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Abstract
ATP: Co(I)rrinoid adenosyltransferases (ACAs) catalyze the transfer of the adenosyl moiety from
ATP to cob(I)alamin via a four-coordinate cob(II)alamin intermediate. At present, it is unknown how
ACAs promote the formation of the four-coordinate corrinoid species needed for activity. The
published high-resolution crystal structure of the ACA from Lactobacillus reuteri (LrPduO) in
complex with ATP and cob(II)alamin shows that the environment around the α face of the corrin
ring consists of bulky hydrophobic residues. To understand how these residues promote the
generation of the four-coordinate cob(II)alamin, variants of the human-type ACA enzyme from
Lactobacillus reuteri (LrPduO) were kinetically and structurally characterized. These studies
revealed that residue Phe112 is critical in the displacement of 5,6-dimethylbenzimidazole (DMB)
from its coordination bond with the Co ion of the ring, resulting in the formation of the four-coordinate
species. An F112A substitution resulted in a 80% drop in the catalytic efficiency of the enzyme. The
explanation for this loss of activity was obtained from the crystal structure of the mutant protein,
which showed cob(II)alamin bound in the active site with DMB coordinated to the cobalt ion. The
crystal structure of an LrPduOF112H variant showed a DMB-off/His-on interaction between the
corrinoid and the enzyme, whose catalytic efficiency was four orders of magnitude lower than that
of the wild-type protein. The analysis of the kinetic parameters of LrPduOF112H suggests that the
F112H substitution negatively impacts product release. Substitutions of other hydrophobic residues
in the Cbl binding pocket did not result in significant defects in catalytic efficiency in vitro, however,
none of the variant enzymes analyzed in this work supported AdoCbl biosynthesis in vivo.
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The chemistry of B12-dependent reactions and the biosynthesis of this complex coenzyme have
been an area of intense investigation for decades. Coenzyme B12 (adenosylcobalamin, AdoCbl)
and methylcobalamin (MeCbl) are the two biologically active forms of B12. AdoCbl
participates in radical-based intramolecular rearrangements (1–3), deaminations (4),
dehydrations (5), reductions (6,7), and reductive dehalogenations (8), while Cbl serves as a
transient methyl carrier in methylation reactions (9–11). Despite the range of chemical
reactions carried out by these forms of B12, MeCbl and, in some cases, AdoCbl bind to enzymes
in very similar conformations. For example, the crystal structures of methylmalonyl-CoA
mutase (MMCM, AdoCbl-dependent) and methionine synthase (MeCbl-dependent) revealed
Cbl bound in the active site in a base-off/His-on conformation (12,13). In contrast, the active
sites of the bacterial and human ATP:Co(I)rrinoid adenosyltransferases do not have a histidinyl
residue in close proximity to the cobalt ion, suggesting that catalysis does not occur via a DMB-
off/His-on intermediate.

One fascinating aspect of the corrinoid adenosylation reaction is the reduction of the Co(II)
corrinoid substrate. While the environment inside the cell is sufficiently reductive to drive the
Co3+/2+ reduction, (14), it is not low enough to drive the Co2+/1+ reduction (15,16). ACA
enzymes bind cob(II)alamin and facilitate its reduction by generating a four-coordinate cob(II)
alamin species in the active site (17–20). The four-coordinate species lacks axial ligands, the
absence of which stabilizes the 3dz

2 orbital and raises the Co2+/1+ reduction midpoint potential
to within the range of reducing agents inside the cell (17). By binding cob(II)alamin in the
active site, ACA enzymes generate a Co1+ “super-nucleophile” and prevent its quenching by
deleterious side reaction. At present, however, there is no direct evidence that ACA enzymes
deficient in their ability to generate the four-coordinate cob(II)alamin are impaired in
catalyzing the adenosylation reaction.

The crystal structure of the Lactobacillus reuteri PduO enzyme in complex with ATP and cob
(II)alamin confirmed the existence of the four-coordinate cob(II)alamin intermediate (21). The
protein environment around the vacant α-axial ligand region consists of several bulky and
hydrophobic residues positioned in the proximity of the cob(II)alamin substrate (21). The role
of these residues in the generation of the four-coordinate intermediate remains unclear. Kinetic
and structural analyses reported here provide insights into the role of hydrophobic residues in
the generation of the four-coordinate cob(II)alamin intermediate. We also report the structure
and kinetic behavior of LrPduO with Cbl bound in the base-off/His-on conformation, and
discuss possible reasons why ACA enzymes do not bind Cbl in the His-on form.

EXPERIMENTAL PROCEDURES
Protein production and purification

Variants of LrPduO were generated using the QuickChange® XL site-directed mutagenesis
kit (Stratagene). The pTEV3 plasmid (22) carrying the wild-type Lr pduO+ allele (23) was
used as a template for polymerase chain reaction (PCR)-based site-directed mutagenesis as per
the manufacturer’s instructions. The presence and nature of the mutations were verified by
sequencing the plasmids using non-radioactive BigDye® (ABI-PRISM) protocols. Sequencing
reactions were resolved at the DNA sequence facility of the Biotechnology Center of the
University of Wisconsin-Madison. Recombinant LrPduO variants were overexpressed in
Escherichia coli strain BL21 (DE3). Derivatives of plasmid pTEV3 carrying L.r. pduO alleles
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encoding LrPduO variants with a rTEV protease-cleavable N-terminal His6 tag were
constructed, genes were overexpressed, proteins were isolated using Ni2+ affinity
chromatography as described elsewhere (23); N-terminal tags were cleaved using rTEV
protease (24). Flavodoxin (FldA) and ferredoxin (flavodoxin):NADP+ reductase (Fpr) were
produced and purified as described (25,26).

Crystallization and data collection
LrPduO variant proteins were produced and purified using described protocols (23). All
crystals of tag-less LrPduO proteins were grown using the vapor diffusion method in an anoxic
chamber at 25°C. The protein concentration in the crystallization solutions was 12 mg/ml, 15
mg/ml and 11 mg/ml for the LrPduOF112A, LrPduOF112H, and LrPduOΔ183 variants,
respectively. Crystals of the pre-catalytic Cbl complex for the LrPduOF112A variant
(LrPduOF112A:ATP:cob(II)alamin) were grown by mixing 3.5 μl of protein solution containing
E. coli FMN reductase (Fre; 30 μg/ml), NADH (50 mM), FMN (10 mM), HOCbl (10 mM),
ATP (10 mM), MgCl2 (10 mM), and NaCl (300 mM) with 3.5 μl of reservoir solution
[polyethylene glycol 8000 (14%(w/v)); KCl (200 mM); 2-(N-morpholino)ethanesulfonic acid
(MES, 100 mM, pH 6). Crystals of the pre-catalytic Cbl complex for the LrPduOΔ183–188

protein were grown by mixing 3.5 μl of protein solution containing Fre (30 μg/ml), NADH (10
mM), FMN (2 mM), HOCbl (2 mM), ATP (2.5 mM), MgCl2 (2.5 mM), and NaCl (300 mM)
with 3.5 μl of reservoir solution [polyethylene glycol 8000 (14%(w/v)); KCl (200 mM); MES
(100 mM, pH 6)]. Crystals of the pre-catalytic Cbl complex for the LrPduOF112H protein were
grown by mixing 3.5 μl of protein solution containing Fre (30 μg/ml), NADH (10 mM), FMN
(2 mM), HOCbl (2 mM), ATP (2.5 mM), MgCl2 (2.5 mM), and NaCl (300 mM) with 3.5 μl
of reservoir solution [polyethylene glycol (PEG) 8000 (14%(w/v)]; KCl (200 mM); 3-[4-(2-
hydroxyethylpiperazin-1-yl]propane-1-sulfonic acid (HEPPS, 100 mM, pH 8.6). Several large,
brown-colored, cubic crystals (~200 μm3) appeared spontaneously after 24 h and were grown
for an additional 48 h. The crystals for each of the LrPduO proteins were transferred to an
anoxic synthetic mother liquor solution [glycerol (2% v/v); PEG 8000 (10%(w/v)]; MES (100
mM, pH 6) or, for LrPduOF112H, HEPPS (100 mM, pH 8.6); KCl (200 mM), Fre (35 μg/ml);
NADH (10 mM); FMN (2 mM); HOCbl (2 mM); ATP (2 mM); MgCl2 (2.5 mM)] and, in an
anoxic chamber, incrementally transferred in five steps to an anoxic cryoprotectant solution
[glycerol (20%(v/v)), PEG 8000 (12%(w/v)); MES (100 mM, pH 6) or, for LrPduOF112H,
HEPPS (100 mM, pH 8.6); KCl (300 mM); Fre (35 μg/ml ); NADH (10 mM); FMN (2 mM);
HOCbl (2 mM); ATP (2 mM); MgCl2 (2.5 mM)]. The crystals were briefly exposed to oxygen
(≤5 s) while they were flash frozen in liquid nitrogen.

All crystals belong to the space group R3 with one subunit in the asymmetric unit. Data sets
were collected at the Advanced Photon Source in Argonne, IL on the 19BM beamline.
Diffraction data were integrated and scaled with the program HKL2000 (27). Data collection
statistics are summarized in table 1.

Structure determination and refinement
The structures were determined by molecular replacement with the program MOLREP (28)
starting from the model of the wild-type LrPduO protein in complex with ATP (PDB 2NT8).
Final refinement was carried out with the program REFMAC (29). Heteroatoms, water
molecules and multiple conformations were built using the program COOT (30). The final
models for (LrPduOF112A:ATP:cob(II)alamin), (LrPduOF112H:ATP:cob(II)alamin), and (L r
P d u OΔ183–188: ATP:cob(II)alamin) were refined to 1.5Å, 1.2Å, and 1.4Å, respectively. The
models include residues 2–182, 1–188 and 2–181 for LrPduOF112A, LrPduOF112H and
LrPduOΔ183, respectively. Ramachandran plots for all models show that greater than 96% of
residues are in the most favored region with no residues falling in the disallowed region.
Refinement statistics are listed in table 1.
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In vitro adenosylation activity assays
The Co+ assays were performed using the continuous spectrophotometric method described
previously, without modifications (23). In this assay, the cobalt ion of Cbl is chemically reduced
in solution to cob(I)alamin by Ti(III)citrate. The Co+ assay was performed under anoxic
condition and the adenosylation reaction was initiated by the addition of LrPduO. The reaction
mixture included 2-amino-2-hydroxymethylpropane-1,3-diol hydrochloride (Tris-HCl, 0.2 M;
pH 8 at 37 °C), MgCl2 (1.5 mM), HOCbl (0.1 – 20 μM), and ATP (1 μM-1 mM). The Co2+

assay was modified from a previously used end-point assay (26) to allow the appearance of
product (AdoCbl) to be continuously monitored in the presence of a protein reducing system.
The Co2+ assays were performed under anoxic conditions at 37 °C. Empty quartz cuvettes were
flushed with oxygen-free N2 for 5 min. Under a stream of O2-free N2, 2-amino-2-
hydroxymethylpropane-1,3-diol hydrochloride (Tris-HCl, 0.2 M; pH 8 at 37 °C), KCl (0.1 M),
MgCl2 (1.5 mM), HOCbl (4 μM-0.2 mM), Fpr (73 μg/ml), FldA (0.6 mg/ml), NADPH (1 mM),
and ATP (1 μM-1 mM) were added to the cuvette in the order stated. To ensure that all cob
(III)alamin was reduced to cob(II)alamin, reaction mixtures were incubated at 37°C for 10 min.
The adenosylation reaction was initiated by the addition of LrPduO protein. The appearance
of AdoCbl was monitored at 525 nm. To minimize the contribution from photolysis, initial
velocities were measured within the first five min after reaction was initiated. The photolysis
of AdoCbl at 525 nm over the first 5 min was determined to be insignificant (data not shown).
The reduction of cob(II)alamin was monitored at 473 nm using the Co2+ assay.

In vivo assessment of function
The function of LrPduO proteins was also assessed in vivo. For this purpose we used a strain
of Salmonella enterica serovar Typhimurium LT2 that carried a chromosomal deletion of the
cobA that encodes the housekeeping ATP:Co(I)rrinoid adenosyltransferase. CobA is needed
for salvaging cobinamide (Cbi), a precursor of AdoCbl (31,32). As shown elsewhere, the L.r.
pduO+ gene substitutes for cobA+ during growth of a cobA strain on minimal medium
supplemented with glycerol (30 mM) and dicyano-Cbi [(CN)2Cbi, 150 nM] (23,33).

RESULTS AND DISCUSSION
Spectroscopic and structural analyses have shown that PduO-type ACA enzymes facilitate the
thermodynamically unfavorable Co2+/1+ reduction of the cobalt ion in corrinoids by generating
a four-coordinate Co(II) corrinoid species with no axial (α and β) ligands (17,18). To gain
insights into the molecular basis of the formation of the four-coordinate Co(II) corrinoid species
in PduO-type ACA enzymes, we performed structural and kinetic analysis of LrPduO enzyme
variants.

We used two assays to distinguish between the two functions of LrPduO, namely, assistance
in the Co2+/1+ reduction, and Co(I) corrinoid adenosylation. In one assay, we used the NADPH-
dependent flavodoxin protein reductase (Fpr)/flavodoxin (FldA) system to reduce Co2+ to
Co1+; hereafter this assay is referred to as Co2+ assay. In the Co2+ assay, the PduO enzyme
must bind cob(II)alamin and facilitate the generation of cob(I)alamin in its active site.
Conversely, in the second assay, referred to as Co+ assay, we used Ti(III)citrate to reduce
Co2+ to Co+ in solution, allowing the cob(I)alamin adenosylation reaction to be measured
directly. Cobalamin was used as the corrinoid substrate in both assays. Co2+ assay allowed us
to indirectly assess the formation of the four-coordinate cob(II)alamin species, whereas Co+

assay, allowed us to assess the catalytic competency of the variants. We used both assays in
combination with high-resolution crystal structures to identify residues involved in the
formation of the four-coordinate cob(II)alamin species.
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Residue Phe112 displaces the lower ligand
The crystal structure of LrPduO in complex with cob(II)alamin and ATP revealed cob(II)
alamin bound in a conformation with the lower axial ligand (DMB) excluded from the active
site (21). Residue Phe112 is positioned 3.8 Å away from the cobalt ion, suggesting that this
residue plays an important role in the formation of the four-coordinate cob(II)alamin
intermediate (21,34,35). To further investigate the role of Phe112, we changed the coding
sequence of the L.r. pduO+ gene to encode variant protein LrPduOF112A. The latter was
crystallized under anoxic conditions and its X-ray structure was determined at 1.5 Å resolution.
The crystal structure of LrPduOF112A revealed cob(II)alamin bound to the active site as a five-
coordinate species with DMB serving as a fifth axial ligand (Fig. 1). The LrPduOF112A variant
displayed extremely low activity in Co2+ assay. However, in the Co+ assay (adenosylation of
cob(I)alamin) LrPduOF112A was catalytically competent and displayed only a slight decrease
in (~4-fold) (Table 3). This result is consistent with the idea that, in the absence of a four-
kcat coordinate cob(II)alamin species, the enzyme is inactive. The kinetic parameters of the
LrPduOF112A enzyme support the idea that the steric bulk presented by the phenyl moiety of
the side chain of Phe112 is critical for the formation of the four-coordinate species and hence
to the reactivity of the enzyme.

Effects of a F112H substitution
Several Cbl-dependent enzymes share the Cbl-binding motif “DXHXXG”, in which the
histidinyl residue coordinates to the cobalt ion (36) generating a DMB-off/His-on conformation
of the cofactor (12,37); the DXHXXG motif is not present in any ACA enzyme. The proximity
of residue Phe112 to the cobalt ion of Cbl offered an opportunity to generate a DMB-off/His-
on ACA enzyme by site-directed mutagenesis, allowing us to assess the effect of a DMB-off/
His-on complex on the activity of the enzyme. The LrPduOF112H variant was constructed, and
its X-ray crystal structure was determined to 1.5 Å resolution. The structure of LrPduOF112H

confirmed that cob(II)alamin was bound in a DMB-off/His-on conformation (Fig. 2). The
F112H substitution resulted in a substantial drop in kcat (~60-fold) in assays Co2+ and Co+

(Tables 2, 3), suggesting that LrPduOF112H was impaired in its ability to catalyze the
adenosylation of cob(I)alamin and/or release the AdoCbl product. Notably, the specific activity
of LrPduOF112H for the reduction of cob(II)alamin to cob(I)alamin was only 19-fold lower
than that of the wild-type LrPduO protein (1.5 vs. 28 mM Co1+ min−1 mg−1, respectively).

We also measured a ~5-min lag in the reduction of cob(II)alamin (Co2+ assay), but not in the
adenosylation reaction (Co+ assay); the observed lag did not depend on the concentration of
the reagents or substrates (data not shown). Overlays of spectral scans (from 300 nm to 700
nm) obtained at different times showed a lag in the generation of product (i.e., AdoCbl; 525
nm), but not in the reduction of the substrate (Fig. 3). Since Co2+ assay is essentially a coupled
assay (i.e., reduction followed by adenosylation), the observed lag is consistent with cob(I)
alamin adenosylation being the rate-limiting step in the reaction catalyzed by LrPduOF112H.
Reaction lags are typically observed in coupled assays where the second step in the reaction
is rate limiting (38).

The severity of the effect of different α ligands on LrPduO activity varies substantially
Even though LrPduOF112A and LrPduOF112H proteins bound cob(II)alamin as a five-
coordinate species (Figs. 1B, 2), their enzymatic activity was vastly different. The critical
distinction between these two variants lies in the nature of the α ligand. In LrPduOF112H, the
α ligand is a histidinyl side chain of the enzyme, whereas in LrPduOF112A the α ligand is DMB.
The explanation for the kinetic differences is not immediately obvious since the Co-N
coordination bond in both variants is very similar in the crystal structures. The apparent
similarity, however, may be imposed by the packing in the crystals. Indeed, recent
spectroscopic analysis of these variants revealed the coordination-bond between Co-N
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(His112) to be longer than the Co-N(DMB) (Kiyoung et al. manuscript in preparation). A longer
coordination bond of Co-N(His112) in LrPduOF112H would result in a faster displacement of
the lower ligand, therefore a higher kcat in Co2+ assay.

To explain the data shown in figure 3, we propose that the reduced kcat of LrPduOF112H may
be the result of a slower nucleophilic attack by the Co ion of cob(I)alamin on the 5′-carbon of
ATP, and/or a slow product release. Considering that the Co-C bond in AdoCbl is formed with
cob(I)alamin (a 4-coordinate Cbl species), wild-type LrPduO may first generate an AdoCbl/
DMB-off product, a cob(III)alamin species that is energetically unstable in the absence of an
α axial ligand. Consequently, a DMB-on conformation would be favored prior to, or
concomitant with, product release. In LrPduOF112H, the coordination bond with N(His) may
stabilize Co3+ of AdoCbl, resulting in an AdoCbl/His-on species. For product to be released,
AdoCbl/His-on must first undergo the thermodynamically unfavorable step that generates
AdoCbl/DMB-off. This scenario would be consistent with a slow product-release step and
would explain the equivalent drop in kcat of LrPduOF112H with cob(I)alamin and cob(II)alamin
relative to the wild-type enzyme. Similarly, other Phe112 variants (i.e., LrPduOF112Y,
LrPduOF112W) retained their ability to adenosylate cob(II)alamin albeit not as efficiently as
the wild-type protein (Table 2). The kcat of variants LrPduOF112W and LrPduOF112Y decreased
~10-fold in both assays, suggesting a problem with product realease as the one observed with
LrPduOF112H. This is possible since Trp112 and Tyr112 have functional groups that can interact
with the cobalt ion of Cbl.

In contrast with ACA enzymes, Cbl-dependent enzymes that bind Cbl in its base-off/His-on
form would not have the problem of product release because Cbl stays bound to the enzyme
acting as a radical initiator or methyl carrier. In PduO-type enzymes, phenylalanine is the ideal
residue for PduO-type enzymes because it is bulky enough to displace the lower ligand of Cbl,
and does not coordinate with the cobalt ion of Cbl, hence product release can be rapid. Further
studies of product release in wild-type LrPduO and LrPduOF112H proteins are needed to help
understand the effect of the Co-N(His) coordination in LrPduOF112H.

Function of other hydrophobic residues in the Cbl-binding site of LrPduO
The structure of LrPduO in complex with ATP and cob(II)alamin shows a hydrophobic pocket
with aromatic residues around the corrin ring. In hemoproteins, interactions between heme and
aromatic side chains have been proposed to stabilize the holoprotein fold, and to contribute to
the high affinity of the protein for heme (39). To determine whether additional aromatic
residues play a role in PduO-mediated catalysis, two phenylalanine residues, Phe163 and
Phe187, located inside the hydrophobic pocket were changed by site-directed mutagenesis.

Phe163—Residue Phe163 is conserved in all PduO-type enzymes, except in S. enterica PduO,
where tyrosine occupies this position. The function of the structurally equivalent residue in the
human ACA enzyme was suggested to be involved in Cbl binding (34,35). Notably, the Km of
LrPduOF163A for cob(II)alamin increased significantly (17-fold), but the kcat remained
unchanged (Table 2). In contrast, the Km and the kcat of LrPduOF163A for cob(I)alamin were
very similar to those of the wild-type enzyme (Table 3). Together, these results suggest that
Phe163 and DMB interact when Cbl binds to the active site of LrPduO. The negative effect of
the substitution is not observed with cob(I)alamin because this form of Cbl does not have the
axial ligands.

Phe187—Although residue Phe187 is not conserved, it is part of the C-terminal loop (Ser183-
Arg188) that becomes ordered upon binding of the corrinoid substrate (21). The kinetic
parameters of LrPduOF187A for cob(I)alamin and cob(II)alamin were not significantly different
to the parameters of the wild type enzyme (Tables 2, 3).
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To analyze the contribution of the C-terminal loop to the function of LrPduO, we deleted the
last six amino acid residues of the protein (i.e., Ser183 to Arg188). The crystal structure of the
LrPduOΔ183–188 protein was determined to 1.4 Å resolution (Fig. 4). The absence of the C-
terminal residues resulted in greater conformational freedom for residue Phe112 in the active
site, with the electron density suggesting two alternative conformations for the side chain of
Phe112. The crystal structure of the LrPduOΔ183–188 protein also showed that a four-coordinate
cob(II)alamin intermediate could still form in the active site of the enzyme (Fig. 4). Consistent
with this finding, the catalytic efficiency of the LrPduOΔ183–188 protein was only modestly
reduced (3–4-fold) (Tables 2, 3), suggesting that the C terminus of the proteins can be modified
or truncated without profoundly impacting the catalytic efficiency of the enzyme.

In vivo functionality of LrPduO variants
None of the variants, even those with measurable activity, supported AdoCbl biosynthesis in
vivo (data not shown). The fact that LrPduOΔ183–188 protein did not support in vivo
biosynthesis of AdoCbl, in spite of its modest decrease in activity, suggest that this part of the
protein may be important for protein-protein interactions. ATP corrinoid adenosyltransferases
are thought to transport this valuble, but limited coenzyme, to the corresponding AdoCbl-
dependent enzyme (40). In the human adenosyltransferase, a truncation of the final 16 residues
has been shown to result in an early onset of methylmalonic aciduria (41).

CONCLUSIONS
Here we report structural and kinetic data to support the idea that the inability to generate the
four-coordinate cob(II)alamin intermediate renders a human-type ACA enzyme inactive. The
side chain of residue Phe112 in the active site of the enzyme is critical to the function of the
enzyme for three reasons: i) it is in close proximity to the Co ion of the ring; ii) it is bulky; and
iii) it cannot form a coordination bond with the Co ion. Hence, when cob(II)alamin binds to
the enzyme, the lower ligand is displaced and the resulting four-coordinate cob(II)alamin
species remains as such because the phenyl side chain cannot form a coordination bond with
the Co ion.
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FIGURE 1.
Phe112 displaces the lower ligand of cob(II)alamin in LrPduO to generate a four-coordinate
intermediate. Stereoviews of the active sites of (A) wild-type LrPduO (PDB ID: 3CI1, St.
Maurice et al., 2008) and (B) LrPduOF112A with the individual subunits of the trimer
represented as ribbons colored in blue, red and brown. For clarity, only the active site at the
interface of the red and blue subunits is shown. The carbon atoms of cob(II)alamin are colored
in black while the carbon atoms of ATP are colored in green. The potassium (purple sphere)
and magnesium (green sphere) atoms are also displayed. The electron density corresponding
to the DMB portion of cob(II)alamin is disordered in the wild-type structure.
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FIGURE 2.
His112 acts as a lower ligand to five-coordinate cob(II)alamin in LrPduOF112H. Stereoview of
LrPduOF112H with the individual subunits of the trimer represented as ribbons colored in blue,
red and brown. For clarity, only the active site at the interface of the red and blue subunits is
shown. The carbon atoms of cob(II)alamin are colored in black while the carbon atoms of ATP
are colored in green. The potassium (purple sphere) and magnesium (green sphere) atoms are
also displayed. The electron density corresponding to the DMB portion of cob(II)alamin is
disordered and, therefore, DMB could not be modeled.
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FIGURE 3.
Spectral changes associated with the enzymic conversion of cob(II)alamin to AdoCbl by
LrPduOF112H. Arrows and increasing darkness in the spectra represent successive time points
after reaction was initiated by the addition of ATP (light gray, 1min; black, 11 min).
LrPduOF112H facilitates the reduction of cob(II)alamin (as evidenced by the decrease in
absorbance at 473 nm) however there is a lag in the generation of AdoCbl (as evidenced in
initial lag in absorbance at 525 nm).
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FIGURE 4.
The LrPduOΔ183 variant retains the ability to generate a four-coordinate intermediate.
Stereoview of LrPduOΔ183 with the individual subunits of the trimer represented as ribbons
colored in blue, red and brown. For clarity, only the active site at the interface of the red and
blue subunits is shown. The carbon atoms of cob(II)alamin are colored in black while the carbon
atoms of ATP are colored in green. The potassium (purple sphere) and magnesium (green
sphere) atoms are also displayed. Residue Phe112 adopts two alternate conformations in this
structure. Both conformations are displayed. The electron density corresponding to the DMB
portion of cob(II)alamin is disordered and, therefore, DMB could not be modeled.
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Table 1
Data collection and refinement statistics

LrPduOF112A LrPduOF112H LrPduOΔ183

Space Group R 3 R 3 R 3

Cell Dimensions

a, b, c (Å) 80.7, 80.7, 89.7 80.9, 80.9, 90.0 67.7, 67.7, 111.2

α, β, γ(°) 90, 90, 120 90, 90, 120 90, 90, 120

Resolution range, Å 30.0–1.48 (1.52–1.48)a 30.0–1.17 (1.20–1.17)a 30.0–1.38 (1.43–1.38)a

Redundancy 5.6 (5.0) 4.4 (2.0) 6.3 (3.1)

Completeness (%) 99.7 (98.6) 99.6 (97.3) 97.3 (82.0)

Unique Reflections 36 186 73 398 38 038

Rmerge (%) 5.7 (12.8) 7.0 (17.9) 6.3 (9.7)

Average I/σ 46.2 (13.4) 41.4 (6.2) 47.7 (14.3)

Rcryst 0.156 (0.150) 0.161 (0.202) 0.162 (0.154)

Rfree 0.174 (0.172) 0.182 (0.203) 0.181 (0.169)

No. protein atoms 1543 1619 1517

No. water molecules 158 211 167

Wilson B-value (Å2) 23.4 15.1 14.3

Average B-factors (Å2)

Protein 17.8 13.4 12.9

Ligands 20.0 14.7 14.9

Solvent 32.3 29.0 26.9

Ramachandran (%)

Most favored 96.4 96.5 97.6

Additionally allowed 3.6 3.5 2.4

Generously allowed 0 0 0

Disallowed 0 0 0

r.m.s. deviations

Bond lengths (Å) 0.014 0.022 0.012

Bond angles (°) 2.20 2.85 2.09

a
Values in parentheses are for the highest resolution bin
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