TABLE 2.
The density function and the information gain function for select distributions
| Distribution | Density function | Information gain | Expected information | Parameter |
|---|---|---|---|---|
| Normal | ![]() |
y2 | ![]() |
θ |
| Cauchy | ![]() |
![]() |
![]() |
θ |
| Logistic | ![]() |
![]() |
![]() |
θ |
| Exponential | (1/σ) exp(−y/σ), y > 0 | 4(y − 1)2 | α + α log(α)2 | θ = log(σ) |
| Gamma | ![]() |
4(y − ν)2 | ![]() |
θ = log(σ) |
| Weibull | (ν/σ) (y/σ)ν−1 exp(−(y/σ)ν), y > 0 | 4ν2(yν − 1)2 | α + α log(α)2 | θ = log(σ) |
The parameter of interest for the first three distributions is the location parameter. For the last three, the parameter of interest is the scale parameter, the respective shape parameters being fixed. ψ(·, ·) is the incomplete Gamma function.









