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In this paper, we propose a mechanism which the neocortex may use to store sequences of patterns.
Storing and recalling sequences are necessary for making predictions, recognizing time-based
patterns and generating behaviour. Since these tasks are major functions of the neocortex, the ability
to store and recall time-based sequences is probably a key attribute of many, if not all, cortical areas.
Previously, we have proposed that the neocortex can be modelled as a hierarchy of memory regions,
each of which learns and recalls sequences. This paper proposes how each region of neocortex might
learn the sequences necessary for this theory. The basis of the proposal is that all the cells in a cortical
column share bottom-up receptive field properties, but individual cells in a column learn to represent
unique incidences of the bottom-up receptive field property within different sequences. We discuss
the proposal, the biological constraints that led to it and some results modelling it.
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1. PREDICTION AND SEQUENCE MEMORY
Prediction is a ubiquitous function of the brain. During
every moment of our waking life, our brains are trying to
predict what sights, sounds and tactile sensations will be
experienced next. Previously, we have proposed a theory
for how the neocortex learns a model of the world from
sensory data, and how it uses this model to make
predictions and infer causes (Hawkins & Blakeslee
2004; George & Hawkins 2005; Hawkins & George
2006). We refer to this theory as ‘hierarchical temporal
memory’ (HTM). HTM models the neocortex as a tree-
shaped hierarchy of memory regions, in which each
memory region learns common sequences of patterns
(figure 1). Representations of sequences are passed up
the hierarchy, forming the elements of sequences inupper
regions, and predictions of the next elements in
sequences are passed down the hierarchy. By training
on time-varying sensory patterns, an HTM builds a
spatial and temporal model of the world. HTMs are
modelled as a form of Bayesian network, where sequence
memory forms the core learning method for each region
in the network. When sequence memory is implemented
in a probabilistic way, it naturally leads to probabilistic
predictions at every level of the hierarchy.

HTM is just one example of a class of hierarchical
learning models designed to mimic how the neocortex
learns, infers and predicts. Similar models include
Hierarchical Model and X, or HMAX (Riesenhuber &
Poggio 1999) and convolutional neural networks
(LeCun & Bengio 1995). Both these models use
hierarchical representations and form groups of spatial
patterns at each level in the hierarchy. In both cases, no
temporal order is maintained within these groups.
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Thus, the models are most suitable for spatial pattern
recognition, as they cannot recognize time-based
patterns or make predictions. Another model similar
to HTM is the hierarchical hidden Markov model
(HHMM; Fine et al. 1998). HHMMs learn sequences
at each level of a hierarchy, as do HTMs, and therefore
are able to recognize temporal patterns and make
predictions. However, HHMMs are strictly temporal—
they do not have the ability to infer spatial patterns.

HTM combines the best of all these models. It is a
self-learning model that is inherently temporal, and it
can infer and make predictions about spatial and
temporal patterns.

HTMs learn by storing sequences of patterns in each
memory region. The basic idea is that the patterns that
frequently occur together in time share a common cause
and can be grouped together. Time acts as a teacher,
indicating which patterns mean the same thing even
though they may be spatially dissimilar. When
implemented in a hierarchy, the net result is that fast
changing sensory inputs result in slower changing patterns
as one ascends the hierarchy. Relatively stable patterns at
the top of the hierarchy can unfold in time to produce
faster changing patterns at the bottom of the hierarchy.
This theory postulates that recall of sequences leads to
prediction, thought and motor behaviour.

In this paper, we will not fully review HTM
or exhaustively contrast it to other hierarchical
memory models. Instead, we focus on a core feature
of HTM (and HHMM), which is intimately tied to
prediction; specifically, how might sequences be stored
in the neocortex?
2. CONSTRAINTS ON SEQUENCE MEMORY
Using a computer and linear computer memory, it is
easy to store sequences. Every time one makes an audio
recording or saves a text file, one is storing a sequence
This journal is q 2009 The Royal Society
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Figure 1. (a) A conceptual diagram of an HTM model of neocortex. Models such as this replicate the hierarchical connectivity of
neocortical regions, and treat the entire system as a Bayesian network. (b) Four connected regions from (a), illustrating the feed-
forward pathway. Circles indicate spatial patterns that form the elements of learned sequences. Small rectangles indicate learned
sequences of patterns. Relatively constant representations of sequences are passed up the hierarchy, where they combine to form
the individual elements of sequences in parent regions. The feedback pathway is not shown. Each region uses its sequence
memory to predict what elements will probably occur next and passes this prediction down the hierarchy. The unfolding of
learned sequences is the foundation of prediction.
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of patterns. However, this kind of memory is not
sufficient for the kind of learning and recall that brains
need to do. Real-world sensory data are never exactly
the same, are noisy and do not come with markers
indicating when sequences begin and end. The simple
approach of storing every pattern that occurs will
consume too much memory and be unmanageable.

The following is a set of requirements or ‘con-
straints’ that a biological sequence memory must meet,
which are different from linear computer memory.

(a) Probabilistic prediction

Our sequence memory must make probabilistic
predictions of future events from noisy inputs. The
data sensed from the world are ambiguous at any time
instant. Therefore, what is available to the sequence
memory at any instance is a distribution of the likely
states of the sequence. Similarly, our predictions must
be distributions over possible next states. This is a
strong constraint and eliminates many possible mem-
ory mechanisms. For example, when we listen to
someone speaking, the words we hear are often
ambiguous in isolation. From this ambiguous input,
we anticipate what words will be said next. We usually
cannot predict exactly, but some words are more likely
than others. Our memory system must be able to
handle ambiguity in its input, and all predictions
should be distributions—sometimes over large num-
bers of possible elements.

(b) Simultaneous learning and recall

We cannot make a clear distinction between when our
memory system is learning and when it is recalling. It
must be able to learn or extend learned sequences,
while simultaneously recalling and predicting what is
likely to occur next.

(c) Auto-associative recall

Learned sequences are recalled auto-associatively. This
is similar to the game of ‘name that tune’. As inputs
arrive, the memory has to decide which learned
sequences best match the input. An input may match
multiple learned sequences or none. Our memory
system must be able to recognize sequences even if it is
presented with a partial sequence from the middle of a
previously learned sequence. In a computer, it is
possible to implement auto-associative recall using
Phil. Trans. R. Soc. B (2009)
repetitive search algorithms, but brains do not work
this way. We desire a memory mechanism that is
naturally auto-associative.
(d) Variable-order memory

To correctly predict what is likely to happen next, it is
often necessary to use knowledge of events that
occurred some time in the past. Imagine we have two
sequences of letters, ‘ABCDE’ and ‘YBCDZ’. Both
sequences contain the same three-element sequence
‘BCD’ but vary in the first and last elements. Our
memory system must be able to correctly predict the
last element of the sequence based on an input that
occurred many time steps earlier, a situation that is
sometimes referred to as the ‘branching problem’.

The branching problem forces upon us an important
constraint: the internal representation of an afferent
pattern must change depending on the temporal
context in which it occurs. In the example above,
the representation for the elements ‘B’, ‘C’ and ‘D’
must be somehow different when preceded by ‘A’ than
by ‘Y’.

In mathematical terms, the number of previous
inputs required to predict the next input is known as
Markov order. When only one previous input is
necessary, the model is first order. Let Xt represent the
input at time t. In a first-order model, XtC1 does not
depend on any input besides the previous input, Xt. If
we want to know the distribution over what might
occur next, P(XtC1), we do not need to know anything
that happened in the past (XtK1 to X0); we need only to
know the current input, Xt. Specifically,

PðXtC1 jXt ;XtK1;XtK2;.;X0ÞZPðXtC1 jXtÞ:

But in our example with the letter sequences above,
if we see ‘ABCD’ or ‘YBCD’, we need to go all the way
back to the first letter to predict the one that comes
next. This requires a fourth-order model,

PðXtC1 jXt ;XtK1;XtK2;.;X0Þ

ZPðXtC1 jXt ;XtK1;XtK2;XtK3Þ:

Keeping track of these long dependencies allows us
to use the initial letter, ‘A’ or ‘Y’, in order to predict the
final letter, ‘E’ or ‘Z’. However, the amount of memory
required to keep track of long dependencies grows
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exponentially with the order of the model, quickly
becoming infeasible to store and to learn. Therefore,
we desire a variable-order Markov model. Variable-
order models learn long sequences (high order) as
necessary, but use short sequences (low order) for other
parts of the data. They allow us to learn complex
sequences with manageable amounts of resources.
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(e) Biological constraints
We propose that a sequence memory mechanism that
meets these theoretical constraints must exist in all
regions of neocortex, in all sensory modalities. Given
our belief of the central importance of sequence
memory for neocortical function, whatever mechanism
the brain uses for sequence memory should be
prevalent throughout the neocortex. Therefore, any
proposed mechanism should map to one or more
prominent features of neocortical anatomy.
B E B C2 E

Figure 2. (a) Hypothetical sequence of inputs. Letters A to H
represent bottom-up input patterns to five columns of cells.
Within this sequence of inputs are repeating subsequences
intermixed with non-repeating elements. (b) Sequence (a) in
which two common subsequences, ACD and BCE, are
highlighted. A second-order Markov model is necessary to
differentiate these sequences. In general, we require a memory
mechanism that can learn and represent sequences of
arbitrarily high order. (c) Proposed manner in which the
neocortex represents the sequences highlighted in (b). The five
columns each respond to a different bottom-up input. One
layer of cells is shown, representing neurons which all respond
to their column’s bottom-up inputs. After training, individual
neurons become part of a particular temporal sequence. Filled
circles indicate neurons, which participate in the two sequences
highlighted in (b). Arrows illustrate lateral excitatory connec-
tions. Two neurons, C1 and C2, are used in column C because
input C occurs in both sequences. This permits the memory to
correctly predict ‘D’ after the input sequence AC and ‘E’ after
the input sequence BC. The length and Markov order of the
memory is limited by the number of cells in a particular layer
within a column. Required inhibitory pathways are not shown.
(d ) First-order Markov model of transitions learned from (a).
Correct prediction from state C is not possible because the
input that preceded C is not captured. (e) Result of applying
the state-splitting algorithm first proposed by Cormack &
Horspool (1987) to (d ). Both C1 and C2 respond to a purely
bottom-up pattern C, but C1 uniquely responds if A occurs
before C, and C2 uniquely responds if B occurs before C.
Accurate prediction after input C is possible because C1 will be
active if A occurred previously, while C2 will be active if B
occurred previously. These states map directly onto the cortical
model in (c). Unlike the biological equivalent, the state-splitting
technique has no a priori limit to the length of sequences or the
number of sequences in which a bottom-up input can appear.
3. SEQUENCE MEMORY IN THE NEOCORTEX
Our theory of biological sequence memory is inspired by
the previous work of Rodriguez et al. (2004), although
they used it in a different functional context and with a
different biological mapping. We feel it is important to
reintroduce this memory technique in the current
context of hierarchical neocortical models and give it an
expanded biological and mathematical foundation.

The basics of this idea are fairly simple, and are
explained in figure 2a–c. In biological terms, we can
think of the cells in a neocortical column as having the
same bottom-up receptive field properties. This is a
well-known phenomenon believed to occur throughout
the neocortex. Within a particular cortical column,
there might be dozens of cells within a layer all
exhibiting similar or identical feed-forward receptive
field properties. Although these cells exhibit similar
responses to a purely feed-forward input, in our model,
these cells learn to form different responses in the
context of natural sequences. Only some of these cells
will be active when that feed-forward pattern occurs
within a learned sequence.

Consider an analogy; imagine we have a column of
cells that respond to the sound made when we say the
word ‘to’. Because, in English, the words ‘to’, ‘two’ and
‘too’ are homonyms, each of these words spoken in
isolation will invoke the same response among these
co-columnar cells. However, these words are not
interchangeable in context. Imagine we hear the phrases
‘I sat next to’, ‘can I come too?’ and ‘the number after one
is two’. In these three phrases, the final words have
different meanings, and we perceive them as different.
For us to perceive these homonyms as different, our
brains must use different neural activations for them.

We propose that through the course of training,
individual cells form horizontal connections to pre-
viously active cells in nearby columns (figure 2c). These
horizontal connections form the basis of sequence
memory. When a cell is activated by a horizontal
connection prior to receiving its feed-forward activation,
it will inhibit its co-columnar cells, thus guaranteeing a
unique representation for the feed-forward pattern in
the context of a previously learned sequence.
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4. BIOLOGICAL IMPLICATIONS OF A
SEQUENCE MEMORY MODEL
The proposed model for sequence memory provides a

theoretical basis for the columnar organization and

horizontal connections observed throughout the neo-

cortex. It also provides a simple mechanism for what we

believe is a ubiquitous need for prediction and learning

in hierarchical learning models in general.

As a biological model, it is speculative and has

numerous requirements for it to work. We now discuss

some of these implications before describing how we
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implemented a software algorithm to mimic the
biological theory and tested it within our HTM models.

(a) Sparsification of response

A prediction of this proposal is that general cell activity
in the neocortex should become more sparse and
selective when receiving input in naturally occurring
sequences versus receiving spatial inputs in temporal
isolation or random order. A more specific variation of
this prediction is that co-columnar cells should exhibit
similar responses to simple stimuli, but they should
become more sparse and selective when presented with
natural sequences. Several studies have observed such
behaviour. Yen et al. (2007) reported that in cat striate
cortex, classical columnar organization (which is
usually determined via simple stimuli such as bars
and gratings) changes dramatically and becomes
sparser when the animal is subjected to complex
time-varying natural images. Similar results were
shown by Vinje & Gallant (2000) in macaque V1.
Here, they found that input from outside a cell’s
classical receptive field increased sparseness. This
result was observed when the animal was subjected to
a time-varying simulated natural viewing stimulus, and
the effect was somewhat increased under free natural
viewing. Machens et al. (2004) found that the rat
auditory cortex exhibited increased sparseness when
subjected to complex natural sounds. They report that
only 11 per cent of the responses to natural sounds
could be attributed to the classical receptive field
property of the cells, and suggested the remainder was
due to the interactions between frequencies and the
time-varying properties of the neural encoding.

These and similar studies have been largely or
partially motivated by demonstrating the existence of
sparse encoding, which is an efficient method of
representation in neural tissue (Olshausen & Field
1996). Our HTM models similarly employ sparse
encoding, but here we suggest that our sequence
memory model is one means, and perhaps a primary
one, to achieve it.

(b) Inhibitory requirements

A specific inhibitory effect is required for our proposal
to work in neocortical tissue. When a column of cells is
activated primarily from a feed-forward input, all or a
majority of the excitatory cells within a layer of a
column should be active together. However, if that
same feed-forward pattern occurs within a learned
sequence, we want only one or a few cells to be active.
This requires that an excitatory lateral input to one or a
few cells inhibits all the other cells in the near
proximity. This laterally induced inhibition must be
stronger and faster than the feed-forward excitation.

(c) Distributed representations

We assume that the neocortex uses distributed
representations in two ways. First, we do not assume
that individual cells are sufficient to represent anything.
Although our figures show individual cells representing
patterns within sequences, this is only a convenience.
We assume that, in almost all cases, multiple cells are
simultaneously active, although the pattern of acti-
vation will always be sparse.
Phil. Trans. R. Soc. B (2009)
Representations are also distributed in a second
sense. Like Bayesian networks, HTM models assume
that activations are distributed. Every region of the
hierarchy passes a distribution of potentially active
sequences to its parent regions. Again, the figures in
this paper do not show this, but our software models are
implemented this way. The neocortex works with
probabilistic inputs and makes probabilistic predictions.
(d) Efficient computation

The memory system must use information from
previous inputs when making predictions, and both
the history of inputs and the forward predictions are
distributions over many states. Performing this calcu-
lation in a brute-force manner is not biologically
realistic in terms of capacity or speed. Our biological
model performs the calculation using dynamic pro-
gramming, a mechanism first described by Bellman
(1957). Refer to George (2008, §4.6.2) for a detailed
mapping of the biological theory to dynamic program-
ming equations.
(e) Cortical layers

We believe that the sequence model we have described
occurs among pools of neurons within the same layer of
neocortex, using lateral connections to cells in the same
layer of other columns. We do not believe that the effect
is likely to occur across cortical layers unless evidence
exists for strong interlaminar lateral connections.

Previously, we have proposed why the different cell
layers observed in the neocortex might exist (Hawkins
2007). It is not our intention to review these proposals
in this paper, but a brief overview might be useful.
Cellular layers 2–6 all exhibit lateral connections,
although there are differences. In our view, these
differences reflect the kind of sequences that can be
learned, and sequence learning is occurring in some
form in layers 2–6.

Hierarchical memory models need to make a
distinction between information flowing up the hier-
archy and information flowing down the hierarchy. In a
crude way, one can think of downward flowing
information as expectation and upward flowing infor-
mation as reality. Bayesian theory tells us that these two
streams of information must remain segregated, but
that they must also be combined to form a local belief at
each level of the hierarchy (Pearl 1988). Because
sequence memory is required in both the feed-forward
path and the feedback path, we believe that some cell
layers are learning feed-forward sequences (layers 4
and 3) and other layers are learning feedback sequences
(layers 2 and 6). Layer 5 is where they are combined to
form a belief. Here, the main point is that we believe
that sequence memory is occurring in multiple cell
layers and that there are theoretical reasons why this
should be so.
(f ) Sequence timing

When we learn a melody, part of the memory of the
melody is the duration of each note, which varies from
note to note. Similarly, when we memorize a poem or a
dance step, we remember the duration for each element
in the sequence. We can speed up or slow down
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a recalled sequence, but the absolute duration of the
sequence elements is stored and can be recalled.

As described so far, our sequence memory model
has no means of storing the duration of sequence
elements, and it has no means of changing the rate at
which a sequence is recalled. Our sequence memory
mechanism therefore needs a neural mechanism that
can encode the durations of sequence elements. This
neural mechanism should exist in all regions of the
neocortex and should be tightly coupled with the
sequence memory mechanism proposed in this paper.
Previously (Hawkins & Blakeslee 2004), we have
proposed such a duration mechanism involving layer
5 pyramidal cells, which project to non-specific
thalamic nuclei, which project to neocortical layer 1,
which form synapses with apical dendrites of pyramidal
cells in layers 2, 3 and 5. It is beyond the scope of this
paper to describe this mechanism further.

When a human learns a melody, there is an upper
limit to the duration of individual notes that can be
learned of approximately one second. This is why
musicians need to count for notes or rests that are
longer than a second. Assuming that a similar limit exists
in other modalities, the sequence memory proposed
in this paper can learn arbitrarily long sequences of
elements where the duration of each element is between
a few tens of milliseconds and approximately one
second. In a software implementation, the duration
limits need not be fixed, but could depend on
the parameters of the model and the resources
allocated to it.

(g) Memory capacity

Our proposed biological model tells us something
about the capacity of sequence memory. Consider an
analogy to music. Imagine we have 12 columns each
with 50 cells, where each column represents one of the
12 musical tones in Western music. Such a memory can
learn melodies and melodic phrases, but there is a limit
to the number and length of the sequences that can be
stored. At one extreme, it could learn a single sequence
of 600 notes using exactly 50 of each of the 12 tones. If
the memory were allocated this way, the system could
only recognize the single melody, but it could do so
auto-associatively when presented with any portion of
the melody, or even a partially garbled portion of the
melody. In addition, it would be able to predict the next
note or the entire remaining portion of the melody. At
another extreme, the memory could learn 100
sequences of six notes each. The point is that there
are a fixed number of states that can be allocated to a
few long sequences or many short sequences or any
combination in between.

It might appear that such a memory system is too
limited to store all the information we have in our
brains. A human can memorize a tremendous amount
of temporally associated information, including long
speeches, long pieces of music, lengthy journeys, etc.
The answer to this objection is that capacity of HTM
derives primarily from the hierarchy, not the sequence
memory in each node (George 2008). The hierarchy
allows learned sequences to be used repeatedly in
different combinations. When memorizing a speech
with a hierarchy of sequence memories, the speech is
Phil. Trans. R. Soc. B (2009)
stored as a series of phrases at one level of the hierarchy,
the phrases are decomposed into a series of words at the
next lower level and each word is decomposed into a
series of phonemes at the next lower level.
5. THE STATE-SPLITTING ALGORITHM
Over the past 3 years, we have been creating and testing
models of HTM in software. During this time, we have
tried several different sequence memory techniques,
starting with the simplest method of storing all afferent
sequences, and progressing to complex methods such
as prediction suffix trees (Ron et al. 1996; Seldin et al.
2001). In the end, we have settled on a sequence
memory model we call ‘state-splitting’, depicted in
figure 2d,e. State-splitting was inspired by and maps
closely to our proposed biological sequence memory
mechanism. As with other techniques, state-splitting
generates variable-order Markov models, which can
capture complex dependencies within sequences.
However, state-splitting is the only sequence memory
model we have found that meets all of the above
constraints and maps well to neocortical anatomy. In
addition, we have found state-splitting to be simpler to
implement than some other methods.

The state-splitting technique was first described by
Cormack & Horspool (1987), although they used the
algorithm for data compression and in a non-biological
context. We borrow their technique and apply it to
prediction and inference in an HTM setting.

(a) Splitting states

State-splitting deviates from our proposed biological
sequence memory in one significant way. In the
biological model, we start with a column of cells that
share bottom-up receptive field properties and then
assign the cells to unique sequences. By contrast, in the
state-splitting model, we start with a single state and
then split the state as we learn sequences (similar to
adding neurons, as we need them). State-splitting
accomplishes the same goal as the biological model,
but there is no limit on the number of assignable
elements for each column, and no resources are
wasted over-representing inputs which appear only in
a few sequences.

The state-splitting algorithm begins with one state
per input pattern. During learning, it observes the
activation of states, and counts a transition between
state i and state j if input j is active immediately after
input i is active. The mechanism also works if more
than one state is active at a particular point in time.
The sequence of activations are tracked in a Markov
chain T, a matrix in which Ti, j contains the number of
transitions from state i to state j. Periodically, we
examine T to determine whether some states belong to
multiple sequences. Any such state is split to create one
or more new copies.

Intuitively, we wish to split a state when we believe
that it reliably participates in more than one sequence.
To test this, we check whether a state frequently follows
a particular state (i.e. it clearly participates in a
sequence), and we also check whether it follows other
states as well (i.e. it may appear in other sequences).
From Cormack & Horspool (1987), we borrow the two
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Figure 3. (a) Three separate motion capture inputs from a human subject. Each input is a set of angles from 32 joints. When
shown a sequence of such poses, humans have no difficulty recognizing activities such as running, walking and sitting. However,
actions are difficult or impossible to recognize from static poses such as these (i)–(iii), because many poses could be part of
several different actions. (b) Unsupervised classification of motion capture sequences. The state-splitting algorithm described in
this paper was shown a sequence of 239 poses in which the subject repeatedly performed four different actions (‘walk’, ‘run’, ‘sit’
and ‘stand up’). As an extra test, the ‘walk’ sequences were also played backwards as a fifth action (‘reverse walk’), guaranteeing
that the exact same poses were used but in a different temporal order. The vertical axis represents the five sequences groups,
learned without supervision. The horizontal axis shows the time progression of the 239 poses. The labels at the top of the chart
indicate what action the subject was performing at that time. The learned sequences closely match the subject’s performed
actions, demonstrating that the state-splitting method was able to learn the sequences.
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parameters min_cnt1 and min_cnt2. We split state t
into two states when there exists a state s for which the
two conditions hold,

Ts;tRmin_cnt1;
P

i;iss
Ti;tRmin_cnt2:

After the split, we consider the system to be in the
new state t 0 if s is active previously; otherwise, the
system is in the original state t. Thus, by construction,
the states automatically participate in separate
sequences. Through multiple splits, states may partici-
pate in many sequences.

We continue learning transitions in the new Markov
chain T, which now has an expanded set of states. But
even though we still treat the model as first order, it is
now implicitly higher order. States which have been
split are constructed to activate after a specific
predecessor; thus, some states contain higher order
information by bundling together inputs from multiple
time steps. Figure 2d shows the initial first-order model
built from the frequent sequences highlighted in
figure 2b. The algorithm chooses to split state C into
C1 and C2, where C1 originates from A and C2
originates from B. The new model is shown in figure 2e.
Although only first-order transitions are maintained,
splitting C allows the model to capture the second-
order information necessary to recognize the two
sequences and form correct predictions.

(b) Identifying sequences

We have described the algorithm used to build the
variable-order memory necessary for modelling
Phil. Trans. R. Soc. B (2009)
sequences and making predictions. HTM requires
another component of sequence memory, which
identifies individual sequences in order to commu-
nicate with the parent regions in the hierarchy. We
believe that there are biological equivalents, but they
are beyond the scope of this paper.
6. EXPERIMENTAL RESULTS
We wish to verify that the state-splitting algorithm
can be used to model the statistics of real-world
sensory data. In this section, we demonstrate the
performance of the algorithm on motion capture data
of human subjects.

Motion capture data are recorded with a camera that
measures the position and joint angles of an actor in a
special suit. We obtained data from the Carnegie
Mellon Graphics Laboratory Motion Capture Data-
base, available at http://mocap.cs.cmu.edu. Data are
recorded from 32 joints at each point in time. We use
sequences of these joint angles for training and testing
our model.

The data are also sufficient for us to render stick-
figure representations of the actors. Figure 3a shows
three example poses. When the poses do not appear in a
sequence, it is difficult to recognize which action the
subject is performing, and it would not be possible to
predict next likely poses.

We train on a file of many sequences, with 239 poses
in total. Before building the temporal model, we
quantize the poses to 66 quantization points. Each
input to the state-splitting algorithm is the index of the
quantization point with the lowest Euclidean distance

http://mocap.cs.cmu.edu


Sequence memory J. Hawkins et al. 1209
to the original input. Using this quantization, we
transform each input from a dense vector to a single
index. We then learn the Markov chain with these
indices and apply the state-splitting algorithm. We pass
over the same data five times in total, in order to
produce more splits and create a higher order model.

To ascertain whether the resultant Markov chain
accurately models the data, we apply an unsupervised
sequence-identification algorithm to discover five
sequence groups. Figure 3b shows the result of playing
a long segment of the training data and tracking the
activation of the five groups. Although the groups were
labelled without supervision, each one clearly corre-
sponds to a particular action. We observe that the
group activations switch appropriately when the
subject switches actions, with only occasional errors
at the intersections. We happily note that the ‘walk’ and
‘reverse-walk’ sequences are correctly distinguished,
proving that temporal order is being used.

The results in figure 3b demonstrate learning and
inference with higher order sequences, using the state-
splitting algorithm. It is a straightforward matter to
generate predictions from the temporal models within
individual nodes in an HTM. Generating predictions
using the entire hierarchy together is one of our current
areas of research.

Source code for the state-splitting algorithm and the
motion capture example is available from http://www.
numenta.com/for-developers/software.php.
7. CONCLUSION
The neocortex can be viewed as a memory system that
builds a model of the world for inference, prediction
and behaviour. We claim that all these goals can be
achieved using a hierarchically organized memory
system, in which each node in the hierarchy uses
probabilistic sequence memory to group patterns
together. The hierarchical organization of the neo-
cortex is well documented, and Bayesian theory
provides a basis for understanding how hierarchies
can infer causes in the face of ambiguity. In this paper,
we have proposed a simple yet powerful technique for
how regions of neocortex might learn probabilistic
sequences. The technique relies on columnar organiz-
ation of cells that share bottom-up receptive field
properties. Through lateral connections, individual
cells learn to represent bottom-up patterns within
specific sequences. Although simple, the proposed
sequence memory technique solves the difficult tasks
of learning sequences of arbitrarily high order from
distributed inputs, recognizing time-based patterns
and making distributed predictions.

We gratefully thank Bobby Jaros for implementing the state-
splitting algorithm and creating the test suite for motion
capture data. We also thank Bruno Olshausen for assisting
with references.
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