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Here, we propose that global brain function is geared towards the implementation of intelligent
motricity. Motricity is the only possible external manifestation of nervous system function (other than
endocrine and exocrine secretion and the control of vascular tone).

The intelligence component of motricity requires, for its successful wheeling, a prediction imperative
to approximate the consequences of the impending motion.

We address how such predictive function may originate from the dynamic properties of
neuronal networks.
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1. INTRODUCTION
While the present set of papers has centred on the
general theme of prediction, the realm of such a
predictive property can be addressed at many levels.
From our perspective, prediction in all its forms is a
premotor parameter, which may or may not be enacted.
The nervous system evolved such that multicellular
creatures that move in a purposeful fashion, i.e. non-
randomly, have a clear selective advantage. To accom-
plish such ‘intelligent movement’, the nervous system
evolved a set of strategic and tactical rules, a key
element of such being prediction: the ability to
anticipate the outcome of a given action on the basis
of incoming sensory stimuli and previously learned
experiences or inherited instincts. This ability to predict
the outcome of future events is, arguably, the most
universal and significant of all global brain functions.

The mechanism of prediction is ubiquitous in the
brain’s control of movement. Consider the simple act
of reaching for a carton of milk in the refrigerator.
Without giving much thought to our action, we must
predict the carton’s weight and the compensatory
balance that we must apply for a successfully smooth
trajectory of the carton from the refrigerator. Indeed,
before even reaching, we have made a ballpark
prediction of what will be involved. And surprisingly,
we often hit the carton against the top shelf—because it
is lighter than we had unconsciously predicted.

Furthermore, we can assume that the prediction in
movement must be unique (i.e. the CNS can only
operate in a probability space having only a one-
dimensional axis), and so, predictive functions must be
collapsed to a one-dimensional vector, which will be
the base for motor prediction at any given moment.
Concerning the proper mathematical format with
which to understand the brain decision theory, the
tribution of 18 to a Theme Issue ‘Predictions in the brain:
r past to prepare for the future’.
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possibility of using Bayesian statistical methodology
has raised much interest (Körding 2007). The
possibility of using the concept of functional geometry
associated with neuronal network properties to under-
stand the predictive properties of brain was initially
proposed in the late 1970s and early 1980s (Pellionisz &
Llinás 1979, 1985). The spatio-temporal nature and
this metric property has been addressed more recently
from a dynamic, rather than as a linear connectivity
matrix transformation, under the term dynamic
geometry, where the metric is considered to be statistical
in nature (Roy & Llinás 2008).

The functional basis for such a statistical metric view
of internal functional space arose from the experi-
mental finding that inferior olive neurons are endowed
with weakly chaotic intrinsic oscillatory properties
(Makarenko & Llinás 1998). As with the initial network
tensor approach, dynamic geometry transforms dynamic
covariant vector (associated with sensory inputs) to
contravariant dynamic vector (associated with motor
outputs). From this perspective, the distribution associ-
ated with the statistical metric predicts the movement
uniquely. The application of Bayesian methodology
(Körding 2007) to decision making becomes an added
attractive avenue. Particularly so, because one of the most
significant issues in Bayesian approach concerns the
genesis of priors (prior belief or prior knowledge) in
neuronal circuits.
2. PREDICTION AND MOVEMENT
Since the ability to predict evolved in tandem with
increasingly complex movement strategies, we may
address movement control in order to understand
prediction. Let us return to the refrigerator for a carton
of milk. The appropriate pattern of contractions must
be specified for an extension/grasping sequence to be
properly executed (add to this the correct use of
postural muscles for support of the body while bending
forward during the reach). Each muscle provides a
This journal is q 2009 The Royal Society
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direction of pull (a vector) composed of individual
muscle fibres operated in pre-established groups based
on their common innervations by given motor neurons.
These contractile ensembles are known as motor units
(a single motor neuron innervates tens to hundreds of
individual muscle fibres). A given muscle may be
composed of hundreds of such individual motor units.
The number of muscles multiplied by the number of
motor units in each muscle may then be viewed as the
total number of degrees of freedom for any given
movement. A movement such as reaching into the
refrigerator is considered a simple one. However, from
a functional perspective, even a simple movement often
engages most of the body’s muscles, resulting in an
astronomical number of possible simultaneous and/or
sequential muscle contractions and degrees of freedom.
In addition, the arm may be brought towards the milk
carton from any number of initial positions and
postures (maybe your back hurts, so reach from an
unusual stance). All of this potential complexity exists
before the load is actually placed on your body; you
have yet to pick up the carton and can only guess its
weight during your initial reaching motion.

So, this simple movement is not simple at all when
we break it down and try to understand how the brain
handles all of this. However, the dimensionality of the
problem of motor control does not derive solely from
the number of muscles involved, the differing degrees
of pull force and angle, and so forth. The real
dimensionality of the problem stems from the compli-
cated interaction between the possible directions of
muscular pull and their temporal sequence of activation.

Much of motor control occurs in real time, ‘online’,
as it were. Our movements, from start to finish, are
seldom under stimulus-free conditions. Consider the
following scenario: riding your bicycle while holding a
cup of coffee. The combination of muscle contraction
and relaxation at any given moment is often
determined as a movement sequence and executed in
response to teleceptive stimuli (hearing and vision),
kinaesthetic feedback (your feeling of the bicycle and of
the cup of coffee) and your intentions (drink your coffee
and get to the your destination as soon as possible). It is
generally assumed that the optimal controller is one
that produces the smoothest possible movements. To
minimize the accelerative transients that produce
jerkiness in movement, this ideal implies continuous
monitoring at a sampling rate of the order of
milliseconds or faster (as in the case of your auditory
system), as well as feedforward and feedback influences
on the selected activation sequences. Yet, we may
evaluate quantitatively whether it is computationally
possible for the brain to control movement in such a
continuous, online manner.

From the heuristic description above, and given that
there are 50 or so key muscles in the hand, arm and
shoulder, which one uses to reach for the milk carton,
over 1015 combinations of muscle contractions are
possible; this is a staggering number to say the least. If
during every millisecond of this reaching/grasping
sequence the single best of the 1015 combinations is
chosen after an evaluation of all of the possibilities, then
1018 decisions would have to be made every second.
This would relegate the brain, if it were to be a
Phil. Trans. R. Soc. B (2009)
computer, to being a 1 EHz (1 million GHz) processor
when choosing the correct muscle combinations to
execute appropriately this relatively simple, reaching/
grasping sequence. In reality, even the above scenario is
an oversimplification. The dimensionality of the
problem of motor control is increased many orders of
magnitude when one also considers that there is a bare
minimum of 100 motor units for every muscle, and that
each muscle pull may, and most likely will, involve
differing sets of motor neurons.

The brain does not seem to have evolved to deal with
the control of movement in the fashion described
above; especially when one considers that there are only
approximately 1012 neurons in the entire brain. It is,
therefore, clear that the continuous control of move-
ment demands an extremely high computational over-
head. This is true if the brain is controlling the
movement by regulating the activity of every muscle
discretely in parallel, or by choosing and implementing
combinations of muscles. We do, of course, make
complicated movements, and quite often. To delve further
into this issue, we must ask the following questions.

(i) How might the dimensionality problem of motor
control be reduced without significantly degrading
the quality of movement sequences?

(ii) Which aspects of brain function may provide clues
to solve this problem?
(a) The discontinuous nature of movement

A relatively straightforward approach to reducing the
dimensionality of motor control would be to decrease the
temporal resolution of the controlling system, i.e. remove
it from the burden of being continuously online and
processing. This can be accomplished by breaking up the
time line of the motor task into a series of smaller units
over which the controller must operate. Control would be
discontinuous in time and thus the operations of such a
system would occur at discrete intervals of a ‘vt’. We must
consider an important consequence of this approach,
namely that the movements controlled by this type of
pulsatile system would not be executed continuously
in the sense of demonstrating obligatorily smooth
kinematics, but rather would be executed in a discon-
tinuous fashion series of muscle twitches that are linked
together. Motor physiologists have known this fact for
over a century: movements are not executed continu-
ously, but are discontinuous in nature. Indeed, as early
as 1886, E.A. Schafer indicated that human movement
was discontinuous.

More recently, Valbo & Wessberg (1993) and
Wessberg & Valbo (1995) found prominent 8–10 Hz
discontinuities in slow and ‘smooth’ finger movements.
They suggested that such discontinuities are most likely
generated from the CNS levels above the spinal cord, as
the latencies of the stretch reflex were incompatible with
the timing of the observed discontinuities of the move-
ments. The stretch reflex is a simple, negative feedback
mechanism involving a motor unit and its associated
segmental spinal cord circuitry; when a muscle is
passively stretched, this compensatory reflex causes a
subsequent contraction. The latency of this reflex (from
stretch to contraction) has been worked out, and it is
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clear that this mechanism cannot explain the timing of
the tremor components seen in the above study.
Accordingly, Wessberg & Valbo (1995) suggested that
the drive causing these periodic components must derive
from structures rostral to the spinal cord, i.e. the brain.

We see that the underlying nature of movement is not
smooth and continuous as our voluntary movements
overtly appear; rather, the execution of movement is a
discontinuous series of muscle twitches, the periodicity of
which is highly regular. Furthermore, this may be seen as
a physiological tremor that is apparent even at rest (when
we are not actively making movements). Thus, the
tremor is highly associated with movement onset and
movement direction. For instance, upward movements
are initiated during the ascending phase of physiological
tremor (Goodman & Kelso 1983). What do these
rhythmic discontinuities represent? What might be their
functional significance? To understand this, we may
apply Occam’s razor.

A parsimonious explanation might take into account
the high functional overhead the brain must handle in the
control of movement. Rather than an inherent property
of muscle itself, this physiological tremor might be an
‘echo’, at the musculoskeletal level, of a descending
command that is pulsatile in nature. If the control system
operates discontinuously (to avoid high computational
overhead), a pulsatile nature is ideal.While this is a step in
the right direction for lowering our functional overhead
(as far as control of movement is concerned), there may
problems with this pulsatile control. Discontinuous move-
ments may result in further benefit, beyond lowered
computational load.What else might be gained by pulsatile
control through time, apart from easing up on the
brain’s workload?

(b) How does the brain predict?

For the nervous system to predict, it must perform a
rapid comparison of the sensory-referred properties of
the external world with a separate internal sensor-
imotor representation of those properties. For the
prediction to be usefully realized, the nervous system
must then transform into or use this premotor solution
in finely timed and executed movements. Once a
pattern of neuronal activity acquires internal signi-
ficance (sensory content gains and internal context),
the brain generates a strategy of what to do next, i.e.
another pattern of neural activity.

This strategy can be considered an internal represen-
tation of what is to come, a prediction imperative, in order
to become actualized in the external world.
3. MOTOR BINDING IN TIME AND THE
CENTRALIZATION OF PREDICTION
First, a pulsatile input into motor neurons from a control
system, as opposed to a command system, may prepare a
population of independent motor neurons for descending
control by uniformly biasing these motor neurons into
their linear range of responsivity (Greene 1982). To
clarify, a pulsatile control input would serve to ‘linearize’
a population of highly nonlinear and independent
neuronal elements in order to ensure a uniform
population response to a control signal. The motor
neurons that need to be recruited for a given movement
Phil. Trans. R. Soc. B (2009)
may be, and often are, separated by many spinal levels;

this mechanism may serve as a cueing function to
synchronize motor neuronal activation.

Second, a pulsatile control system might allow for brief
periods of movement acceleration that would provide an

inertial break mechanism to overcome frictional forces
and the viscosity of muscles (Goodman & Kelso 1983).

For example, when we rock a snowbound car, this
movement helps to extract it.

Third, a periodic control system may allow for input
and output to be bound in time; in other words, this type

of control system might enhance the ability of sensory
inputs and descending motor command/controls to

be integrated within the functioning motor apparatus as

a whole.
We now understand that operating continuously

online, which we might have thought of as the only
way the brain could bring about smoothly executed

movements, is simply not possible physiologically.
Instead, the brain has relegated the rallying of the

motor troops to the control of a pulsatile, discontinu-
ous signal, which is reflected in the musculoskeletal

system as physiological tremor. Other than just saving
the brain from being computationally overwhelmed,

a pulsatile control input also serves to bring the
neurons, muscles or limbs closer to a threshold for

some action, be it firing, integration or movement.
The possible risks of operating discontinuously in

time are beautifully minimized by the synchronizing
effect this pulsatile signal has on the independent

elements of the motor apparatus at all levels. Let us
remember the words of Berstein (1967): ‘a mutual

synchronization through rhythm is doubtless necess-
ary for the motor apparatus as a whole’.

We see that the muscles are often used in com-

binations. Fixed or hard-wired synergies are not the only
rule, and that muscle combinations clearly change

dynamically as they must during the execution of a
complex movement. If muscle collectives are the unit to

be controlled, as opposed to individual muscles, then
what does this ask of the central process underlying

movement control? It demands that the control system is
able to reconfigure itself dynamically so that these

collectives are cast temporarily, quickly dissolved and
rearranged as required, as a complex movement

proceeds. If one agrees that the CNS has many possible
solutions for a given motor task, then it follows that any

given functional synergy organized by the brain must be
a fleeting, dissipative construct. Furthermore, such

constructs may not be easily recognized in behaviour as
an invariant pattern of muscle activation such as those we

recognize in many overt, stereotypical reflexes.
An ‘over complete’ system of muscle collectives would

ensure a degree of versatility and flexibility in choices that

the control system could make. If we think of all the
different ways we can reach for the milk carton, the idea

of over completeness is clear. If the motor control system
may select from an over complete pool of similar

functional synergies, any number of which gets the job
done reasonably well, then this would certainly lower

the burden for the control system. It would ease the
demand for precision: for having to make the right choice

every time.
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4. THE OPEN AND CLOSED LOOP
DOUBLE DIPPING
The execution of rapid, voluntary movements requires
two components with differing forms of operation. The
first component is an initial, ballistic approximation of
the movement’s end point (get your hand close to the
carton of milk); the second component fine-tunes the
movement using tactile, kinaesthetic, vestibular (balance)
or visual feedback (grasp the carton). The first
component is performed ‘open looped’ and in a
feedforward manner. The second component operates
‘closed looped’ meaning that it allows for sensory
feedback to refine the movement as it is being executed.

Concerning execution, Greene (1982) suggested that
the synergy underlying the feedforward component of a
complex voluntary movement is selected from a variety of
ballpark estimates that will approximate, but not precisely
render, the desired end point. In this scheme, the
magnitude of the feedback adjustment of the movement
is inversely proportional to the precision with which the
feedforward contribution can achieve the desired end
point. Selecting a more optimal muscle synergy for the
task will reduce the amount of follow-up effort required
to correct any deviation produced by the feedforward
component. Keep in mind, however, that if only one
muscle synergy can approximate the desired movement
end point, an erroneous selection would require a large
correction with loss of time and movement coordination.
But as we mentioned above, since there are many
synergies to choose from that will approximate the
desired movement, owing to their over completeness,
this reduces the necessity for an absolutely precise
selection. As long as the selection is within the ballpark,
the savings from operating in a feedforward mode will pay
for the minimal follow-up effort based on the feedback.

Finally, we come to understand that prediction must
be centralized so that the premotor/sensorimotor images
formed by the predictive properties are understood as a
single construct. This is actually the issue of cognitive
binding, and the neural mechanisms that formulate
single, cognitively bound constructs are the same as those
that generate, as a single construct, the subconscious
sensorimotor image that says close your eye, as an object
is rapidly approaching.
5. HOW A NEURONAL CIRCUIT CAN PREDICT?
One early attempt to understand prediction (Pellionisz &
Llinás 1979) concluded that the brain predicts by taking
advantage of the differences in electrical behaviour
between the given nerve cells. Because some neurons
are highly sensitive to stimuli while others are less so, a vt
look ahead function might be implemented by neuronal
circuits through a process analogous to a mathematical
function known as the Taylor series expansion. And so,
what is at the heart of such central circuits that could
provide the intrinsic drive to generate organized move-
ment if it is not reflex/sensory input? The self-referential
approach to the organization of motor control has been
given a shot in the arm by the discovery of intrinsic
neuronal oscillations and the specific ionic currents
necessary for their generation (Llinás 1988). Indeed,
oscillatory neuronal behaviour is associated with the
generation of an overt, rhythmic activity at 8–12 Hz.
Phil. Trans. R. Soc. B (2009)
Thus, the periodic activity that is seen in movement is a
reflection of a motor control system that operates in a pulsatile,
discontinuous-in-time fashion. A control system that
synchronizes motor control signals temporally so that
movement is executed in an organized, expedient fashion
must be centrally located. The spinal cord is more than
capable of sustaining a rhythmic movement (Grillner
1985), but it does not have the wherewithal to organize
and generate a complex predictive movement.
6. PREDICTION AND ‘SELF’
More specifically, while prediction is localized in the
CNS, it is a distributed function and does not have a
single location within the brain. What is the repository of
predictive function? The answer lies in what we call the
self, i.e. the self is the centralization of the predictive
imperative (Llinás 2002). The self is not born out of the
realm of consciousness—only the noticing of it is (i.e. self-
awareness). Thus, according to this view, the self can
exist without awareness of its existence. That is, even in
our case of individuals capable of self-awareness, such
awareness is not necessarily present. As an example,
consider one’s response to fire in one’s bedroom. The
thought will be ‘fire, run!’, not, ‘fire, I will now run’.
Given that prediction may be considered the ultimate and
most pervasive of all brain functions, one may ask how
this function is grounded such that there evolved only one
predictive organ. Intuitively, one can imagine the timing
mismatches that would occur if there were more than one
set of predictions making judgement calls for a given
organism’s interaction with the world; it would be most
disadvantageous for the head to predict one thing and the
tail to predict another! For optimum efficiency, it would
seem that prediction must function to provide an
unwavering residency and functional connectedness: it
must somehow be centralized to the myriad interplays of
the brain’s strategies of interaction with the external
world. We know this centralization of prediction as the
abstraction we call the ‘self’.
7. DYNAMIC GEOMETRY AND BAYESIAN
APPROACH TO DECISION THEORY
If, as stated above, there are 50 or so key muscles in the
hand, arm and shoulder that one uses to reach for the
milk carton, over 1015 combinations of muscle contrac-
tions are possible. The choice of appropriate motor
command is primarily a decision process. However, in
addition to muscular combinatorial issues, noise in the
sensory inputs generates uncertainty in the hand’s true
location. This type of uncertainty possesses the problem
of estimating the state of the external world. Bayesian
statistics provides a systematic way of approaching such a
problem in the presence of uncertainty (Cox 1946; Jaynes
1986; Freedman 1995; Mackay 2003).

In Bayesian statistics, prior knowledge about the
system is assumed. The fundamental question regarding
the CNS function is the origin of such prior knowledge,
and the answer is simple: the morphofunctional brain
network, initially inherited and then honed by use.
In fact, the origin of a Bayesian framework can be traced
to Helmholtz’s (1867) idea of perception. It was
Helmholtz who realized that retinal images are ambig-
uous and prior knowledge is necessary to account for
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visual perception. Recently, the genetic component has
been thought to play a significant role in the development
of human depth perception ( Yonas 2003). And so, how is
prior information encoded in the CNS?

A central question concerning present-day neuro-
science is that of understanding the rules for the
embedding of ‘universals’ into intrinsic functional
space. Some suggestions have been offered concerning
the nature of this CNS internal space that we think
addresses this point (Roy & Llinás 2008). The arguments
go as follows: if functional space is endowed with
stochastic metric tensor properties, then there will be a
dynamic correspondence between the events in the
external world and their specification in the internal
space. We shall call this dynamic geometry because
the minimal perceptual time resolution of the brain
(10–15 ms), associated with 40 Hz oscillations of
neurons and their network dynamics, is considered to
be responsible for recognizing external events and
generating the concept of simultaneity (Joliot et al. 1994).

Essentially, this dynamic geometry helps us under-
stand the nature of sensory–motor transformation. The
stochastic metric tensor in dynamic geometry can be
written as function of four space–time coordinates
(i.e. three space and one time of Minkowski space) and
a fifth dimension (Roy 1998). This fifth dimension is a
probability space as well as a metric space. This extra
dimension is an embedded degree of freedom and is
random in nature. In fact, the dynamic geometry
framework makes it possible to distinguish one individual
from another. The uniqueness of individuals must
operate in detail not in principle, i.e. general solutions
must operate on the basis of a generalized solution field.
Considering the stochastic nature of specific brain
function among individuals, they will have both ana-
tomical and functional variances, similar to the
differences in their facial characteristics. The variances
must be such that they modulate, rather than destroy, the
general solution. However, the variances may be so
extreme that they negate the function or may even be
lethal. Within this framework, social variance enriches the
system, as variances augment some properties and
diminish others and so individuality is important. Thus,
the geometric structure is embedded in the CNS from
birth and functional states of neurons are associated with
this geometric structure. In this framework, the covariant
to contravariant transformation occurs with a certain
probability distribution.

Physiological tremor is ultimately the reflection of
T-type calcium channel kinetics in inferior olive neurons
(Llinás et al. 2004) resulting in the fluctuating nature of
the geometry of the internal space. Here, the input–
output feedback is not simply sequential but related to
the stochastic process in equilibrium whose distribution
is associated with the distribution of stochastic metric
tensor. This gives rise to an optimal (and organized)
motor movement. In this situation, Bayesian method-
ology helps to understand the motor and predictive
ability of brains.

This is basically an issue in statistical inference,
which can be viewed as information processing relating
input and output information. The statistical inference
has been studied in various topics in statistics, physics,
biology and econometrics. Briefly speaking, inference is
Phil. Trans. R. Soc. B (2009)
a form of information processing where a black box
endowed with prior information (morphofunctional
properties) receives input information and sends
outputs in the form of parameter estimates and
predictive distributions. Bayes’ theorem has been widely
studied as a model to transform a priori information
into future inference. In fact, the Helmholtz idea
of perception (1867) as ‘unconscious inference’ is
considered as the origin of Bayes’ framework. Bayes’
theorem is used to calculate the inference distri-
bution in the following manner: given a prior
distribution say a Gaussian distribution p(x) and noisy
observation o (data), which leads to a Gaussian
likelihood p(ojx), then the p inference distribution p(xjo)
is given by

pðx j oÞZ pðo j xÞpðxÞ=pðoÞ:

Körding (2007) developed a Bayesian approach,
which leads to a better estimate of the possible outcomes
than other estimates using sensory input. Recently,
Bhattacharya et al. (2007) developed a Bayesian
methodology to fit the data observed in an underlying
process in equilibrium. This methodology can be
described as f (datajprocess, parameters)!f (processj
parameters)!f(parameters). In a formal language, it can
be represented as

f ðY jX ; qÞf ðX j qÞf ðqÞ;

where Y is the (set of ) observed data; q is a set of model
parameters; and X is an unobserved (latent) stationary
stochastic process. This stochastic process is induced by
the first-order transition model

f ðXðtC1Þ jXðtÞ; qÞ;

where X(t) denotes the state of the process at time t. It is
to be noted that given q, the transition model

f ðXðtC1Þ jXðtÞ; qÞ

is known, but the distribution of the stochastic process in
equilibrium, i.e. f (X jq), is generally unknown. Here, it is
important to note that the dataY has been assumed to be
observed when the underlying process is in equilibrium.
They called it as latent equilibrium process (LEP). In the
next step, Bhattacharya et al. developed a methodology to
fit LEP within the Bayesian framework. This type of
fitting is usually done via Markov chain Monte Carlo
(MCMC). It is demonstrated by these authors that this
kind offitting is far from straightforward. They developed
a different methodology so as to implement this kind
of situation.

Intuitively, we can understand the main idea as follows.
Let

Xn; nZ 1. .N ;

be a Markov chain where the transition [XnjXnK1] is
known but the equilibrium distribution of Xn is
unknown. Under certain conditions, Xn converges to a
unique stationary distribution with unknown form, and
thus the system develops an estimation inference within
the Bayesian framework.

It is possible to show that this convergence to
equilibrium distribution happens after a time period
known as convergence time. Here, it is assumed that
equilibrium is defined dynamically as the result of
transitions arising under f (process state at time tC1j
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process state at time t, parameters) with t as the time
period or generation. For infinitely large N, the conver-
gence occurs irrespective of the convergence time. There
is an important difference with this approach and a
dynamic model where input continuously addressed
dynamically in time. Here, input is collected only when
the underlying latent stochastic process is in equilibrium.

In the case of decision making by the brain, the
underlying feedback process can be thought of as a
stationary stochastic process owing to the presence of
noise in the sensory input. It needs a small time period
(owing to its discrete nature) to reach an equilibrium.
This is the convergence time mentioned above. However,
in the case of infinitely large N, the equilibrium will be
reached, irrespective of this convergence time, and the
movements may be considered as continuous.
8. CONCLUSIONS
This paper offers a view of global brain function based on
the assumption that the evolution of the CNS is basically
geared to optimize prediction in order to generate
intelligent motricity. That is, such an intelligent move-
ment is central for ultimate survival; the clearest examples
being the fight or flight, and the predatory behaviour, by
forms endowed with a brain. By contrast, in those
macroscopic living systems where fast displacement is
fundamentally non-existent compared with that of
animals, such as plants, survival depends on molecular
a priori defences (biochemical defences bad taste, bad
odour, etc.) or static macroscopic entities, such as thorns.
Interestingly, the genetic load of plants has a very large
defensive component (Manners 2007). Ultimately, as
they cannot run away from danger, being a fortress is
their only available solution.

Concerning prediction beyond the motor execution
realm, it is evident that separating sensory from motor
transformations is in the eye of the beholder. Such issues
remind us of the discussions between the neurologists
and psychiatrists wanting to divide the functional proper-
ties of the central nervous system into psychic and
neurological functions. That the integration time for the
cognition is shorter than that for the motor is well
recognized. Most vertebrate forms integrate sensory
input at close to gamma band frequency (40 Hz) (Singer
1999; Llinás & Steriade (2006) see also invertebrates
Stopher et al. (1997)), but they move, as addressed
above, at 10 Hz. The advantage of having a more rapid
time constant for sensory input is obvious when one
considers that the motor execution is irreversible once
triggered, as testified by the rules of engagement in most
sports (hit or miss). And so, planning/prediction must
occur at a faster speed than movement execution if
the possibility of corollary discharge (efference copy)
is to play a role in such an event (Jeannerod 1997).
Indeed, in order to do so, an internal ‘forward model’
(Wolpert 1997) is required to express the causal
relationship between the motor event and the sensory
input that triggers it in the context of the expected
outcome. Such a relationship was noted in early
psychophysical studies (Sperry 1950) and substantiates
the view that there is but one fundamental predictive
function for sensory–motor transformations.
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