constant environments are more biologically informa-
tive, our results constitute an important null model of
mutator fixation.
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Constant environment models: Work by Tanaka et al.
(2003) also involves a changing environment. However,
unlike the models described in the previous section,
theirs contains no alternating selective effects: when the
environment changes, the mutations acquired during
the previous environmental cycle simply become neutral.
Thus, as in our work, all beneficial mutants are generated
de novo. In further similarity with our work, Tanaka

et al. (2003) pursue, via quasi-stochastic simulations and
analytic approximations, an understanding of the long-
term mutator behavior by concentrating on a single
environmental cycle, i.e., by examining populations in a
constant environment. These authors were interested
primarily in the case when Nxom1 > N ð1� xoÞm�, where
the fixation of mutators is in some sense unlikely. With
this in mind, instead of Pfix, they measure and calculate
the (much larger) probability Pgain that the initially rare
mutator increases its frequency by the end of a ‘‘time
cycle.’’ These cycles are defined to end when an expand-
ing clone in a wild-type background reaches a size of
O(N), at which point the simulation is halted. Their most
interesting result is that Pgain is substantial even when
Nxom1 > N ð1� xoÞm�. In other words, mutators can still
‘‘break even’’ if the wild-type background generates the
first beneficial mutation, which is important if the
environment changes. Nonetheless, without environ-
mental change in their model, mutators will always be
doomed unless they are the first to generate a beneficial
mutation. Furthermore, they model birth-and-death
processes deterministically, in a way that precludes
extinction. For these reasons, our Pfix and their Pgain

are truly distinct quantities, and no direct comparison
can be made with our work.

We next discuss a simple calculation by Lenski (2004)
based on indirect mutation–selection equilibrium of
the mutator subpopulation. If the dominant processes
occurring in the population are mutation into the
mutator state and creation of deleterious mutations by
mutators, then the frequency of mutators approaches
an equilibrium value. This frequency is easily calculated
if, as in A3 of ISLA, deleterious mutations are treated as
immediately lethal:

xeq ¼
U

ð1� aeÞðm1 � m�Þ
� U

m1ð1� aeÞ
:

The time taken for the population to reach this equilib-
rium state, as well as a much more careful calculation of
xeq, was investigated by Johnson (1999b), but presently
we assume that this simple estimate is sufficient. In
equilibrium, beneficial mutations therefore arise at a
rate Nxeqm1ae from the mutators and rate N(1 �
xeq)m�ae from the wild type. If all beneficial mutants
of equal effect have the same probability of achieving
fixation, regardless of whether they originate in a mu-
tator or a wild-type background, then the fraction of
substitutions linked to a mutator is approximately

U

m1ð1� aeÞ
m1

m
¼ U

mð1� aeÞ
: ð16Þ

Plugging in reasonable values, Lenski (2004) finds
that�1% of substitutions should be linked to mutators.
Furthermore, given that each line of E. coli in experi-
ments by Sniegowski et al. (1997) generated 10–20
substitutions, this calculation is impressively consistent
with the observation that 3 of 12 lines became mutators.

To relate this approach to our own, we must reintro-
duce dynamics into the picture. We can interpret the
quantity xðm1=mÞ as the conditional probability that a
mutator achieves fixation, given that a selective sweep
occurs during its lifetime. Our quantity Pfix is this
conditional probability multiplied by the probability
that a selective sweep occurs during the lifetime of a
mutator. Assuming that selective sweeps and death each
occur as Poisson processes with rates N maes and (m1 �
m�)(1 � ae), respectively, it is straightforward to show
that the probability that at least one selective sweep
occurs before death is given by

N maes

ð1� aeÞðm1 � m�Þ
1 1

N maes

ð1� aeÞðm1 � m�Þ

� ��1

:

Multiplying this expression by the conditional proba-
bility xðm1=mÞ � xR, we obtain Equation 13. Thus, the
approach suggested by Lenski (2004) is the equilibrium
version of ISLA, in the limit where mutational processes
occur frequently enough to overwhelm random genetic
drift. Thus, remarkably, even though this approachframes
the problem of mutator fixation in terms of competition
with beneficial mutations in wild-type backgrounds, R
cancels out of the solution in the strong-effect mutator
regime: R ? N aes=ð1� aeÞ.

It is also worthwhile to examine the conditions under
which we expect the equilibrium assumption to hold.
Let us imagine that an evolution experiment is con-
ducted for T generations, during which H substitutions
occur. ISLA predicts that the expected number of mu-
tator fixations is NPfixUT, whereas according to Equa-
tion 16, the equilibrium approach yields a value equal to
H ðU =mÞ. Setting these two values equal to one another,
and plugging in (from Equation 11) Pfixðxo ¼ 1=N Þ ¼
sðae=ð1� aeÞÞ, we obtain

H ¼ NsmT
ae

1� ae
� N maesT :

This expression merely states that the (mostly wild-type)
population is in the ‘‘successive mutations regime’’; i.e.,
only a single beneficial mutation spreads at a time.
Alternatively, one could imagine turning this argument
around and asking what Pfix must equal given that the
equilibrium approach is valid and that the population
accumulates substitutions ‘‘one by one.’’ In that case,
one would, remarkably, arrive at Pfix(xo ¼ 1/N) ¼ aes,
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which (for small ae and NSm ? 1) is what we obtained
earlier (Equation 11) by more sophisticated methods.

Turning to another study, Tenaillon et al. (1999)
investigated, via stochastic simulations and very brief
analytic arguments, multilocus mutator evolution in a
constant environment. These extensive simulations
are a generalization of earlier work by Taddei et al.
(1997b) and are partly amenable to comparison with
our work. Some noteworthy differences with our simu-
lations are that they scan a larger range of N, they have a
more realistic implementation of mutation, and, most
importantly, they allow flux into and out of the mutator
state. Thus, mutators are never absolutely fixed during
their trials, which necessitates a different termination
condition from ours: they declare a trial ‘‘over’’ when
the population reaches its maximum fitness, whereas we
declare it over when the mutator is completely and
permanently fixed or lost. Upon termination of the trial,
they consider the mutator ‘‘fixed’’ if its frequency is
.95%. They measure the fraction of trials that termi-
nate with mutator frequency .95% and denote this
quantity the ‘‘frequency of mutator fixation,’’ which
differs from our Pfix because of reasons discussed below.

One important consequence of their method is that
the total number of mutators generated during a trial
varies with the choice of parameters. This is because
each replication event presents a chance for the crea-
tion of a new mutator, and the number of replication
events that occur before termination clearly depends
on N, s, m1, m�, and the number of mutational steps
required to reach the peak. Thus, a change in the value
of any of these parameters may alter the frequency of
mutator fixation simply because it changes the number
of mutators that are typically created during the trial.
Our Pfix, on the other hand, remains invariant under
such changes and allows us to filter out this background
effect. Their system is doubtless a more literally accurate
representation of biological reality, which has its virtues
but also major costs, which we discuss below in the
context of two important examples.

First, they measure that the frequency of mutator
fixation increases with N. This is an interesting and
potentially practical result, but their method makes
it very difficult to determine the extent to which the
increase is simply due the background effect that more
mutators were created in the larger populations. ISLA,
on the other hand, unambiguously states that when
NSm ? 1;Pfix for a single mutator becomes independent
of N. Therefore, ISLA predicts that the dependence of
mutator fixation frequency on population size observed
by Tenaillon et al. (1999) is entirely driven by the
simple background effect.

A second example has even more dramatic concep-
tual consequences. These authors ask whether Pfix is
determined by the number of potentially advantageous
mutations (steps away from the peak) or merely by the
rate that such mutations are generated. To investigate

this question, they devised two sets of simulations. In
one set, there were 12 available advantageous muta-
tions, accessible at a rate of 10�8 each. In the other set,
there was a single mutation of the same effect, accessible
at a rate of 12 3 10�8. The explicit difference between
these sets of simulations is the number of steps to the
fitness peak, but an additional, implicit difference is that
the set with 12 beneficial mutations runs for more
generations. Therefore, more mutators are created in
that set of simulations. Now, ISLA predicts that Pfix

depends only on the advantageous mutation rate and
that therefore the two simulations should result in the
same Pfix. In seeming contrast, they found the frequency
of mutator fixation to equal �0.5 for the first situation
and �0 for the second. This observation led them to
conclude that mutators succeed because of their advan-
tage in rapidly creating genomes that carry multiple
beneficial mutations, which is fundamentally different
from our conceptual picture. We propose that this
simulation finding might be explained by the simple
background effect that far more mutators are created en
route to acquiring 12 beneficial mutations than to
acquiring a single beneficial mutation. ISLA completely
neglects multiple beneficial mutations, and its success,
both near the peak (Figure 4) and far from it (Figure 5),
suggests that the multiple-mutations effect proposed by
Tenaillon et al. (1999) in fact plays a very minor role in
mutator fixation. However, it should be noted that we
did not investigate cases where the mutator is favored
and only a single beneficial mutant is available. It could
be the case that multiple beneficial mutations in the
same genome are implicitly important in that they are
what allows the mutator to overcome competition with
wild-type beneficial mutations. This hypothesis should
be explored in future work.

Whereas Tenaillon et al. (1999) focused almost
exclusively on stochastic simulations, work by Andre

and Godelle (2006) relies almost exclusively on ana-
lytic methods. In work that bears many similarities to
ours, Andre and Godelle (2006) studied, mostly via an
analytic approach, the long-term trajectory of mutation
rate evolution. A key insight of theirs is that, in a finite
asexual population, the frequency of a mutator under-
goes strong fluctuations, with values covering the entire
range from zero initially to one upon a selective sweep
by a linked locus. Thus, they point out that studies that
assume mutators are rare during all generations, be-
cause of either infinite population size (Leigh 1970) or
sexual recombination (Johnson 1999a), are qualita-
tively different from studies of finite asexual popula-
tions. Andre and Godelle (2006) remedy this problem
by calculating the fixation probability of an initially rare
mutator. We now briefly summarize their method of
solution and show that, with minor modification, it
corresponds to the N m/‘ limit of our results. In what
follows, we take some liberty in changing their notation
and using continuous time.
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Their initial condition is identical to ours: a clonal
population is seeded with a small number of otherwise
identical mutators. They then temporarily ignore ben-
eficial mutations and analyze how the expected number
of mutators changes with time. In agreement with
Johnson (1999b), they find that after a waiting time
1/s, the mutator subpopulation declines exponentially;
i.e., E ½xðtÞ� ¼ xoe�ðm1�m�Þð1�aeÞðt�1=sÞ. They then con-
struct their key equations (their Equation 19)

d

dt
PfixðtÞ ¼ ð1� PfixðtÞ � PlossðtÞÞ � N maes � m1

m
� E ½xðtÞ�

d

dt
PlossðtÞ ¼ ð1� PfixðtÞ � PlossðtÞÞ � N maes � m�

m
� ð1� E ½xðtÞ�Þ:

We have written these equations in a somewhat peculiar
way and replaced their symbol K with N maes to facilitate
translating between our notation and theirs. These
equations are very similar to ISLA in that they represent
the instantaneous fixation of beneficial mutations that
originate from a time-dependent mutator subpopula-
tion. However, there are two disturbing features about
these equations. First, they assume that the only cause of
mutator extinction is beneficial mutations in the wild-
type background. In fact, mutators also become extinct
due to (i) their mutational load and (ii) random drift. In
their equations, E[x(t)] declines exponentially, but this
decline erroneously does not contribute to Ploss. Both
i and ii cause an overestimate of Pfix. The second
disturbing feature of these equations is the appearance
of expectation values on the right-hand side. With this
move, Andre and Godelle (2006) replaced the ran-
dom variable x(t) with its mean value, which is a very
substantive approximation. The distribution of x(t) is in
fact diffusing; i.e., random drift is in fact occurring.
Nevertheless, we expect that their representation of x(t)
as a deterministic quantity is approximately valid when
the timescale of this diffusion is slower than the time-
scales due to mutation and selection. Unlike our
approach, theirs cannot quantify when it is safe to
neglect random drift. Looking back to Equation 6, we
see that the diffusive process, i.e., random drift, can be
neglected when N m1ð1� aeÞs ? 1 and N 2m1aes ? 1. It
just so happens that these criteria will often be met in
microbial populations.

We now explicitly demonstrate some important par-
allels between our work and that of Andre and Godelle

(2006) in the large Nm limit. Since, in our model, del-
eterious mutations are as strong as advantageous ones,
the best comparison is made with their ‘‘ruby in the
rubbish’’ hypothesis. The relevant solution is their
Equation A5:

Pfix ¼ xo
N maes

1� ð1� N maesÞ � e�ðm1�m�Þð1�aeÞ �
m1

m
: ð17Þ

Simplifying the denominator by taking exp½�ðm1 � m�Þ
ð1� aeÞ� � 1� ðm1 � m�Þð1� aeÞ and neglecting the

term �N maesm1, we recover our large Nm result from
ISLA (Equation 13). The neglected term inflates the
value of Pfix and is a result of these authors not treat-
ing extinction of the mutator due to its mutational
load. This has important consequences for the next
topic.

Long-term mutation rate evolution: Although our
work primarily addresses the plain issue of calculating
Pfix, we briefly contemplate implications for the more
grand question of long-term mutation rate evolution.

mconv is proportional to the rate of sweeps: Thus far we
have considered selective sweeps to be initiated by
de novo beneficial mutations. Let us now briefly apply
our results to the case where sweeps are instead triggered
by an environment that changes at rate K. This merely
requires transcribing N maes4K . Following Andre and
Godelle (2006) we expand the fixation probability
(Equation 17) in powers of m1� m� and denote the first-
order coefficient in this series by Sel(m�). The roots of
Sel(m�) give the ‘‘convergence stable resident mutation
rate.’’ Using Equation 13, we find mconv¼K/(1� ae)�K,
which is the classical result (Leigh 1970). Using Equa-
tion 17, Andre and Godelle (2006) find a qualitatively
different result: mconv ¼ K=ð1� aeÞ ð1� K Þ, which di-
verges as K /1. The reason for this discrepancy is that
Andre and Godelle (2006) did not allow for extinction
due to mutational load. ISLA naturally averts the need for
this assumption and leads to the classical result. However,
ISLA approximates deleterious mutations as being lethal,
whereas these authors also treated the more realistic
nonlethal case. It may be possible to demonstrate, via
further analysis, the claim that nonlethal deleterious mu-
tants cause mconv to diverge for some parameter values.

Equilibrium mutation rate: We find that Selðm�Þ ¼
ð1=m�Þ ððaeðNs 1 1Þ � 1Þ=N aesÞ, whereas Andre and
Godelle (2006) find Selðm�Þ ¼ ð1=m�ÞððaeðNs 1 1Þ�
1Þ=N aesÞ1 1� ae. Our expression indicates that there
are no equilibrium mutation rates: for all m�, weak
mutators are favored when ae(Ns 1 1) � Naes . 1 and
disfavored in the opposite case. This threshold is clearly
in agreement with our Equation 7. Thus, as far as ISLA is
concerned, populations with Naes , 1 should continu-
ally evolve toward the minimum attainable mutation
rate. On the other hand, populations with Naes . 1
should evolve an ever higher mutation rate. Our
expression for Sel(m�) is clearly inaccurate for very
small m� (because random drift dominates in that
regime) and also for very large m� (since our simu-
lations show that there is a maximum mutation rate that
can achieve fixation).

Limitations of this work: Real biological populations
possess many features that this article either neglects
or severely constrains. We now briefly discuss the most
striking limitations.

Initial conditions: Both ISLA and our simulations
suppose that ‘‘initially’’ all members of the population
have the same fitness. If this assumption is false and
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mutators arise randomly in a population with preexist-
ing fitness variation, this might act to decrease mutator
success: unless the mutator happens to emerge from the
fittest subclass of the population, the advantageous
mutations it generates will already be present in more
abundant subclasses that could outcompete the rare
mutator. This point is especially relevant since, in com-
paring ISLA to experiment, we essentially assumed that
each mutator that arose during the course of the experi-
ments did so in a population consisting of a single
fitness value.

Strict asexuality: Our simulations and ISLA do not
allow any mechanisms of horizontal gene transfer or
recombination. These events would decouple mutator
alleles from the advantageous mutations that they gen-
erated and thereby result in significantly decreased
mutator success. This effect is especially important since
some genes associated with a mutator phenotype also
exhibit hyperrecombination (Denamur and Matic

2006).
Simple fitness landscape: Our simulations assume that

mutations all fall into one of three classes: lethal,
beneficial with effect 1 s, or deleterious with effect �s.
As mentioned previously, and discussed in the supple-
mental information, it may be true that, in large
populations, beneficial mutations of a fixed size s̃ are
the ones that typically reach appreciable frequency
(Gerrish and Lenski 1998; Hegreness et al. 2006;
Desai et al. 2007). However, this simplification is
certainly not possible when considering deleterious
mutants, whose distribution is likely complicated and
bimodal, with many mutations being nearly neutral and
many being lethal (Eyre-Walker and Keightley

2007). Figure 7 suggests that increasing the strength
of deleterious mutations has effects only at large m1/s,
where it increases both the peak value of Sm and the
value m1/s at which the peak occurs. Along these lines,
a simulation model that included a class of weakly
deleterious mutations would likely continue this trend.
This would delay the large discrepancy between the
simulations and ISLA until even larger m1/s. This issue
could help to explain the previously mentioned fact that
m1 in experiments of Sniegowski et al. (1997) seem very
close to the maximum allowable value. Including mildly
deleterious mutations would also prolong the lifetime
of genomes that carry them. In this case, it might be
necessary to incorporate a time delay before these
deleterious mutations are ‘‘enforced,’’ along the lines
explored by Johnson (1999b).

Suggestions for further research: This article leaves
many questions unanswered, but also points to interest-
ing theoretical and experimental opportunities.

Theoretical directions: A satisfactory analytic description
of our stochastic simulations remains incomplete. Two
key issues remain unresolved. First, we do not un-
derstand the mechanism by which mutators continue
to succeed when faced with intense mutational compe-

tition from the wild-type background (Figure 6). Our
work and that of Andre and Godelle (2006) both imply
that mutations in wild-type backgrounds should become
important when Naes�m1/m�, but this is not borne out
in the simulations unless s is ‘‘sufficiently large.’’ Second,
it is clear that ISLA fails to match simulations when the
mutation rate is very large: (1 � ae)m1 * s. Quantifying
the success of mutators in this regime is especially
relevant to studies of long-term mutation rate evolution.

Another issue that we did not address is the full
dynamics of mutator fixation. Our analytic results are
mostly derived from Equation 6, which is relevant to the
eventual fate of mutators. An approximate solution to
the time-dependent forward diffusion (Equation 4),
with m� ¼ 0, is given in the supplemental information.
This solution provides some dynamical information,
but, like the entire ISLA approach, it assumes that selec-
tive sweeps occur instantaneously. In this sense, Equa-
tion 4 predicts incorrect dynamics. Furthermore, we
showed that mutator success is compactly represented
by an effective selection coefficient Sm. For simple
advantageous mutants, S contains information not only
about Pfix but also about the average dynamics: ÆxðtÞæ �
eSt when rare. Perhaps that is the case with mutators as
well.

Experimental ideas: Our work shows that, in most
regimes, Pfix is not explicitly frequency dependent.
Rather, Pfix depends on the initial number of mutants
Nxo. This scaling behavior could be tested experimen-
tally. Suppose that competition experiments in a che-
mostat carrying a population of size N1 showed that,
when the initial frequency of mutators exceeded a
threshold value of x1, mutators achieved fixation with
a high probability. One could decrease the population
size to N2 and again inoculate with mutators at a
frequency of x1. Our results predict that mutators would
not achieve fixation in this case because N2x1 is less than
the threshold number N1x1. In fact, very similar experi-
ments were recently performed by Le Chat et al. (2006),
which support the notion that Pfix scales with Nxo and
not with xo alone. However, these competition experi-
ments were done under a lethal selective pressure,
which selected for preexisting resistant mutants. Here
we propose competitions between initially isogenic (aside
from the mutator allele) mutator and wild-type strains
adapting to a new environment. In addition to this
scaling behavior, ISLA predicts a testable value for this
threshold that differs significantly from the frequency-
dependent picture represented by Equation 1. These
ideas are presented in Figure 8.

It would also be interesting to experimentally in-
vestigate the decline in mutator success seen for very
large mutation rates when (1 � ae)m1 � s. As men-
tioned previously, during the first few thousand gen-
erations of experiments by Sniegowski et al. (1997),
Naes � 1.1. The reason why no mutators achieved
fixation after the first 10,000 generations could be that
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this parameter decreased below the threshold value of
one during the course of its evolution. A similar effect
was previously discussed by Kessler and Levine (1998).
An alternative explanation is that m1 was near the
theoretical maximum (1 � ae)m1 � 1 suggested from
our simulations. As noted by Gerrish et al. (2007), one
could test these competing explanations by founding
several new lineages with a clone from of one of the
mutator populations and growing these mutator line-
ages in a novel environment. The new environment
should be one in which Naes . 1. If no ‘‘double
mutators’’ arose, then the hypothesis of a maximum
allowable mutation rate would be supported.
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