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When faced with changing environments, organisms rapidly mount physiological and behavioural
responses, accommodating new environmental inputs in their functioning. The ubiquity of this
process contrasts with our ignorance of its evolutionary significance: whereas within-generation
accommodation of novel external inputs has clear fitness consequences, current evolutionary theory
cannot easily link functional importance and inheritance of novel accommodations. One hundred
and twelve years ago, J. M. Baldwin, H. F. Osborn and C. L. Morgan proposed a process (later
termed the Baldwin effect) by which non-heritable developmental accommodation of novel
inputs, which makes an organism fit in its current environment, can become internalized in
a lineage and affect the course of evolution. The defining features of this process are initial
overproduction of random (with respect to fitness) developmental variation, followed by within-
generation accommodation of a subset of this variation by developmental or functional systems
(‘organic selection’), ensuring the organism’s fit and survival. Subsequent natural selection sorts
among resultant developmental variants, which, if recurrent and consistently favoured, can be
inherited when existing genetic variance includes developmental components of individual
modifications or when the ability to accommodate novel inputs is itself heritable. Here, I show
that this process is consistent with the origin of novel adaptations during colonization of North
America by the house finch. The induction of developmental variation by novel environments of this
species’s expanding range was followed by homeostatic channelling, phenotypic accommodation and
directional cross-generational transfer of a subset of induced developmental outcomes favoured by
natural selection. These results emphasize three principal points. First, contemporary novel
adaptations result mostly from reorganization of existing structures that shape newly expressed
variation, giving natural selection an appearance of a creative force. Second, evolutionary innovations
and maintenance of adaptations are different processes. Third, both the Baldwin and parental effects
are probably a transient state in an evolutionary cycle connecting initial phenotypic retention of
adaptive changes and their eventual genetic determination and, thus, the origin of adaptation and
evolutionary change.

Keywords: Baldwin effect; evolution; developmental plasticity; hormones; inheritance;
maternal effects

1. INTRODUCTION

Throughout the history of evolutionary biology, one
general question remains most puzzling: ‘how and why
do organisms produce a suitable adaptation where it is
needed?’ (Weismann 1896; Gerhart & Kirschner
2007). The answer to this question hinges on under-
standing the evolution of organismal systems that
enable continuing environmental input and homeo-
stasis of already-present adaptive structures. Essen-
tially, the main difficulty here is to envision the evolution
of a system that reconciles variability and heredity—
adaptation to changing environments requires gener-
ation of novel developmental variation, but heritability
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of such variation should, by definition, limit the range of
future variability. In different reincarnations, the
relationship between variability and heredity is
expressed in the search for the ‘non-Lamarckian’ links
between functional importance and heritability
(Osborn 1896; Jablonka ez al. 1995), between novelty
and contingency in the evolutionary process (Cope
1887; Baldwin 1896; Miiller & Wagner 1991; Miiller &
Newman 2003; West-Eberhard 2003), between adap-
tation and adaptability (Severtsov 1934; Mayr 1960;
Kirschner & Gerhart 2005) and, more generally, the
connection between adaptation and evolutionary change
(Schmalhausen 1938; Lewontin 1970).

Observations that ‘the means of survival’ are distinct
from the ‘fact of survival’—i.e. that accommodation of
novel environmental inputs within a generation plays
an important role in an organism’s survival and
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functioning—fuel a search for the place of such
accommodations in evolutionary theory and for the
mechanisms that might link induction and retention of
within-generation accommodations in evolutionary
lineages (Dobzhansky 1937; Schmalhausen 1938;
Mayr 1960, 1982; Simpson 1984; Gould 2002;
West-Eberhard 2003). Four general observations aid
in this search. First, a weakening or cessation of natural
selection often coincides with evolutionary novelties
and diversifications, such as in domestication, where
shielding from natural selection leads to expression of
novel developmental variation, or in ‘ecological release’
(Van Valen 1965) of developmental diversification in
the wild that accompanies colonizations and invasions
of competitor- and predator-free environments (Losos &
Queiroz 1997; Reid 2007). Second, the expression of
previously hidden or novel phenotypic variation—such as
physiological or morphological plasticity—is delineated
by existing organismal structures shaped by the accumu-
lation of prior adaptations (Cope 1887; Baldwin 1902;
Whyte 1965) and governed by either regulatory changes
or rearrangements of pre-existing components (King &
Wilson 1975; Stern 2000; West-Eberhard 2003; Carroll
2005). Third is the thesis that different inheritance
systems include distinct levels of directionality and
persistence in relation to generation span (e.g. Jablonka
2001). For example, maternal effects, the focus of this
review, combine induction of novel and functionally
important developmental variation in offspring with its
directional inheritance over the span of at least two
generations (Badyaev 2008). Fourth is the notion of an
epigenetic-to-genetic continuum of regulatory changes
in developmental evolution, where the most reliable and
recurrent organism—environment associations (those
with the greatest fit, i.e. fitness) become internalized
and stabilized by progressively greater genetic determina-
tion (Chetverikov 1926; Newman & Muiiller 2000;
Oyama 2000; Miiller & Newman 2003; Badyaev
20050, 2007). In turn, progressively stronger integration
and genetic determination greatly amplify the spread of
novel phenotypic variation both among organismal
components and across individuals in a population (e.g.
Simpson 1953; Newman & Miiller 2000; Duckworth
in press), thereby facilitating evolutionary change.

One hundred and twelve years ago, in a series of
influential publications, J. M. Baldwin, H. F. Osborn
and C. L. Morgan proposed a process by which within-
generation developmental accommodation of induced
environmental inputs, which makes an organism fit in
its present environment (‘organic selection’ in Bald-
win’s writings), can become internalized in an
evolutionary lineage and lead to evolutionary change
without violating Weismann’s rule of germ plasma
continuity (Baldwin 1896; Morgan 1896; Osborn
1896). They proposed that organic selection is the
process in which phenotypic accommodation of
novel environmental inputs in ontogeny allows
survival in changing environments, allowing time
for subsequent natural selection to retain suitable
adaptation. The key components of this evolutionary
sequence (termed the Baldwin effect by Simpson
1953) are (i) initial overproduction of random
(with respect to fitness) developmental variation,
(i) organismal complexity that assures channelling,
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directionality and initial retention of a subset of the
induced developmental variation, and (iii) subsequent
natural selection that both favours the ability to
accommodate novel inputs when they increase an
organism’s fitness and sorts among the resultant
developmental variants based on their survival value.
When organismal complexity assures similar pat-
terns of accommodation among individuals in a
population and when natural selection consistently
favours particular developmental outcomes of
accommodation, the ability to accommodate the
novel input can be inherited. Such inheritance
is possible when either existing genetic variation
includes developmental components of individual
accommodations or the ability to accommodate
novel inputs has genetic variation (Baldwin 1896;
Simpson 1953; Ancel 1999; West-Eberhard 2005)—
conditions likely to be met for a majority of modern
organisms (Davidson 2006).

Demonstrating the Baldwin effect requires an inte-
gration of approaches from developmental biology,
physiological ecology and evolutionary ecology and an
empirical system in which one can observe organisms
adapting to changing environments of variable recur-
rences. Here, I review the evidence that the origination of
adaptive morphological modifications during ongoing
colonization of North America by the house finch
(Carpodacus mexicanus) is consistent with the Baldwin
effect processes (figure 1). The house finch—a passerine
bird native to southwestern North America—underwent
an extensive expansion of historical range through both
contemporary introductions and natural invasions. By
2008, just 70 years after the first introduction, house
finches have occupied virtually all of continental USA,
occurring at high densities at its coldest, hottest, wettest
and driest locations and occupying the widest ecological
range of any extant bird species. First, I briefly review the
history of the house finch range expansion, concurrent
phenotypic divergence among newly established popu-
lations and the rapid evolutionary change over 14
consecutive generations after the establishment of a
population in the northern edge of the species range.
Second, I show that exposure of breeding females to
novel environments during range expansion induced
behavioural and physiological responses that resulted in
strong maternal effects on offspring developmental
variation. Third, I review the evidence for integration
of induced maternal effects and offspring sex determina-
tion, and suggest that this integration represents
homeostatic channelling of induced developmental
variation (i.e. phenotypic accommodation). Fourth,
I document strong natural selection on both precision
of accommodation in maternal generation and morpho-
logical outcomes of these accommodations in the
offspring generation. I suggest that maternal effects
may be a transient state in the evolutionary continuum of
epigenetic-to-genetic inheritance systems and a powerful
illustration of the Baldwin effect processes (figure 1).
Furthermore, I suggest that the Baldwin effect process is
a particularly likely pathway to the origin of novel
adaptations in the complex of modern organisms
because of the redundancy and integration of genetic
determination of their development and homeostasis.
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Figure 1. Summary of the Baldwin effect processes in the origination of novel adaptations during ongoing range expansion of
the house finch. Novel inputs (e.g. ambient temperature exceeding egg-viability limits in newly established populations in the
northern and southern edges of the range and recurrent mite infestation in the native population) induce novel behavioural and
physiological variation (e.g. modification of incubation onset, plasma hormone fluctuations; §3a,b). Shared involvement of the same
hormonal mechanisms in regulating environmental assessment, incubation behaviour and oogenesis ensures channelling and
accommodation of the induced variation (§3¢), resulting in overproduction of novel, but functional, developmental variants (§3d).
Subsequent natural selection acts on both reproductive homeostasis of females breeding under novel conditions and resulting
developmental variants (§3d). Recurrent fitness benefits of developmental outcomes of induction might lead to their retention (§3¢).

2. HOUSE FINCH ESTABLISHMENT IN NOVEL
ENVIRONMENTS IN NORTH AMERICA

(a) Brief history of the house finch

range expansion

Prior to 1850, house finches occupied an area from
southern Oregon, central Utah and southern Wyoming
in the north and east, to Oaxaca, Mexico in the south
(Hill 2002). In the 1850s, a small number of house
finches from coastal California (sc CA; figure 2) were
introduced to Oahu and, by 1901, they were abundant
throughout the Hawaiian chain (Grinnell 1911). In the
1930s, 40-100 house finches, originally from Santa
Barbara, California, were released from a pet store in
New York City and, by the early 1950s, the city’s
population of house finches had increased to several
hundred birds (Elliott & Arbib 1953; Mundinger &
Hope 1982). From the 1960s to the 1990s, the New
York population spread across all of the eastern USA
and southeastern Canada. In the 1940s-1950s, house
finches also began to expand their range in western
North America (Badyaev & Hill 2000). The expansion
proceeded along both the eastern and the western sides
of the Rocky Mountains, reaching northwestern
Montana, the focus of this review, from the south and
west in the 1950s; house finches became a common
breeding bird in Missoula, Montana by 1969 (P. L.
Wright 1993, personal communication), although
there are records of vagrant house finches in the area
in the late 1940s. On the eastern side of the Rocky
Mountains, house finches reached north-central Mon-
tana by 2002 and the expansion currently continues
southwards along the Rocky Mountain Front. On the
western side of the Rocky Mountains, house finches
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reached the continental divide from the west by 2005
and expansion now proceeds northwards. The first
verified exchange of individuals between the western
and eastern parts of the northern range expansion in
Montana took place in the spring of 2002 (Duckworth
et al. 2003).

(b) Divergence among newly established
populations

The expansion of the geographical range was accom-
panied by rapid allometric divergence and frequent
reversals of sexual size dimorphism; new populations
often differ by as much as two standard deviations of
the mean (s.d.) in less than 10 generations in some
traits (figure 2). The pattern of phenotypic divergence
showed no clear historical or genetic constraints—the
among-population covariance structure was distinct
between the sexes and discordant with both within-
population covariance patterns and the patterns
expected from historical sequence of population
settlement. Instead, the divergence reflected low
phenotypic and genetic integration among traits during
ontogeny; half of all examined ontogenetic allometries
among seven morphological traits had significant
genetic variance (Badyaev & Hill 2000; Badyaev &
Martin 2000a).

In newly established populations at the northern and
southern edges of the geographical range, the diver-
gence in growth parameters was qualitatively con-
cordant with within-population patterns of natural
selection (see §2c; Badyaev et al. 20015). However,
neither evolved ontogenetic divergence nor mortality
due to natural selection achieved the observed
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Figure 2. Rapid phenotypic divergence across selected house finch study populations. Shown is the difference between male and
female size (in standard deviations of female trait). The bars from left to right are bill length, wing, tail, tarsus and body mass.
Southwestern Arizona (sw AZ1 and sw AZ2), Mexico (Isla Guadalupe (IGU) and Guerrero (GUE)) and south-central
California (sc CA) populations are within the species’ historical range. The sc CA population is the source of introductions for
the east coast populations (southeastern Michigan, se MI; southeastern Alabama, se AL; southern New York, s NY) and Hawaii
(HI). The Montana populations on the western and southeastern fronts of the Rocky Mountains have been established during
historical range expansion over the last 40 years (nw MT, sw MT and se MT), while the eastern MT populations have been
derived from an expansion of the introduced range over the last 10 years (nc MT and ne MT). The numbers after abbreviations
of the recently established population are the first breeding record. The nw MT population (Vigilante Ministorage Complex in

Missoula, MT) is the main subject of the present review.

magnitude and speed of population differentiation.
Instead, the divergence was produced by two inter-
connected phenomena: (i) population-specific changes
in the frequency distribution of distinct ontogenies
produced by biasing the birth sequence of male and
female offspring, a maternal effect, and (i) greater
sensitivity of male offspring to environmental con-
ditions during growth and, consequently, higher variance
in male growth and morphology both within and among
populations (Badyaev er al. 2001a, 2003a). Controlling
for either of these phenomena experimentally and
statistically erases the observed phenotypic differen-
tiation among populations (Badyaev ez al. 2002a,b).

(¢) Rapid evolutionary change and natural
selection following population establishment
Low integration and high phenotypic and genetic
variance during growth enabled rapid and extensive
microevolution in morphology since the establishment
of the northwestern Montana population (NWM
hereafter; figures 3 and 4). Over 14 consecutive
generations, the average between-generation change
(generation is 1.7 years in house finches) exceeded 0.15
s.d. for bill dimensions and 0.1 s.d. for skeletal traits
(figures 3 and 4). Peripheral location and recent origin
of the NWM population, in addition to abundant
developmental variation, might have contributed to
high mortality caused by natural selection on
morphology there; but in all examined populations,
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net natural selection was qualitatively concordant with
observed morphologies in both sexes (Badyaev &
Martin 200056; Badyaev er al. 2000). Natural selection
on morphology was especially strong on juveniles
(figures 3 and 4), but in both age classes and sexes,
selection fluctuated across years and seasons, often
differed between the sexes, and was closely linked to
local functional demands, such as exploitation of new
food source in bill traits or a novel disease agent.
Without the overproduction of morphologies that were
favoured by survival selection and the underproduction
of disfavoured morphologies (see §3b)—accomplished
by phenotypic accommodation of environmentally
induced organismal modifications over consecutive
generations, components of the Baldwin effect (see
§3a,c; figure 1)—such strong and fluctuating natural
selection would have caused local population extinc-
tion and prevented the evolution of extensive and
adaptive population divergence (figure 2; Badyaev ez al.
2002a,b). Specifically, the initial population establish-
ment and subsequent adaptation to climatic extremes
of the expanding geographical range were enabled by
population-specific sex bias in ovulation order
(figure 5a). Below, I argue that this seemingly complex
adaptation is a transient and likely passive maternal
effect that is a novel by-product of natural selection on
females’ ability to overlap egg production (oogenesis)
and incubation required by breeding under extreme
environmental conditions in the north. Its central
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Figure 3. Phenotypic evolution and natural selection on morphology of house finches across 14 consecutive generations
following establishment in the northwestern Montana study population. (a,d,g) Cross-generational changes in means (+1 s.e.)
of traits measured in fully grown juveniles born in the population in a given year. The 1970s is a sample of first-breeding founders
of the Missoula population that were measured at the time of collection and held at the University of Montana’s P. L. Wright
Zoological Museum. Sample sizes of locally born offspring of locally born parents are as follows: 1995 (23 males, 24 females);
1996 (53, 42); 1997 (46, 52); 1998 (19, 22); 1999 (53, 44); 2000 (48, 26); 2001 (49, 55); 2002 (57, 66); 2003 (61, 67); 2004
(48, 36); 2005 (32, 25); 2006 (22, 24); 2007 (13, 20); and 2008 (25, 27). The right axis shows the mean between-generation
change (in s.d./year) in morphological traits in males (black circles) and females (white circles). (b,e,2) Linear selection
differentials of juvenile survival selection episode (from the end of the growth until the onset of post-juvenile moult). Sample
sizes of local juveniles (before selection) are as follows: 1995 (82 males, 74 females); 1996 (131, 103); 1997 (132, 133); 1998
(154, 139); 1999 (170, 177); 2000 (313, 284); 2001 (346, 311); 2002 (416, 474); 2003 (534, 576); 2004 (262, 204); 2005 (156,
159); 2006 (63, 92); 2007 (65, 51); and 2008 (38, 43). (¢, f,7) Linear selection differentials of subsequent adult survival
selection episode (from post-juvenile moult to the first spring of breeding). Black bars, selection on males; white bars, selection
on females. The horizontal lines show the mean strength of selection across 14 generations (solid line, males; dashed line,
females). *p<0.05. (a—) Beak length, (d—f) beak depth and (g—:) beak width.

importance in contemporary phenotypic evolution of
house finches is assured by strong natural selection on
both the physiological modifications that enable finches
to breed under novel conditions and resulting develop-
mental variation in offspring morphology.

3. EVIDENCE FOR THE BALDWIN EFFECT’S
PROCESSES

(a) Environmental induction of physiological
variation in reproducing females

Three features of avian biology make environmentally
induced cross-generational effects on the rate and
duration of offspring development likely. First, avian
embryos cannot develop without being incubated and
breeding females determine the duration of develop-
ment directly by modifying the onset of incubation in
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relation to egg-laying in response to their environment
(such as predation risk, mate provisioning and ambient
temperature; Conway & Martin 2000; Hébert 2002;
Martin et al. 2007). Second, although several eggs
develop in the ovary simultaneously, only one is laid per
day, making egg-laying sequence, in combination with
the onset of incubation, a ubiquitous and powerful way
to modify offspring growth in relation to environmental
variation (Clark & Wilson 1981; Ricklefs 1993;
Stoleson & Beissinger 1995). Third, the same hormo-
nal mechanisms are involved in the assessment of
environmental conditions, regulation of female repro-
ductive state and metabolism of resources for develop-
ing oocytes (Johnson 2000; Vleck 2002; Williams ez al.
2005; Sockman et al. 2006). For example, incubation
behaviour in many birds, including the house finch
(figure 6¢), is regulated by environmentally induced
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Figure 4. Phenotypic evolution and natural selection on morphology of house finches across 14 consecutive generations
following establishment in the northwestern Montana study population. The description is the same as given in figure legend 3.
(a—) Wing length, (d—f) tarsus length, (g—) tail length and (j-/) body mass.

synthesis of prolactin, a pituitary hormone that is also
involved in controlling proliferation of oocytes and the
synthesis of follicular steroids (Etches er al. 1979;
Tabibzadeh ez al. 1995; Sockman & Schwabl 1999;
Sockman et al. 2001).

A combination of these factors accounts for direction-
ality of naive females’ reaction to novel environmental
conditions across recently established house finch
populations and its consequences for offspring growth
(see §3d). Specifically, shared hormonal regulation
of female reproduction and sex-specific allocation of
growth substances to developing offspring facilitates
the emergence of sex-specific clustering of oocytes
along the egg-laying sequence across house finch
populations (figure 5a).

Environmental induction of sex-biased ovulation
sequence is most evident in females newly arriving to
breed in the NWM population (figure 6a). The onset of
incubation in these females closely tracks ambient
temperature in a pattern consistent with the mainten-
ance of viability of newly laid eggs—full incubation
starts at ambient temperatures below 4°C (prolonged
exposure to such temperatures results in developmental
failures; Webb 1987), and these females show a
proportional linear relationship between ambient
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temperature during oogenesis and sex bias in ovulation
(figure 6¢). Females that previously bred in the NWM
population require less environmental induction to
produce sex-specific clustering of offspring and their
incubation behaviour is less affected by ambient
temperature (figure 6b,c); the ‘internalization’ of
the inductive environmental stimulus in these females
can be accomplished by a shared hormonal regulation
of environmental assessment and reproduction
(see §3d). Overall, ambient temperatures exceeding
the range of viability for unincubated eggs are common
across newly established house finch populations in the
northern and southern parts of the range, producing
strong gradients of growth duration and associated
morphological variation in offspring produced in
different positions in the egg-laying sequence (Badyaev
et al. 2003a,b).

(b) Overproduction of novel developmental
variation by environmentally induced

maternal effects

Environmentally induced maternal effects on offspring
development result in greater phenotypic variation in
most morphological traits (figure 7a). Because develop-
ment of male offspring is more sensitive to environmental
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(b) Evidence that selection on maternal strategies and offspring morphologies share the same proximate targets (squares, nw
MT; triangles, se AL; circles, sw AZ1). Relationship between sex bias in ovulation order and sex bias in juvenile survival.
Individuals in the most sex-biased positions within a clutch had the most sex-biased survival. Modified from Badyaev et al.
(2002a). (¢) The relationship between sex bias in ovulation order (in deviations from parity for each ovulation position) and
sex differences (female minus male value) in duration of oocyte growth (h) in the nw MT population. Numbers are ovulation
orders (1-5) and standard errors for sex bias were calculated from the among-year deviations during 1995-2003, for growth
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Badyaev ez al. (2005).

variation than is development of females in house finches synthesis and accumulation of steroids required for sex-

(Badyaev et al. 2002b, 2003a, 20065), environmentally
induced variation in ovulation order of male oocytes
produces a greater range of morphological variation
than does variation in ovulation order of females
(figure 7b), accounting for a greater contribution of
male morphology to both within-population evolution-
ary change and among-population divergence (Badyaev
et al. 2001a; Badyaev 2005a).

(¢) Homeostatic channelling and organic
selection of environmentally induced variation
An environmentally induced overlap between oogen-
esis and incubation imposes a trade-off between an
increase in prolactin required for incubation and the

Phil. Trans. R. Soc. B (2009)

specific allocation to growing oocytes (figure 6e,f).
A resolution of this trade-off by clustering of oocytes of
different sex along the ovulation sequence (figure 5a)
favours integration of controls of sex determination
and sex-specific allocation. Such integration might be
facilitated by the involvement of the same environmen-
tally sensitive hormonal mechanism in the regulation of
maternal behaviours, oocyte growth and maturation,
and syntheses of steroids linked to oocyte sex
determination (Badyaev & Oh 2008; Rutkowska &
Badyaev 2008).

Several lines of evidence suggest that integration of
sex determination and sex-specific resource allocation
is an emergent outcome of phenotypic accommodation
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Figure 6. Physiological consequences of environmentally induced behaviour following population establishment. Onset of
incubation (grey bars, left axis, mean percentage of full clutch *s.e.) closely tracks ambient temperature (black line, right axis,
24 hours average *+s.e.) and overlaps with egg-laying in (a) first-breeding newly arriving females, but not in (b) previously bred
local females. Modified from Badyaev ez al. (2003a). (¢) The relationship between the ambient temperature outside the limits of
tolerance for unincubated eggs (below 4°C, critical temperature hereafter) during oogenesis and sex-biased ovulation sequence
(number of biased positions) in the first-breeding attempt of newly arriving females (response proportional to ambient
temperature, #= 86 females, solid line and circles) and subsequent breeding attempts of these females in the same environment
(threshold response, n=51, dashed spline and squares). Bubble radius is proportional to the number of overlapping data
points. (d) Estimated number (+s.e.) of the critical temperature days during 10-day-long oogenesis needed to exert full
population-specific response (three biases in ovulation sequence in the NWM population) across the lifetime of the 51 females
in (¢). Modified from Badyaev & Oh (2008). (¢) Hormonal correlates of environmentally induced incubation. Circulating
plasma prolactin (circles; n=82 females) and androgens (testosterone and 5a-dihydrotestosterone; triangles; n=28,
mean ts.e.) in the first-breeding females that began full incubation with the laying of the first egg. The box shows the period
of oogenesis in these females. Breeding stages are the ovulation of the first egg (E1-O), the ovulation of the second egg and
laying of the first egg (E2-O) and the onset of full incubation (PI-1d). Modified from Badyaev ez al. (2005). (f) Relationship
between circulating prolactin and androgens during oogenesis (shaded box in (¢)) in the continuously sampled first-breeding
females that show an environmentally induced overlap of egg-laying and incubation.
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Figure 7. Maternal effects widen developmental variation in offspring under novel environmental conditions. (@) Phenotypic
variance in fully grown juvenile males in relation to maternal effects on the development of their traits (variance, X 10%). Each
point represents a generation from the 1995-2006 cohorts; the lines are least-squares regression. The dashed lines indicate non-
significance. In female juveniles, phenotypic variance in tarsus is negatively associated with maternal effects and variances in bill
length and width are unrelated to maternal effects. Variance in other traits is positively associated with maternal effects. Filled
circles, beak length; filled up triangles, beak depth; filled down triangles, beak width; filled squares, wing; open squares, tarsus;
open circles, tail; open triangles, mass. Modified from Badyaev (20054). (b) Range of morphologies (approx. 10% of trait mean)
at the end of the growth (shown as sexual dimorphism in male minus female tarsus lengths) that can be produced by variation in
maternal adjustment of ovulation order of male and female oocytes. Values above the black plane represent male-biased
dimorphism and values below the plane female-biased dimorphism. Modified from Badyaev ez al. (20025).

(e.g. organic selection in Baldwin’s terminology) of
novel environmental input by dynamics of oocyte
growth. First, concentration of circulating hormones
in female plasma changes consistently across oogenesis
(figure 6¢), and oocytes initiating growth at different
points along this hormonal gradient are exposed to
distinct hormonal mixtures and synthesize and
accumulate different amounts of hormones as a result
of such exposure (figure 8a, insert). Second, groups of
oocytes recruited at the same time may form single-sex
clusters, as evident from growth-inhibiting hormonal
interactions between groups of spatially and temporally
segregated oocytes of the same sex and age (figure 8¢)
and by sex-specific overlap in synthesis, accumulation
and partitioning of resources (figure 8b,d). Third, the
oocyte clustering is reversible and context dependent
within a population, and can emerge rapidly in
response to distinct environmental cues in different
populations (ambient temperature in nw MT and se AL
and nest mites in sw AZ1; figures 5a and 8e,f), as long
as these cues are linked to a pronounced gradient of
circulating steroids or prolactin in maternal plasma
(Badyaev & Oh 2008). Fourth, epigenetic processes
assuring random sex determination of avian meiosis
can be modified to produce directional segregation
distortion of sex chromosomes by factors linked to
oocyte growth and steroid accumulation (Alonso-Alvarez
2006; Pike & Petrie 2006; Rutkowska & Badyaev 2008).
Fifth, intra-ovarian dynamics of oocyte growth amplifies
and maintains initial environmental induction—the
onset of incubation has a particularly strong effect on
sex determination of the first recruited oocytes, whereas
sex determination of the subsequent oocytes is mostly
affected by the sex of preceding eggs, possibly as a result
of overlap in resource partitioning and inhibiting

Phil. Trans. R. Soc. B (2009)

interactions (Badyaev et al. 20035, 2006c¢). Finally,
at least in two newly established populations, there
are pronounced fitness consequences of integration of
sex determination and sex-specific resource allocation—
the misalignment of sex determination in ovulation
order (e.g. when a male is produced in a female-biased
ovulation position) is associated with hormonal accumu-
lation that might be incompatible with normal sex-
specific development (figure 9a), accounting for sub-
optimal growth and high mortality of such offspring at
early developmental stages (figure 95).

Alternatively, the shared involvement of prolactin in
both environmentally induced maternal behaviours
and growth and, possibly, sex determination of oocytes
might not be an emergent physiological response, but
rather an evolved adaptive strategy. The link between
the onset of incubation and sex bias in ovulation
sequence could have evolved through natural selection
for synchronization of offspring growth despite the
asynchrony introduced by lengthy egg-laying periods,
and capitalizing on greater sensitivity of one sex
(typically males) to environmental conditions during
growth. Indeed, the association between incubation
onset and variable maternal allocations of resources,
including in sex-specific pattern, in relation to
ovulation order is frequently documented (e.g. Mead &
Morton 1985; Bortolotti 1986; Blanco ez al. 2002; Eising
et al. 2003; Duckworth 2009).

(d) Natural selection on the resulting
developmental variation

The developmental and physiological outcomes of
phenotypic accommodation of environmental input
by two generations—i.e. females’ capacity to breed
under novel environmental conditions and associated
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Figure 8. Channelling environmentally induced maternal effects into discrete and functional offspring phenotypes. (a) Exposure
to androgens circulating in maternal plasma during oogenesis is expressed in the total concentration of yolk androgens in oocytes
(solid line and triangles, males, n=33; dashed line and circles, females, #=36). Insert: bars are mean (+s.e.) daily exposures of
male (black) and female (white) oocytes to androgens that had circulated in maternal plasma during the oocyte development.
Modified from Badyaev ez al. (2005). (b) Evidence that sex differences in timing of oocyte growth, allocation of hormones and
sex determination are causally linked in this system. Bars and the left ordinate axis show mean acquisition (+s.e.) of androgens
for male (black, solid lines) and female (white, dashed lines) oocytes. Lines are linear and quadratic regressions describing the
within-sex patterns of acquisition in relation to ovulation order. Spline and the right ordinate axis show within-clutch gradient
(least-squared means for each ovulation position) while statistically controlling for the effects of oocyte sex and biased sex ratio.
Asterisks indicate sex-biased ovulation positions. Androgens are shown as an example; other steroids have similar patterns.
Modified from Badyaev er al. (2006a). (¢) Evidence for spatial sex-biased clustering of oocytes. Coefficient of variation
(%, ts.e.) in yolk/albumen ratio (controlling for yolk size) as a measure of ovulation interval consistency in relation to the sex of
the immediately preceding egg (black bars, preceding oocyte is male; white bars, preceding oocyte is female). *Significant
differences between the effect of the sexes of preceding egg. Modified from Badyaev ez al. (2006¢). (d) Evidence for temporal sex-
biased clustering of oocytes. The effect of the overlap among simultaneously growing oocytes on the accumulation of androgens
depends on the sex of overlapping oocytes. Lines are partial regressions on residuals controlling for all other aspects of oocyte
growth and substances. Circles and solid lines show overlap with same sex oocytes; triangles and dashed lines show overlap with
oocytes of the opposite sex. Modified from Badyaev ez al. (2008). (¢) Clustering based on oocyte similarity in yolk acquisition
(indicating spatial or temporal proximity) in the first-breeding females that experienced in the first-breeding females that
experienced one or no critical temperature days during oogenesis (z=34 nests), and (f) the first-breeding females that
experienced more than five critical temperature days during oogenesis (7= 63 nests). Letters with numbers indicate sex (male or
female) and ovulation order (1-5). Drawings show hypothetical arrangement of oocytes in the ovary that would correspond to
(f) sex-specific clusters or (¢) non-sex-specific hierarchical arrangements. Vertical bars indicate statistically distinct clusters.
Modified from Badyaev & Oh (2008).
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**p<0.01, significant differences by two-tailed z-test. Modified from Badyaev ez al. (2003a).

morphology of offspring—are subject to natural selec-
tion. In the maternal generation, females that respond to
novel environmental stimulus with physiological adjust-
ments (figure 10a), and have greater coordination of
behavioural and physiological responses to environ-
mental stimulus (figure 105), have the highest fitness,
even when the fitness consequences of their offspring
morphology per se are statistically accounted (Badyaev
et al. 2005). The proximate target of such selection
might be the capacity of females’ homeostasis to enable
breeding under novel or fluctuating environments, as
well as internal selection for alignment of sex determina-
tion and sex-specific allocation of oocytes recruited
under pronounced environmentally induced hormonal
gradients in female plasma. Such strong (figure 10a,b)
natural selection on females’ ability to breed under novel
environments should facilitate phenotypic accommo-
dation of novel environmental inputs even in the absence
of any consequences for offspring morphology.
However, there is evidence that natural selection on
offspring in relation to their morphology and natural
selection of female breeding under novel conditions
share proximate targets (figure 5b,c), such that extensive
initial divergence in morphology following population
establishment (figure 2) is directly attributable to
environmentally induced maternal effects (figure 5a).
First, in several populations, natural selection on
offspring morphology favours precise sex bias in
ovulation order—such that sex-specific survival and

Phil. Trans. R. Soc. B (2009)

sex-biased ovulation order are matched closely
(figure 5b,c). Assuming that offspring morphology is
at least partially affected by the egg’s acquired
hormones and other growth-affecting resources, such
selection on offspring morphology acts to fine-tune the
initial integration of sex determination and sex-specific
allocation of resources along the environmentally
induced hormonal gradient of breeding females,
ultimately resulting in over-representation of some
growth trajectories and under-representation of
others—the main cause of population divergence.
Second, when natural selection on morphology is
similar between maternal and offspring generations,
environmentally induced maternal effects on offspring
morphology are concordant with patterns favoured by
survival selection on offspring generation (figure 10c),
the result expected when maternal effects and morpho-
logical variation share proximate mechanisms. Integration
of complex internal mechanisms of sex determination
with a contingent mechanism of sex-specific allocation of
growth-affecting substances could enable not only reten-
tion and stabilization of environmentally induced
effects (see §3¢), but also facultative sex-specific adjust-
ment of the effect of ovulation order on offspring
morphology (e.g. Dijkstra ez al. 1990; Cordero et al.
2001; Andersson ez al. 2003).

Importantly, in the context of the house finch range
expansion, when natural selection favours sexual size
dimorphism (figures 3 and 4) and when the direction of
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Figure 10. Natural selection on environmentally induced maternal behaviour and its consequences for offspring development.
(a) Natural selection on the extent and precision of response (number of biases in ovulation sequence) to environmental stimulus
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Modified from Badyaev & Oh (2008). (b) Natural selection on coordination of environmentally induced onset of incubation
(figure 6) and physiological response to associated changes in hormonal profiles (figure 7). Numbers are offspring per female
surviving to dispersal age (=116 females). Modified from Badyaev er al. (2005). (¢) Similarity in the strength of selection in
offspring (z year) and maternal (z— 1 year) generations as a function of maternal effects on trait development (variance, X102,
symbols are the same as given in figure 7). Ordinate values below zero indicate lesser mortality in offspring compared with
maternal generations. Each point is a generation pair from the 1995-2005 cohorts; the lines are least-squared regressions and
the non-significant slope is indicated by the dashed line. Only males are shown; female offspring show similar patterns. Modified
from Badyaev (2005q). (d) Estimated mortality (‘minimum required mortality’ sensu Lande 1976) needed to produce the
observed selection intensity on juvenile morphology in figure 4e, under the assumption of unweighted distribution of residual
tarsus length (controlling for body mass) at fledging expected with no sex-biased ovulation order and under observed
distribution of tarsus length for both sexes at fledging. Under the assumption of truncation selection, mortality was calculated
from the mean selection intensities and a normal distribution. The difference in mortality was assessed with (white) and without
(black) the sex-biased ovulation order. Modified from Badyaev ez al. (2002a).

dimorphism differs among populations (figure 2), clus- stabilizing selection on a bimodal distribution of
tering of offspring of different sex along the egg-laying morphologies produced by development (e.g. Kopp &
sequence might lower offspring mortality by converting Hermisson 2006). In fact, such conversion might have
disruptive selection needed to produce sexual dimorph- been the key to house finch establishment in the NWM
ism in a newly established population to overall population (figure 10d; Badyaev 2005a).

Phil. Trans. R. Soc. B (2009)
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(e) The origins of heredity: initial retention and

accommodation of induced environmental effects
Homeostatic channelling and phenotypic accommo-
dation of environmentally induced variation assures
similarity in individual responses to environmental
change, improving the efficiency of natural selection in
fine-tuning locally adaptive changes and facilitating their
heritability without reducing developmental plasticity
(Cope 1887; Baldwin 1902; Schmalhausen 1938;
Jablonka & Lamb 1995; West-Eberhard 2003). When
phenotypic accommodation includes elements of
complex developmental and genetic pathways of existing
structures or when the ability to accommodate novel
inputs is itself heritable, recurrent natural selection can
lead to retention and heritability of the induced changes
(Baldwin 1902; Waddington 1953). However, natural
selection accompanying the house finch establishment
in new and diverse parts of the expanding range is
unlikely to be recurrent over time, whereas the limits to
expressed variability imposed by heritability might
actually prevent population persistence when such
persistence favours variability. Under these conditions,
short-term cross-generational transfer of environ-
mentally induced phenotypes (different in different
populations) might be favoured by natural selection.

An important insight into heredity of environmen-
tally induced changes is provided by within-generation
changes in the processes of environmental induction
(figure 6a,b) and phenotypic accommodation
(figure 6¢). In first-breeding females, newly arriving
to breed in the NWM population from more southern
locations, the link between maternal strategies and
offspring development is mostly caused by strong
environmental induction of incubation behaviour and
corresponding, largely passive, propagation of this
effect on offspring growth. However, in subsequent
breeding attempts of these females, sex bias in
ovulation order becomes the most important determi-
nant of offspring morphology, independent of weaker
inductive effects of ambient temperature on incubation
behaviour—i.e. the incubation onset and sex bias in
ovulation order become linked independently of
mediating effects of ambient temperature (Badyaev
et al. 2003a,b).

Facultative and precise sex bias in ovulation
sequence can be an evolved strategy under recurrent
natural selection, as demonstrated by house finches in
the native southwestern Arizona population (figure 5).
In this population, facultative sex bias in ovulation
sequence is triggered by short-term infestation of nests
by Pellonyssus reedi mites. The infestation occurs every
year in all nests and the physiological response of
females to mite infestation does not appear to be an
induced strategy—naive females express sex-biased
ovulation sequence in response to environmental
stimulus similarly to experienced females (Badyaev &
Oh 2008). More importantly, biased ovulation
sequence is closely integrated with sex-specific adap-
tations in growth of male and female offspring
(Badyaev et al. 2006b), a suite of coevolved mother—
offspring adaptations triggered by mite-induced spikes
in maternal plasma corticosterone, its transfer to egg yolk
and subsequent corticosterone effect on Bmp-regulated
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ossification sequence (Badyaev, A. V., Young, R. L.,
Oh, K. P. & Landeen, E., personal observations).

The dependence of a physiological response on the
environmental stimulus decreases rapidly across a
female’s lifetime, whereas the adaptive response itself
is not only maintained, but also becomes more precise
(figure 6¢,d). The mechanisms that enable within-
generation retention and fine-tuning of an induced
adaptive response are of central importance to under-
standing the evolution of inheritance. Both within-
generation retention of an induced effect (e.g. ovulation
order of the first-breeding attempt) and within-
generation fine-tuning of an induced effect (e.g. in
relation to familiarity with mate, food fluctuations) are
frequently documented (Cheng 1986; Yoo et al. 1986;
Sockman et al. 2002; Pfaff er al. 2004) and commonly
attributed to complexity and redundancy of endocrine
reproductive systems where the same hormonal
mechanisms are involved in the assessment of environ-
mental variation and oocyte proliferation and ovulation
(e.g. Ball & Balthazart 2008). Furthermore, the
integration of mechanisms of sex determination and
sex-specific allocation of resources should be under
natural selection for sex-specific allocation of
resources, because, in birds, multiple eggs develop at
the same time but sex-specific allocation is often
favoured and necessary for normal development
(Carere & Balthazart 2007).

Integration of epigenetic mechanisms of sex
determination and sex-specific accumulation of
resources in relation to maternal hormonal state can
facilitate the retention of maternal adaptations and
eventual evolution of sex-specific maternal effects. The
often documented precision in sex-ratio adjustment in
relation to the context of breeding and incubation
onset, including the reversal between subsequent
breeding attempts, suggests a considerable degree of
functional and genetic integration among these
mechanisms in birds. I suggest that the environ-
mentally induced interplay among maternal hormonal
profiles, associated sex-specific acquisition of hor-
mones by developing oocytes and developmental
plasticity of offspring in the newly established popu-
lation represent the initial stages of evolution of local
adaptation and provide a link between environmental
induction and genetic inheritance of novel adaptations.

4. PARENTAL EFFECTS AND THE BALDWIN
EFFECT AS ‘ONTOGENETIC ACCOMMODATIONS
OF EARLIER GENERATIONS’

The cornerstone of the Baldwin effect is the historical
recurrence of an environmentally induced change that
determines the speed of its accommodation in a
lineage, such that the direction of evolution can be
envisioned as ‘the direction of the ontogenetic accom-
modations of the earlier generations’ (Baldwin 1896).
Three main prerequisites to this process are: the
capacity of organismal homeostasis to accommodate
and direct a novel input enabling survival in a novel
environment; the ability to produce discrete and similar
(i.e. directional) changes across many individuals
simultaneously; and pre-existing heritable variation in
elements of organismal modification (Baldwin 1902).
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Importantly, these features of homeostasis enable
persistence of environmentally induced effects without
their immediate fitness consequences per se—the
spread of environmental induction is assured by a
simple recurrence of inductive conditions and the
complexity of existing organismal systems. The ability
to produce rapid directional and facultative organismal
modifications, shielded from natural selection, along
with accommodation of distinct environmental con-
ditions without limiting evolvability through genetic
determination, puts the Baldwin effect processes at the
forefront of evolutionary diversifications and inno-
vations of modern organisms, especially in adaptations
of homeostatic physiological systems.

The research described in this review suggests that
the extensive phenotypic divergence among newly
established house finch populations shown in figure 2
is an outcome of the Baldwin effect (figure 1)—the
cross-generational changes in frequency distribution of
environmentally induced phenotypes. More generally,
house finches—the fastest dispersing bird species that
over the last 70 years have occupied the widest
ecological range of any extant bird—illustrate the
evolutionary importance of emergent developmental
processes even in organisms with pervasive, complex
and redundant genetic regulation of homeostatic
processes. Three phenomena are the keys to house
finch adaptability during ongoing colonization of its
current range. First, the capacity to persist and breed
under exceptionally diverse novel environments
enabled by behavioural and physiological modifications
in response to novel conditions (see §3a). Direction-
ality and consistency of such responses across individ-
uals, as well as physiological amplification and
propagation of initial environmental inputs, might be
accomplished by functional integration of the repro-
ductive system and by shared endocrinological controls
of its multiple components (§3b; figure 1). Second, the
ability to maintain precise phenotypic states while
shielding abundant developmental variance in morpho-
logical traits from natural selection and, thus, retaining
the capacity to change under novel environments of the
expanding range (§2b). I suggest that this is accom-
plished by selection on integration of sex determination
and sex-specific growth in offspring generation with
environmentally induced hormonal gradients in the
maternal generation (see §3d; figure 1). The develop-
mental outcome of this selection is overproduction of
some phenotypes and underproduction of others.
Subsequent natural selection on morphology might
further fine-tune the association between sex
determination and growth, capitalizing on the link
between growth and allocation of resources into eggs,
eventually leading to consistent production of heritable
locally advantageous morphologies.

5. ARE PARENTAL AND THE BALDWIN

EFFECTS DISTINCT?

Both maternal (or more generally parental) effects and the
Baldwin effect processes emphasize induction, function-
ality and directional inheritance (cross-generation
changes in frequency distribution) of induced phenotypes
(Baldwin 1902; Mousseau & Fox 1998; Pigliucci &
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Murren 2003; Badyaev 200556, 2008). Are parental and
the Baldwin ‘effects’ distinct? Both depend on emergent
developmental processes and capitalize on homeostatic
stability for accommodation and direction of either
environmental input in the parental generation or parental
input in the offspring generation. Both are produced by
accumulation of prior adaptations or through adaptability
of regulatory mechanisms, and both depend on
the similarity of natural selection across generations
(Mousseau & Dingle 1991; Uller 2008). Finally,
both are defined by cross-generational changes in
the distribution of phenotypes in relation to their
functional importance.

I suggest that parental effects are a particularly clear
illustration of the Baldwin effect processes (figure 1).
First, the environmentally induced novel input that the
parental phenotype delivers to developing offspring is
an input that has been modified and prescreened by a
functioning parental phenotype (Badyaev 2008). Such
induction therefore not only limits detrimental or non-
functional effects of environmental induction, but also
is more efficient because it capitalizes on existing
controls of developmental processes. By including
elements of response to selection, such parental effects
also modify selection experienced by offspring. Second,
the developmental offset between environmental
induction in the parental generation and subsequent
parental induction in the offspring generation enables
parental modification of earlier stages of offspring
development—the environment of parental functioning
becomes the environment of offspring development for
offspring. Third, parental effect processes can enhance
the evolutionary importance of environmentally
induced changes by combining functional (in parental
generation) and developmental (in offspring gener-
ation) accommodation of the same environmental
input with directional inheritance and similar natural
selection of its outcome. Importantly, both parental
and the Baldwin effects include elements of genetic
determination of existing organismal system that,
under persistent natural selection, can genetically
accommodate environmentally induced modifications.

6. CONCLUSIONS

Empirical investigations of parental and the Baldwin
effect processes in the evolution of house finches
emphasize three principal conclusions. First, in modern
complex organisms, novel adaptations result mostly
from reorganization of existing structures. Such pre-
existing structures shape both novel or newly expressed
variation on which natural selection can act (sometimes
giving natural selection an appearance of a creative
force). Second, both parental effects and the Baldwin
effect emphasize that evolutionary diversifications and
maintenance of adaptations are different processes
(Lewontin 1974; Reid 1985; Miiller & Newman 2005;
Badyaev 2008), probably operating in alternation
between emergence of novel developmental variation
and stabilization of locally appropriate organism-—
environment associations by natural selection. Third,
both processes probably represent a transient stage in an
evolutionary cycle connecting phenotypic retention of



Review. Phenotypic accommodation and evolution A. V.Badyaev

1139

adaptive changes and their genetic determination and,
thus, origin of adaptation and evolutionary change.
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