Skip to main content
. 2009 Feb 23;25(8):981–988. doi: 10.1093/bioinformatics/btp106

Table 1.

Performances of the five neural network models constructed via the 5-fold cross-validation

E Puniq Rint RBP Punused
Model 1
    Training sets 0.959 ± 0.012 0.612 0.461 ± 0.005 0.626 ± 0.158 0
    Validation sets 0.960 ± 0.047 0.612 0.708 ± 0.013 0.289 ± 0.139 0
    Test set 0.865 0.612 0.654 0.775 0
Model 2
    Training sets 0.959 ± 0.010 0.709 0.417 ± 0.021 0.564 ± 0.084 0
    Validation sets 0.960 ± 0.040 0.709 0.664 ± 0.021 0.207 ± 0.250 0
    Test set 0.811 0.709 0.609 0.711 0
Model 3a
    Training sets 0.967 ± 0.009 0.772 0.452 ± 0.006 0.815 ± 0.073 0.019
    Validation sets 0.967 ± 0.035 0.772 0.689 ± 0.028 0.412 ± 0.292 0.019
    Test set 0.946 0.772 0.648 0.895 0.019
Model 4
    Training sets 0.951 ± 0.014 0.738 0.451 ± 0.011 0.741 ± 0.058 0
    Validation sets 0.950 ± 0.054 0.738 0.709 ± 0.012 0.466 ± 0.490 0
    Test set 0.811 0.738 0.668 0.725 0
Model 5
    Training sets 0.976 ± 0.009 0.738 0.432 ± 0.007 0.825 ± 0.109 0
    Validation sets 0.976 ± 0.035 0.738 0.696 ± 0.014 0.479 ± 0.292 0
    Test set 0.865 0.738 0.654 0.781 0

aModel 3 is adopted as the final model which is specified by values in bold face.