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Abstract

Background: Bacteria or cells receive many signals from their environment and from other
organisms. In order to process this large amount of information, Systems Biology shows that a
central role is played by regulatory networks composed of genes and proteins. The objective of
this paper is to present and to discuss simple regulatory network motifs having the property to
maximize their responses under time-periodic stimulations. In elucidating the mechanisms
underlying these responses through simple networks the goal is to pinpoint general principles
which optimize the oscillatory responses of molecular networks.

Results: We took a look at basic network motifs studied in the literature such as the Incoherent
Feedforward Loop (IFFL) or the interlerlocked negative feedback loop. The former is also
generalized to a diamond pattern, with network components being either purely genetic or
combining genetic and signaling pathways. Using standard mathematics and numerical simulations,
we explain the types of responses exhibited by the IFFL with respect to a train of periodic pulses.
We show that this system has a non-vanishing response only if the inter-pulse interval is above a
threshold. A slight generalisation of the IFFL (the diamond) is shown to work as an ideal pass-band
filter. We next show a mechanism by which average of oscillatory response can be maximized by
bursting temporal patterns. Finally we study the interlerlocked negative feedback loop, i.e. a 2-gene
motif forming a loop where the nodes respectively activate and repress each other, and show
situations where this system possesses a resonance under periodic stimulation.

Conclusion: We present several simple motif designs of molecular networks producing optimal
output in response to periodic stimulations of the system. The identified mechanisms are simple
and based on known network motifs in the literature, so that that they could be embodied in
existing organisms, or easily implementable by means of synthetic biology. Moreover we show that
these designs can be studied in different contexts of molecular biology, as for example in genetic
networks or in signaling pathways.

Background works have mostly been obtained in conditions related to
For past several decades, the experimental data concern-  stationary states. In some natural contexts, however, or in
ing protein concentrations in biological regulatory net-  some experiments, the relevant cellular response to meas-
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ure is the one the cell displays when it is exposed to time-
dependent signals. Such information can be essential to
unravelling the regulatory principles of those molecular
networks which by nature are repeatedly stimulated by
time-varying inputs [1]. For example the gene expression
within neuronal cells can be substantially affected by the
time-dependent signals received from its afferent neurons,
and this property is essential for the formation of memo-
ries [2]. Other examples can be met with in various con-
texts, like the frequency encoding phenomenon
associated with Ca2+ oscillations [3-6], or the response to
time-dependent osmolarity shocks [7]. We note that, in
these systems an optimal-response may exist with respect
to periodic stimulations, meaning that for example, the
mean production of some activated transcription factors,
or of some proteins of interest, would be maximized if the
external periodic signal follows some specific time-course
and shape. This question has received little attention in
the context of biological networks. This research topic is
nevertheless timely, as recent developments of experimen-
tal techniques in molecular biology enables one to access
time-dependent concentrations, and investigate new
problems about the time-response of molecular networks.

From an experimental point of view, some interesting
experiments were recently performed to reveal such time-
response properties in biological systems [7-9]. In order to
anticipate more experimental studies in this direction, the
objective of this paper is to identify basic network topolo-
gies which allow for the property of optimal oscillatory
responses in molecular biology. In the current literature
only a small number of studies have tackled this issue and
most of the articles addressing this question principally
considers the linear response to sinusoidal perturbations.
For example several papers demonstrate the low-pass filter
property of small molecular networks [10-13]. Nearly all
of these studies consider small amplitude perturbations,
and use Fourier transform, discussing how the system
parameters modify the cut-off frequency. As a matter of
fact, when a system behaves like a low-pass filter, the fre-
quency which maximizes the output response is 0. So in
this case the system does not display a genuine temporal
specificity. Very few studies have looked for the possibility
of maximizing some variables at non-zero frequency in
biological networks. A recent study [14], using again the
tools of linearization and of Fourier analysis, shows that a
signaling cascade with a negative feedback can behave as
a band-pass filter, characterized by a frequency which
maximizes the amplitude of the response. But when the
system's nonlinearity is important, as is often the case in
models of transcriptional regulatory networks, or when
the system is linear but the periodic forcing is multiplica-
tive (thus not additive), then Fourier decomposition of
the input signal is no longer of general interest. Further-
more, in many instances, the time-dependent signals
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directed to regulatory networks are far from harmonic,
they are often pulsatile. This is why a time-periodic input
to molecular networks is often assumed as a periodic train
of pulses. Smolen et al. studied a molecular network
which was periodically stimulated by a train of spikes and
which exhibited the ability to respond in a maximal fash-
ion to a particular inter-spike interval [15]. Their model
equations were nonlinear and associated with a lot of
parameters, so the origin of the bandpass filter property is
not straightforward. Another instance of periodic stimula-
tions with a train of square pulses was thoroughly studied
by Li and Goldbeter in the context of cellular receptor sys-
tems [16]. By using analytical calculations and numerical
simulations of a linear model [17], they show that can
exist an optimum stimulus pattern of periodic square
pulses which maximizes a lumped observable. This is
defined by the authors as the receptor activity. However,
the Li and Goldbeter model has again many parameters,
and the identification of the essential ingredients which
enable one to induce a maximum amount of receptor
activity is not obvious.

In the present paper we study simpler models, which per-
tain to basic network motifs found in biological regula-
tions. We point out some principles which guarantee the
existence of an optimal response in the production rates
of output molecules, when these systems are activated by
a periodic signal. The identified mechanisms are based on
known network motifs in the literature and include, for
example, the negative feedback loop and the incoherent
feedforward loop (IFFL) motif studied by Alon and cow-
orkers in the context of gene regulatory networks of bacte-
ria [18]. Let us recall that in this framework a network
motif is a small pattern of molecular interactions which
recurs repeatedly in comparaison with what would occur
in random networks. Here we will make use of this con-
cept of motif in a broader sense, without requiring that its
ubiquity be statistically proved, but requesting that it rep-
resents a basic network pattern associated with specific
information-processing properties [19]. Moreover we will
study these designs in at least two different contexts of
molecular biology, namely in genetic regulatory networks
or in signaling pathways. In the context of genetic regula-
tion, the mathematical models are usually strongly non-
linear, involving sigmoidal regulation functions. In order
to use analytical tools to study the behavior of these sys-
tems under time-dependent signals, we will employ the
"logic" approximation, where regulation functions are
replaced by all-or-none functions. In this case the nonlin-
ear system is not approximated by a set of linear equations
but by a set of piecewise-linear equations [20]. This
approach has indeed been developed for many years in
the study of genetic networks and has revealed to be quite
fruitful [21].
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Results

Simple models of biomolecule activations

In this Section, we give a brief summary of the simplest
models used in the literature to describe activation proc-
esses, either at the gene level, or at the level of post-trans-
lational modification of proteins. We then report
elementary but useful results which are obtained when
the activation is implemented by means of a train of peri-
odic square pulses.

Transcriptional regulatory networks can be described with
genes being represented by letters X, Y, ... The same nota-
tion is used for the concentrations of the corresponding
proteins synthesized by these genes. We first introduce
what is called the "simple regulation" by Alon [18], a sit-
uation which is depicted in Fig. 1(a) by an arrow from X
to Y. In this case the gene Y is positively regulated by only
one transcription factor X, and the basic process of synthe-
sis of protein Y from its gene is described by a single dif-
ferential equation:

Y = BR(X) - aY (1)

where R(X) is called the regulatory function. We consider
regulatory functions bounded by 1. Typically R(X) has the
form of a Hill function X"/(X" + 0") with some cooperativ-
ity n and an activation threshold 8 but we will often use
the logic approximation for R(X), where the latter is
replaced by the unit step function H(X - ) (with only two
values H(X) = 0 if X <0, and H(X) = 1 otherwise). The
parameters fand « are respectively the maximum synthe-
sis rate of protein Y and the degradation parameter,
including the possible dilution effect from cell growth.
Whenever R(X) = 1 the system converges to a steady state
k= f/a. In the sequel X(¢) is considered as a function of
time, and one defines S(t) = R(X(t)). A class of signals S(t)
which will be considered below is a periodic train of
square pulses of amplitude 1, whose temporal pattern is
characterized by the numbers (7, o) (cf. Fig. 2). The
parameter 7z describes the duration of the "on-phase" cor-
responding to the activation of transcription factor X
binding gene Y. The inter-pulse interval, or the silent
phase between the pulses, is denoted by o. Thus the
period of §(t) isgiven by T'= 7+ .

In response to the input signal S(t), we will focus on three
observables in this system, namely the extrema (mini-
mum and maximum), and the average concentrations
reached by Y (t), denoted respectively by Y, i, Ymax and
(Y);. The extreme values of Y (t) can be the most relevant
quantities in systems where Y is itself a transcription factor
for other genes, because then what matters is the compar-
ison of Y with a threshold of activation or of repression.
On the other hand, if Y is consumed by some downstream

process, then the mean concentration of Y (t) averaged
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over a period T of S(t), denoted by (Y), is the relevant
quantity since it quantifies the available protein synthe-
sized over one period.

In the case of a simple regulation with periodic square
pulses, the model equation (1) is easily worked out and
from that calculation one deduces the observables (Y);,

Yocand Y . as:
Yiax =K 1_1(;_2—(1;) (2)
y 22T 1

. =K—F—
min
a(t+0) 4

Fig. 3 shows an example of these functions when the inter-
pulse o is varied, for a fixed pulse duration z. When o
increases from O the observables are all decreasing. The
maximum Y. stays within the interval [Y;, k], where Y,
is the asymptotic value reached by Y, ., (dotted line on
Fig. 3, obtained when the denominator of Y, ,,, eq.(2),
equals 1). We note that this level can be controlled by
choosing the pulse duration z. This can be useful if Y is
itself a transcription factor with respect to a target gene Z
(see next Section).

Another important class of basic activation in molecular
biology is the covalent modification of proteins (e.g. the
phosphorylation/dephosphorylation), which constitutes
the building block of signaling transduction pathways. In
some cases, the enzyme promoting the activated form of
the protein is submitted to time-periodic variations. Out-
standing examples of this situation have been studied in
the context of Ca?+ oscillations, whose temporal spiking
patterns have been showed to significantly modulate the
activity of CaM kinase II [3-6]. The activation/deactivation
motif is usually represented as in Fig. 1(b) by drawing two
arrows forming a cycle between two molecular states. A
third arrow indicates the presence of the external signal
S(t). Here Y stands for the concentration of deactivated
proteins, and Y* the concentration of activated ones,
assuming that the total protein concentration is a con-
served quantity, Y + Y* = Y,,,. Several theoretical models
with different levels of complexity can be used to describe
the dynamics of the interconversion between Y and Y*.
For a recent review, see e.g. [22]. The simplest form of
equations which describe the dynamics of the cycle
between these proteins is given in the following [23]:

Y =kS(t)(Yy - Y ) - kY (3)
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Figure |

Motifs of activations and regulations of small biomolecular networks. (a) A simple activation (b) activation of a signal-
ing cycle (c) the Incoherent Feed Forward Loop (d) the Diamond motif (e) Diamond motif with signaling cycles (f) two Dia-
mond motifs associated in series (g) the interlocked negative feedback loop.
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Input stimulation signal. The pulsatile signal is shown, the
duration of the "on-phase" is denoted by t, the inter-pulse
interval or the silent phase between the pulses, is denoted by
o. Thus the period of §(t) is givenby T = 7+ o

where k and k' denote kinetic constants of the respectively
activating and deactivating reactions. When S() is a peri-
odic train of square pulses as in the above observables
Y,2 Yonin and (V) can again be analytically calculated as a
function of (7, o). However, their expressions are slightly
more complicated than those of eqs.(2) due to the differ-
ence in time scales for the "on-phase" and "off-phase" of
Y (¢). For a fixed value of 7 the graph of these functions of
ois qualitatively similar as seen in Fig. 3. The extrema and
the mean values of Y (t) decrease when the inter-pulse
interval ois increased. Let us note that the same behavior
is also achieved in the general case of nonlinear equations
representing the dynamics of the covalent modifications
by mean of the Goldbeter-Koshland model [3,24] (cf.
additional file 1).

We conclude from elementary calculations that a pulsatile
activation of the simple regulation schemes (1) or (3) pro-
vides a way to adjust the variations of Y in a range of val-
ues which can be controlled by tuning the temporal
pattern (7, o) of the pulses.

Periodic activation of the IFFL

In this Section we show that one basic design which ena-
bles one to obtain an optimal output in response to a peri-
odic train of pulses, is the incoherent feedforward loop (IFFL)
motif studied by Alon and co-workers in the context of
transcriptional networks of bacteria [25]. We first give the
definition of this motif and then study new properties
which appear in this system under periodic stimulations.

http://www.biomedcentral.com/1752-0509/3/29

1200

1000 K
2 |-
c
c 800f Yinax
= L
s Yo
= 600f <Ys
5
= L
3
Q 400f
O F
(G]
200
0 ‘ ‘ ‘ ‘
0 50 100 150
G (in min)
Figure 3

The graph of extremum values of Y in function of o
for a simple activation process. The extremum values of
Y in function of o for a simple activation process (Fig |. (a))
are plotted thanks to the equations (2) of the main text. Y, .,
is the maximum reached by the protein, <Y >;is the mean
concentration of the protein averaged over one period T,

Yinin is the minimal value reached by the protein, k¥ = - (dot-

ted line) represents the stationary state that the protein
would attain if the stimulation was constant and Y, (dashed

line) is the asymptotic value reached by Y, . when the inter-

pulse interval obecomes very large. The parameters are: o =
0.01 min-!, #= 10 nM.min-!, =100 min.

The type-l Incoherent Feedforward Loop

According to the studies of [18], one of the most recurrent
motif arising in a 3-nodes regulatory sub-network is the
(type-1) incoherent feedforward loop seen in Fig. 1(c)
(the abbreviation is IFFL in the following). Here the tran-
scription factor X promotes the expression of both genes
Y and Z but the expression of the latter is repressed by Y.
In order to simplify the formalism so as to obtain simple
analytical estimates, we again consider the logic approxi-
mation, where the regulation functions are described by
step functions which take only binary values 0 or 1. As in
the above, S(¢) = R(X(t)) denotes an input signal emanat-
ing from X and the dynamics of the system is described by
the following equations:

Y = BS(t) —aY (4)

Z=BS()H@O -Y)-aZ (5)

Here the first equation is a simple regulation as intro-
duced in the previous section, and the second equation
governs variable Z which is activated only when both the
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signal S(t) is "on" and when the repressor level Y is
smaller than the threshold 8. We note that for simplicity's
sake we have considered same degradation (&) and maxi-
mal production rates (f), for Y and Z, but this choice is
not essential for the results reported below.

The main dynamical property of the IFFL motif which was
studied in [25] is its ability to create a pulse in Z concen-
tration when it is submitted to a constant stimulus. Once
the signal associated to X is switched "on", the variable Z
rises due to its positive regulation by X, but this activation
is terminated by the repressor Y which is also activated by
X. The duration of the pulse can be quantified by the time
ryneeded by Y to reach its repression threshold @ after the
onset of the signal. For the simple model above, the pulse
duration is merely computed as:

Ty =—élog(1—0/1<) (6)

This will be called the proper pulse duration of the IFFL
system. Thus if the activation lasts longer than the proper
pulse 7, the system can recover its primary state. In other
words the IFFL system can only detect changes of stimula-
tion, meaning that it adapts to a constant stimulus. So, as
mentioned by Li and Goldbeter [16] in regarding the con-
text of receptor desensitization, in order to reach a given
level of synthesis of Z in such system, a pulsatile pattern
of stimulation must be considered instead of a continu-
ous stimulation. Therefore in the following we consider a
periodic stimulus S(t), which has the form of a square-
wave, similar to that studied in the previous Section.

Pulsatile periodic activation of the IFFL

In this Section we show that when the IFFL network is
periodically stimulated by a train of pulses, a new prop-
erty appears regarding the optimization of observables
(Z)pand Z,,,,. As illustrated in Fig. 4 and Fig. 5, the average
value (Z);, as well as Z,, can reach maximal values for
specific choices of the pulse pattern (7, o). We will
describe this phenomenon in more detail.

First, the evolution of the repressor Y (¢) is identical to the
one obtained in the previous section for a simple regula-
tion, because eq.(4) coincides with eq.(1). However, in
what concerns the evolution of the output protein Z, a
detailed analysis of this system (see additional file 1)
shows that two cases should be distinguished according to
the size of the pulse duration 7 compared with the proper
pulse 7, of the IFFL [cf. eq. (6)]. Here we detail only the
case of short pulses, corresponding to the condition <z,
Fig. 4 shows a 3D-plot of (Z); computed in function of the
pulse parameters (7, o). One observes that the extrema of
(7); form a ridge with a roughly constant slope 7/ in the
parameter space (7, o). By fixing the pulse duration z Figs.
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5 show the existence of maxima in (Z), as well as in Z,
in Fig. 5b, reached for a critical inter-pulse interval o.
Another feature of these observables shown in Figs. 5 is
that they start to increase from zero only if the inter-pulse
interval o is above a minimum value ¢,. When 7 <7, the
values of ¢, and of o, can be analytically computed as fol-
lows (cf. Suppl. Info.):

Gozilog(l+g(e‘“—l))—r (7)

61=—ilog(1—g(1—e“”))—r (8)

The latter expression can serve to estimate the optimal
interspike interval o, which should be waited for between
the pulses to maximize the response of the IFFL network.
We note that when aris small, one can use the first-order
approximation o, ~o; ~7 (k/6-1), where x is the equilib-
rium concentration of Y proteins, and € <k is the repres-
sion threshold of Y with respect to gene Z. Our estimate
means that provided arz is small enough, the optimal
pulse pattern is given by only one condition on the ratio
between the on/off phases, i.e. o;/7 ~x/6 - 1. It does not
impose a unique value for the pulse duration z. Further-
more, it can be seen that the height of the optimal (Z);and
Zax 18 of the order of 6. Thus the average and maximum
productions of Z are optimized when #is close to its max-

(in fraction of x)

Figure 4

Response of the IFFL to periodic stimulation in func-
tion of oand 7. Average response <Z >;is plotted in func-
tion of oand 7 for an |1 FFL motif (Fig 1. (c)) stimulated by a
pulsatile signal. Parameters oand rare expressed in |/ units

and <Z >;in fraction of K = g . Threshold parameter is cho-

sen as €= 0.8 x. This surface plot of <Z >is analytically
computed by using eq.(10) given in the Additional File I.
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Response of the IFFL to periodic stimulation in func-
tion of o. The average response <Z >;and the maximum of
response Z, . are represented in function of the inter-pulse
interval o with a fixed 7 for an IFFL motif (Fig 1.(c)) stimu-
lated by a pulsatile signal. ois in |/ units, the concentration
is in nM. gy is the minimal inter-pulse interval for the system
to respond. The inter-pulse interval o, gives the optimum
average response for the system. The numerical simulation
was done with the equations (4-5) of the main text and with
the following parameters: (a) for the case 7> 7, 7=2 |/«
unit. For example, the parameters: & = 0.01 min'!, 5= 10
nM.min-!, =800 nM and 7= 200 min give o, ~20 min and o,
~2 hours. (b) for the case 7<7, 7= 1 |/ unit. For example,
the parameters: & = 0.01 min-!, f= 10 nM.min-!, 6 = 800 nM
and 7= 100 min give gy ~15 min and o; ~I hour.

imal possible value, which is bounded by . But then o
<< 7, meaning that in this case the optimal rest interval
would be smaller than the pulse duration. Therefore for
the IFFL with a high repressor threshold, optimal trains of
square pulses would seem to be alike in a constant stimu-
lation. However, for this system, there is a crucial differ-
ence between the situation of constant stimulus, where Z

http://www.biomedcentral.com/1752-0509/3/29

falls to zero, because it is completely repressed by Y, and
the other situation where the activation of Y is periodi-
cally interrupted during for a small lapse of time. In real
biochemical systems, however, the value of the threshold
6 cannot be arbitrarily chosen, and the implementation of
our proposed principle depends on the context, being for
instance the one of genetic regulation or the one of intra-
cellular signaling. Based on plausible parameter values
found in the literature, Table 1 gives examples of optimal
pulse patterns predicted by our simple model in the case
of genetic expression, egs.(4)-(5), or in the case of signal-
ing cycles, egs.(3)-(5). The first line gives optimal inter-
pulse durations o for a simple IFFL composed of three
genes with parameters in the range given in the experi-
mental work of [26]. The second line gives an estimation
of o, for an IFFL whose node Y is a signaling cycle. The
numerical values for the parameters of the signaling cycle,
(k'=k=1s1,Y,,=2 uM), are based on values estimated
in [27].

In conclusion one sees that the IFFL network motif (Fig.
1(c)) studied by Alon et al. has a nice ability to provide
one of the simplest mechanisms which maximizes the
average synthetized protein (Z ), when periodically stimu-
lated with a train of pulses.

Mixed regulatory networks with a "Diamond" IFFL

The periodic stimulation of the IFFL network with train of
pulses reveals an interesting property of optimal response
with respect to the pulse pattern. In this section we slightly
extend the IFFL motif to obtain a design which improves
its ability of bandpass filtering, i.e. the property to induce
a non zero response only for a finite range of pulse peri-
ods. We consider the "diamond IFFL" motif depicted in
Fig. 1(d). The scheme is analog to the IFFL but the activa-
tion of the target gene takes two nodes instead of only
one. In fact, this extension of the IFFL can be studied in
the gene network seen in Fig. 1(d). It can also be imple-
mented in a mixed regulatory network which blends sign-
aling and gene nodes in the same interaction graph (cf.
Fig. 1(e)). This graph may schematically represent a trans-
duction network consisting of a crosstalk between two
pathways converging with opposite interactions in the
same genetic system. A similar scheme has been used in
the study of the formation of long term memory at the
molecular level [15]. The comparison between the models
of the literature and the outcome of our analysis will be
provided in the Discussion section.

Table I: Examples of plausible numerical values for the different parameters

Simple IFFL in bacteria [26] a = 0.0lmin"! A= 100 nM.min"! 6=500 nM | to 10 min 25 to 390 min
IFFL with a signaling cycle [27] K'=1s! k=151 6= 500 nM I's 2s
Page 7 of 14
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We again use the simplified description of eq.(3) for the
dynamics of the covalent modification cycles, with varia-

ble Y, and Y, , and the logic regulatory functions for the

activation of the promoter of Z. The equations of the sys-
tem depicted on Fig. 1(e) can be written as previously with

the following dynamics for the proteins Y,", Y, and Z:

V) = kS(£)(Yy — Yy) - K'Y, )
Y3 = kS(t) (Y — Y5) — K'Y, (10)
Z=BH(Y, -0,)H(0, -Y;)-aZ (11)

In this simple setting where identical kinetic parameters
are assumed for the covalent modification cycles 1 and 2,
the time-evolutions of Y, and Y, are synchronized by
the periodic signal S(t). In this case, eq. (11) shows that

the expression of Z gene is activated only when 6, <Y, <6,

(i = 1, 2), which entails that the relation €, <€, must be
assumed in order to have a non zero production of Z. This
assumption means that the affinity of the activator for
binding the promoter of Z gene is higher than the affinity
of the repressor for the same promoter.

We consider periodic stimulations of this system with a
pulse pattern (7, o) such that o is varying and the pulse

duration <7y, is fixed (cf. eq.(6)). Fig. 6 shows the vari-

ation of the mean value of synthesized Z, denoted by (Z),.
As for the IFFL, there is a lower limit of the inter-spike
interval o, in which no production of the target gene Z
occurs. But once o is increased above g, there is a fast
growth of (Z); which culminates at ¢, which can be com-
puted in the same way as before (eq.(8)). If o is further
augmented, (Z); registers a decrease which reaches 0 when
o> o, on the graph. This property is due to the existence
of a new node (activator Y1) in the "diamond" IFFL,
which ceases to activate the target gene Z once Y; max
becomes smaller than its activation threshold of Z. Thus
the new feature of the pulse-response of (Z); is that (for a
fixed 7) one obtains only a finite interval [ g, o,] of inter-
pulse intervals in which the protein Z is produced. There-
fore, the new property appearing in this system, as com-
pared with the standard IFFL, gives us the possibility to
use this architecture as a bandpass filtering, allowing the
gene to respond only to specific periodic trains of pulses,

http://www.biomedcentral.com/1752-0509/3/29
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Response of the Diamond IFFL motif with signaling
cycles to periodic stimulation in function of o. The
average response <Z >; of the protein Z of the Diamond
IFFL motif with signaling cycles (Fig. | (e)) is shown for a pul-
satile stimulation. oy is the minimal inter-pulse interval for
the system to respond. The inter-pulse interval o, gives the
optimum average response for the system and o, is the max-
imal inter-pulse interval for the system to respond. The
numerical simulation was done with the equations (9—1 1) and
with the following parameters: k = 4 min-!, k'=2 min'!, Y ;.=
Yo1e= 500 nM, & = 0.01 min-!, S= 10nM.min"!, 6, = 180 nM,
6, =230 nM, 7= 0.1 min.

with the inter-pulse o belonging to a limited range [oy,

o]

Optimal output in response to bursting oscillations

The network motifs studied in the previous Sections can
be combined in modules that can be linked in a larger net-
work to process complex signals. We show in this Section
that by linking two diamond IFFL motifs one obtains a
class of regulatory networks which are able to selectively
respond to bursting oscillations.

Bursting oscillations are time-dependent signals typically
emitted by neuron cells [28]. Their temporal pattern is
formed by trains of spikes alternating with refractory peri-
ods. The neuronal signal is a depolarization wave created
by the dynamics of ionic channels in the neuron mem-
branes. However, in the vicinity of a synapse, this electri-
cal signal transforms into a chemical signal affecting the
receptors of the post-synaptic neuron. It thereby propa-
gates its influence in the molecular regulatory networks of
this neuron. Consequently, a bursting neuronal signal can
potentiality impact on the gene expression of the post-
synaptic neuron. Therefore it is worthwhile to identify
simple topologies of regulatory networks with the ability
to be sensitive and selective to bursting oscillations.
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In order to explore this question we consider the network
represented in Fig. 1(f), which combines in series two dia-
mond IFFL motifs. Each node of Fig. 1(f) is represented by
single species but in practice the proteins Y; and Y, on this
graph could be replaced by covalent modification cycles
as the ones depicted in Fig. 1(e). In this case Fig. 1(f) cor-
responds to a regulatory system where an input signal
influences the expression of a target gene W by the inter-
mediary of a signaling pathway, in which 2 phosphoryla-
tion/dephosphorylation cycles respectively activate and
repress the promoter of the intermediate gene Z. The cor-
responding protein activates in turn the repressor V; and
the activator V, of a target gene W.

Employing similar notations as in the previous Sections,
the dynamics of the network on Fig. 1(f) can be described
by the following system:

Y, = B,S(t) - a,Y; (12)

Y, = B,S(t) - a,Y, (13)
Z=BH(Y, -0,)H(0, -Y,) - a,Z (14)
V, = B,H(Z - 0;)—a,V, (15)

V, =B,H(Z-0,)-a,V, (16)

W = B,H(V, —05)H(05 — V,) — o, W (17)

To model the input bursting signal S(t) we consider a
time-periodic pattern characterized by four time intervals
(71, 01, 5, 0) (cf. Fig. 7). The period of the signal is given
by T = 7, + 0,, where z, is the duration of the bursting
phase and o, is the quiescent period. The bursting phase
is defined by a series of square spikes in which 7, is the
width of the spike and o is the interspike interval. The
quiescent period which separates the bursting phases is
given by o,. Thus the signal is characterized by two differ-
ent time-scales 7; + 0y << 7, + 0,. In the numerical simula-
tions reported below these time scales are separated by
two orders of magnitude, reflecting the typical temporal
differences between the dynamics in signaling cascades
and in genetic regulations (cf. Table 1).

When the network represented in Fig. 1(f) is stimulated by
the signal S(t) described above, it has the property to
selectively recognize temporal patterns of bursting oscilla-
tions, allowing the target gene to be maximally tran-
scribed in some conditions. To illustrate this point Fig. 8
shows the time-evolution of W in response to various
periodic stimulations S(t). When the system is submitted
to periodic trains of square waves without bursting (Fig.
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Figure 7

Bursting signal. The signal is composed of 2 signals of dif-
ferent time scale. The first is a rapid pulsatile signal with the
duration of the "on-phase” denoted by 7, and the silent phase
between the pulses denoted by o,. The second signal is two
orders of magnitude slower. The duration of the "on-phase"
is denoted by 7, and the "off" phase between the pulses, is
denoted by . For practical reasons, the graph is not at real
scale.

8(a), oy = 0), the gene W is not expressed. Likewise if the
stimulation consists of a long train of spikes without any
quiescent period (Fig. 8(b)), the average level of W
remains negligible. However, if we stimulate the motif
with a specific bursting signal (Fig. 8(c)), the system gives
a non-zero response. More generally, the striking feature
of the network of Fig. 1(f) is to exhibit a non vanishing
response only in a given range of pulse patterns. Moreo-
ver, if the time intervals 7, and 7, are fixed, the system pos-
sesses a set of maxima for some optimal values of (o;, 5).
In view of of Fig. 8(a-c), the system behaves as it filtered
out low as well as high frequencies. But this conclusion is
misleading since when high and low frequencies are
mixed in the same input signal in the form of bursting
oscillations, the system displays a non zero response in
the evolution of W, with the possibility of optimizing the
average level of W over one period.

The reason why the network in Fig. 1(f) manifests a large
response to bursting oscillations is a direct consequence
of the results discussed in the previous Sections. Let us
again suppose that the active phase of the bursting lasts 7,
and the quiescent interval is o,. During this active phase
7,, and assuming the spike duration 7; is fixed, an optimal
output in the level of the intermediate protein Z is pro-
duced if the interspike interval o is chosen as the one
which maximizes the response curve of Fig. 6. For exam-
ple, using the parameter of that figure, this corresponds to
o0, = 1/(4¢;). On the other hand, during the refractory
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Response of the double DIFFL to a bursting signal. The motif of double DIFFL (Fig. 1(f)) is stimulated with 3 different
periodic input signals X(t) (on the left). The 3 graphs on the right give the response of the output W (t). The numerical simula-
tions were done with the following parameters 7; = 100 s and 7, = 10000 s are fixed. The other parameters are: ¢ = 0.0l sec
I, B, =10 nM:sec’!, o, = 0, 006 min-! 5, = 6 min!, 6, = 6= 700 nM, 6,= 6,= 800 nM, &= 6,= 50 nM. (a) with 0,=0s, 03 =
100 min (b) with o, =60 s, o5 = 0 min (c) o, = 60 s, o, = 100 min. For practical reasons, the representations of the pulsatile sig-

nals are not at real scale.

period o, of the bursting oscillations, the activity of Z
returns to zero. Thus the time-evolution of the intermedi-
ate protein Z is close to a periodic train of square pulses
with time pattern (7,, 0,) characterizing respectively its
"on" and "off" phases. Now this variable feeds the regula-
tion functions of the second subnetwork V, - V, - W. But
for a fixed z, this subnetwork responds in an optimal way
if the quiescent phase is chosen again as the critical o,
which maximizes a response curve like the one shown in
Fig. 6. For example, using the same parameter as for this
figure, o, would correspond to 1/(4«,). Therefore, since
the signaling time scale 1/¢, is much smaller than the one
of gene regulation 1/a,, we conclude that the temporal
pattern which maximizes the response in W is o, << o,.
This agrees with the concept of bursting oscillations.

The interlocked negative feedback loop

The network motifs analyzed in the previous Sections can
give rise to an optimum period of stimulation corre-
sponding to a maximum in the average concentration of
the output proteins. It is also interesting from a physiolog-
ical point of view, to find biological networks that give an
optimum frequency maximizing the oscillatory amplitude

of the output. So, we consider another basic network
motif which provides a maximal response in function of a
periodic stimulation. The motif network, which is shown
in Fig. 1(g), is similar to the IFFL, but the repressor Y in
addition to being activated by X is activated by Z in a feed-
back loop. Furthermore, Z is not directly activated by X.
This negative loop is not a gene regulatory motif in the
sense defined by Alon et al., but we still call it a motif as it
is the building block of several molecular biology oscilla-
tors [29]. We note that often this regulatory motif is not
purely genetic, but the negative control is induced by a
post-transcriptional regulation [30]. Furthermore, when
the species Z not only activates Y but also exerts an auto-
activation, the system can become a biological oscillator.
In fact this positive auto-regulation is essential in order to
display self-sustained oscillations. For example, minimal
models of circadian oscillators have been proposed,
involving the pattern of activation seen in Fig. 1(g)[31].
Likewise, minimal models for the cellular cycle have also
been proposed in this way [32]. This network motif also
supports a model for the oscillatory dynamics of p53 [33],
oscillations in Neurospora [34]. It has also been studied
in a synthetic biology perspective [35]. Other examples
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Table 2: Different models of the interlocked negative feedback loop. This table shows various regulators which are involved in an

interlocked negative feedback loop.

Model Cellular cycle [32] P53 [33] Synthetic system [35] Circadian rhythms (Neurospora) [34]
Y (Repressor) CLB Mdm2 Lacl FRQ
Z (Activator) CLN P53 NRI WC-I, WC-2

exist (cf. Table 2), like for instance a model given by Song
et al. [36] who also use the interlocked negative feedback
loop to describe a model of memory formation.

All these examples have been proposed as models of bio-
logical clocks, because they admit autonomous oscilla-
tions of the produced protein concentrations. In absence
of the positive auto-regulation of the activator, however, it
can be shown that no autonomous oscillations are possi-
ble. This is the case we consider for the network motif
depicted in Fig. 1(g). But even in this simpler network,
interesting oscillatory behaviors can appear if the variable
Z (orY) is influenced by periodic variations coming from
X. This periodic activation can be caused by a signal asso-
ciated with an autonomous oscillator, or by the outcome
of a signaling pathway which is periodically stimulated, as
considered in the previous Section. In all the cases we rep-
resent the periodic activation of unit X in Fig. 1(g) by a sig-
nal S(t), and the dynamics of the protein concentrations Y
and Z are determined by the following equations:

Y =(Bo + BiS(t))R*(Z) —aY
Z=PB,R (Y)-aZ
In this system, the signal S(t) associated with X(t) can be
a periodic square pulse of amplitude 1, R*(Z) is an activat-

ing regulation function, like the Hill function introduced
above, and R-(Y) = 1 - R+(Y) is a repressing function.

(18)

The resonance response is much clearer in this case if the
input signal is sinusoidal rather than a square signal. The
work performed by Lipan and Wong [37] proposes the use
of oscillatory signals for studying genetic networks. These
authors have devised a promising experimental procedure
which consists of activating and deactivating the promoter
efficiency with the use of electromagnetic fields. The net
effect of their procedure amounts to periodically modulat-
ing the expression rate of genes.

When the periodic activation is absent, 5, = 0, the system
possesses a non-zero steady state (Y, Z,) which can be
shown to always be a stable focus. The corresponding fre-
quency @, is easily determined by computing the imagi-
nary part of the Jacobian eigenvalues. Thus, if the system
is drawn away from equilibrium, it will return to its steady
state by exhibiting transient oscillations with the fre-

quency @,. This frequency can also be revealed by period-
ically modulating the expression rate of Y. In this case we
suppose that the modulation is operated with a frequency
varying in a range around @,. Numerical simulations of
eqs. (18) show that in this range the network dynamics
give rise to a resonance which coincides with @,. In Fig. 9,
we can see a maximum in the amplitude response of pro-
tein Y. A typical order or magnitude for the resonant
period obtained from plausible parameters is T, ~300
min. Moreover we observe that the resonance width
mainly depends on the stiffness of the regulatory func-
tions, quantified here by the cooperativity coefficient n of
the Hill function. To explain this property, an easy but
instructive example which can be analytically dealt with,
considers identical thresholds @ for the regulatory Hill
functions R+*(Z) and R(Y), and also assume f, = §. The
steady state for Y and Z is symmetric, i.e. Y,= Z = x/2 (we
recall that x = f/@). The natural frequency can be written
as w, = naf2, where n is the Hill coefficient of functions
R+*(Z) and R(Y). Since, in absence of periodic stimula-
tions, the damping of the oscillations is characterized by

Amplitude of oscillations (normalised)

0 0,1 1 10

Figure 9

Response of the interlocked negative feedback loop
to a harmonic stimulation. The response in amplitude of
the interlocked negative feedback loop (Fig |.(g)) to an har-
monic stimulation in function of the period of stimulation T is
shown. The numerical simulation was done with the equa-
tions (18) and with the following parameters: ;= 150
nM.min-!, 5, = 100 nM.min-!, g, = 100 nM.min-!, 6, = 50 nM,
6, =50 nM, @ = 0.0l min-!, n =2 or 4. With these parame-
ters, we have T~ 6 hours.
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a, we can estimate the "quality" factor of this resonance
with the ratio @,/ a = n/2. This indeed depends only on the
Hill coefficient n. Examples of resonances with n = 2 and
n = 4 are illustrated in Fig. 9.

Discussion

In this study we have looked at simple molecular net-
works showing the ability to maximize their responses to
periodic stimulations. Using analytical and numerical
tools, we have identified two types of basic network
motifs, and some of their straightforward extensions,
which possess this property (Fig. 1). The first of thes
motifs is the Incoherent Feedforward Loop network
(IFFL), for which we have shown that periodic activations
with a train of square pulses lead to maximizing the time-
average production of the output protein over one period
provided that the pulse and the inter-pulse intervals are
adequately chosen (Fig. 4). When the pulse duration is
short enough, this optimization also applies to the maxi-
mal concentration of the output protein reached over one
period (Fig. 5b). The mathematical analysis of this opti-
mization property is simple, although it does not reckon
as do most current studies which focus on this topic, with
the assumption of small amplitude stimulations, which
allows to work in the framework of linear filter analysis.
We have also pointed out another network motif, namely
the interlocked negative feedback loop which has the
property to exhibit a maximum in the amplitude of oscil-
lations when it is submitted to periodic stimulations. In
this case the maximization is observed in the linear regime
(i.e. for small amplitude of the stimulations) and it can be
described as a standard phenomenon of resonance.

The interlocked negative loop is a well-studied motif in
the context of oscillating regulatory networks (cf. exam-
ples given on Table 2). In all these examples the auto-acti-
vation of one of the two nodes of the network is
imperative in order to produce sustained oscillations.
Here we pinpoint a property of the interlocked feedback
loop that exists without or with only a weak auto-activa-
tion. In this case, the system relaxes towards a stationary
state in absence of periodic stimuli. It nevertheless pos-
sesses the ability to show up a resonant behavior which
can be waked by periodic stimulations. This phenomenon
might be important in some situations. For example the
protein P53 is engaged in many regulation processes and
it is known to oscillate with a period of 5.5 hours in some
conditions. In [38] the authors show that the amplitude
of oscillations of P53 is variable whereas the period of
oscillations has a spectacular regularity. We speculate that
even in absence of autonomous oscillations this system
might show up an amplified response to external periodic
stimulations (e.g. a periodic exposure to UV rays) because
of the resonance phenomenon. A similar remark can be
made regarding regulatory systems related to stress

http://www.biomedcentral.com/1752-0509/3/29

responses as in the SOS regulator LexA of E. coli or in the
NEF-xB system.

As an illustrative application of the periodic activation of
the diamond IFFL motif we believe that the feature stud-
ied in the present paper reveals the principle behind an
intriguing phenomenon studied by Smolen et al. [15]. In
this reference, the authors proposed a model for the for-
mation of long term memory (LTM), a process which is
based on the LTP phenomenon (Long Term Potentiation)
in neurons and on the subsequent strengthening of syn-
apses. The LTP appears in a synapse when the postsynaptic
cell is submitted to some external signal, for instance in
the form of glutamate pulses of significant amplitude.
Then this signal induces the phosphorylation of transcrip-
tion factors which genetically activate the production of
new proteins in order to strengthen connections between
synapses or to create new synapses. On the other hand, it
has been shown that in order to learn, several animals or
organisms need to receive stimulations in repeated ses-
sions (a well-studied example is the aplysia, see [39] for a
review). Interestingly these sessions must be spaced with
a minimal interval. Massed training produced signifi-
cantly shorter lasting memory as experimentally shown in
[40]. Thus the genetic network underlying this regulation
must respond only if the learning sessions are sufficiently
spaced.

The model of Smolen et al. (Fig. 5 of [15]) had the same
structure as the diamond IFFL shown in Fig. 1(e). It pos-
tulated the existence of two transcriptional factors, respec-
tively an activator and a repressor, whose phosphorylated
forms are activated by an external signal, allowing them to
act on the promoter of a gene involved in the formation
of LTM (e.g. the creb genes). The purpose of this modeling
was to show the marked differences in the transcription
rate of the LTM genes between the case of "massed stim-
uli" and the case of "spaced stimuli", as was experimen-
tally observed e.g. by Yin et al. [2]. In fact an outstanding
property of their model was the existence of a maximum
in the transcription rate of the LTM genes, in function of
the interspike interval (here corresponding to the rest time
between the learning sessions). However the definite
mechanism underlying this property is not easy to iden-
tify in that system, as the model counted a half dozen of
nonlinear equations, with nearly 20 parameters to be cho-
sen. Despite this complexity the authors did conclude by
suggesting that a general mechanism enabling the tuning
of the response of a gene promoter to an optimal stimulus
frequency could be the presence of two competing proc-
esses with different sensitivities acting on this gene. In this
article we have achieved a minimal model which puts this
intuition on firm grounds. Our analysis shows that the
presence of two competing processes related by the IFFL
mechanism is indeed a key ingredient, a higher affinity of
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the activator compared with the one of the repressor for
the target gene promoter is another one.

The results of Li and Goldbeter [16] mentioned in the
introduction are another rare example found in the litera-
ture where a maximization process of the response in a
molecular network is shown to critically depend on some
temporal patterns of activation. Although this study is
based on analytical calculations the basic ingredient
which explains the observed property is not transparent.
Although the link of this model with the IFFL motif is not
established we are currently working on a generalization
of the optimization principle identified in the IFFL
responses in order to place the two studies in the same
framework.

Based on typical parameter values met in different systems
(genetic, signaling), Table 1 provides some estimates of
the pulse and of the inter-pulse intervals which allow for
maximization of the average production of target pro-
teins. Since these estimates seem compatible with plausi-
ble experimental values, they prompt experimental
implementations of the scheme. For example, several IFFL
regulatory motifs have been recognized in a genome map
of E. coli [18]). It would be interesting to stimulate one of
these loops with trains of periodic pulses in order to dis-
cover whether the predicted maximization is feasible in
practice. Utilization of thermosensitive promotors may be
one possibility for the implementation of the periodical
stimulations [41]. Nevertheless we note that the phenom-
ena presented here may be sensitive to molecular noise
and to environmental perturbations. Presumably, the
envisaged experiments might be less difficult to achieve in
eukaryote organisms where the genetic regulations
involve more proteins than in prokaryotes, in this way,
molecular noise could be reduced.

A general issue concerning the concept of network motifs,
like the IFFL, is that such a module is in fact embedded in
larger and more complex regulatory networks [42]. This
weakens the actual meaning of modular subnetworks. In
this regard, however, by considering time dependent sig-
nals we propose that frequency selectivity mechanisms
like the ones studied here, can give more sense to the
modular approach. Finally we note that from a biomedi-
cal perspective the question of optimal response in molec-
ular networks could be especially relevant in situations
where a maximal protein synthesis would be beneficial in
periodic stimulation-based therapies. For example some
innovative treatments of neural based diseases like Par-
kinson's, or of severe depressions, use a novel technique
consisting of deep brain stimulations [43]. The patient
wears a pacemaker linked to electrodes implanted in some
brain nuclei. Electrical stimulations are then transmitted
at a given frequency. Although this type of clinical treat-
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ment has been reported to lead to spectacular relief, the
question of fine tuning the frequency of the pacemaker to
achieve an optimal result is empirically solved for the time
being [44]. A better understanding of the time-dependent
responses of intracellular signaling pathways could be
very relevant in these situations. In a different context, the
traditional periodic intake of medicines is another exam-
ple where optimization will emerge from rational think-
ing in terms of optimal pulsatile stimulations.

Conclusion

The mechanisms presented in this article identify new
possible strategies which can be employed by a cell to
integrate time-dependent information provided by the
environment. The studied network motifs offer the attrac-
tive possibility of selecting a signal according to its tempo-
ral structure or to its frequency content. Only messages
which for instance, which have a minimal inter-pulse
duration are allowed to pass. The identified mechanisms
are simple and based on known network motifs in the lit-
erature, they can be embodied in existing organisms. They
could also be implemented by means of synthetic biology
[41,45].

Methods

Numerical simulations

Numerical simulations were made with programs written
in C language and the Runge-Kutta routines from the
GNU Scientific Library. The simulation codes of the mod-
els which were used to obtain the numerical results
reported in the paper (e.g. Figs. 5, 6, 8 and 9) are provided
in the additional file 2 (with the name "archive-codes").
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