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IN African populations of Drosophila melanogaster, the
level of silent variability on the X chromosome often

exceeds three-fourths of the autosomal value (the ratio
expected for neutral equilibrium), suggesting that
demographic or selective effects may influence vari-
ability (Andolfatto 2001; Kauer et al. 2002; Mousset

and Derome 2004; Hutter et al. 2007; Pool and
Nielsen 2007; Singh et al. 2007; Pool and Nielsen

2008). Although these sites are not completely neutral
(Andolfatto 2005; Haddrill et al. 2005; Halligan

and Keightley 2006), they are less constrained than
coding sites and are often used as a neutral proxy.

The level of variability of neutral mutations can be
affected by selection at neighboring sites: neutral
variants will be removed from the population if they
are linked to deleterious mutations or swept to fixation
if they are linked to beneficial variants (Gordo and
Charlesworth 2001). These effects are greatest when
recombination rates are low, consistent with data on the
relation between recombination and variability in D.
melanogaster (Begun and Aquadro 1992; Shapiro et al.
2007). Differences in recombination rates between the
X chromosome and the autosomes therefore could
affect the relative values of X chromosomal and autoso-
mal diversities in Drosophila. The expected magnitude
of this difference depends on the type of selective effect
involved (selective sweeps vs. background selection), on
the location of the genes being compared (high vs. low
recombination regions), and on the selection coeffi-
cients and dominance coefficients of the variants under
selection. This makes the expected magnitude hard to
predict, but we note that Charlesworth (1996, p. 139)
showed that background selection could produce an
effect on X-linked loci that yields a maximum diversity
level for the highest recombining regions of the chro-
mosome that was between 1.28 and 1.05 times that of an

autosomal arm, depending on which arm is used for the
comparison.

A recent large-scale study of noncoding polymor-
phisms on the X and the autosomes (Hutter et al. 2007)
has confirmed that the levels of silent polymorphism
were higher on the X chromosome than on the auto-
somes for African populations. To bypass the recombi-
nation problem, local recombination rates were estimated
for X-linked and autosomal loci using the method of
Comeron et al. (1999) and found to have very similar
means; a difference in recombination was therefore
excluded as the cause of this elevated pX/pA. However,
this approach suffers from two problems that may un-
derestimate the effect of recombination. First, recom-
bination rates were estimated on the basis of comparisons
of standard genetic maps with cytogenetic locations,
which may lead to less precise estimates than recent
estimates of physical positions, which are based on the
whole-genome sequence. Second, since recombination
does not occur in D. melanogaster males, these genetic
maps were based on crossing over in females. It has been
pointed out that for X chromosome–autosome compar-
isons recombination rates should be corrected to ac-
count for the fact that the X chromosome spends more
time in females than do autosomes (Langley et al. 1988;
Connallon 2007). We have reanalyzed this data set
using the genome-based recombination estimates de-
scribed by Singh et al. (2005) to test if pX differs from
3pA/4 in the study of Hutter et al. (2007), once
recombination levels have been taken into account
using these estimates. Singh et al. (2005) followed a
similar approach to Comeron et al. (1999) to estimate
recombination rates but instead used the genome
sequence to establish the physical locations of the genes
used in the genetic maps, which should lead to
more precise estimates. Their methods are explained
on their website (http://www.stanford.edu/�lipatov/
recombination/methods.html) and suggest that their
estimates are reliable (the fit of their Marey maps overall
was very good, with the exception of the extreme tip of
the X chromosome). We multiplied the values for X-
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linked loci by two-thirds, and those of the autosomal loci
by one-half, to obtain the effective recombination rate
(Langley et al. 1988; Connallon 2007).

We note, however, that methods based on standard
map positions may be misleading, since these do not
necessarily accurately reflect experimentally measured
recombination frequencies (Charlesworth 1996;
Begun et al. 2007). Direct estimates of recombination
based on high-density SNP maps would be preferable
for this purpose, as are available for parts of the
D. pseudoobscura genome (Kulathinal et al. 2008). In
addition, the presence of inversions (which are pre-
dominantly autosomal) may cause frequencies of cross-
ing over on the X chromosome in the wild to be higher
than laboratory measurements due to the interchromo-
somal effect of inversion heterozygosity on recombina-
tion (Schultz and Redfield 1951; Charlesworth

1996).
The results show that we cannot exclude differences

in recombination rates as the cause of the higher
polymorphism level for the X chromosome in their data
(Table 1), as the ranges of recombination levels of X-
linked and autosomal loci barely overlap, making the
comparison between the two unreliable. On repeating
the analysis using only loci that fall within overlapping
ranges of effective recombination rate (1.39–1.67 cM/
Mb), the mean noncoding diversity at X-linked loci is
lower than three-fourths of the autosomal diversity (pX¼
0.64pA; see Table 1). The results are unchanged if loci at
the tip of the X chromosome are removed (supplemen-
tal material).

Because using different estimates of recombination
can lead to rather different patterns, we reanalyzed the
sample using the estimates of recombination described

in Hey and Kliman (2002; available at http://lifesci.
rutgers.edu/�heylab/). Although the results varied
depending on the estimates of recombination used
(supplemental material), the main conclusion held for
all of them: mean recombination rates for X-linked loci
in the sample were on average higher than for autoso-
mal loci (the X:A ratio estimates ranged from 1.4 to 2.1),
indicating the need to carefully control for rates of
recombination before considering other hypotheses to
account for pX/pA.
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TABLE 1

Mean noncoding polymorphism levels, number of autosomal and X-linked loci used, and mean effective
recombination rates in the HUTTER et al. (2007) data for African populations of D. melanogaster

Whole-sample comparison

Autosomes X chromosome

Mean p (SE) 0.0104 (0.0010) 0.0117 (0.0004)
Mean Watterson’s u (SE) 0.0114 (0.0011) 0.0134 (0.0005)
No. of genes 53 249
Mean recombination rate (SE) 1.37 (0.04) 2.44 (0.02)

Overlapping range of effective recombination rates

Autosomes X chromosome

Mean p (SE) 0.0115 (0.0014) 0.0074 (0.0012)
Mean Watterson’s u (SE) 0.0124 (0.0015) 0.0088 (0.0011)
No. of genes 32 14
Mean recombination rate (SE) 1.58 (0.01) 1.55 (0.02)

The recombination rates were obtained using the method of Singh et al. (2005). Recombination estimates
for X-linked loci (centimorgans per megabase) were multiplied by two-thirds, autosomal ones by one-half. SE
is the standard error. The overlapping range of recombination starts at the lowest recombination rate for an
X-linked locus (1.387 cM/Mb) and ends at the highest autosomal recombination rate (1.665 cM/Mb).
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