Table 1.
E | Puniq | Rint | RBP | Punused | |
---|---|---|---|---|---|
Model 1 | |||||
Training sets | 0.959 ± 0.012 | 0.612 | 0.461 ± 0.005 | 0.626 ± 0.158 | 0 |
Validation sets | 0.960 ± 0.047 | 0.612 | 0.708 ± 0.013 | 0.289 ± 0.139 | 0 |
Test set | 0.865 | 0.612 | 0.654 | 0.775 | 0 |
Model 2 | |||||
Training sets | 0.959 ± 0.010 | 0.709 | 0.417 ± 0.021 | 0.564 ± 0.084 | 0 |
Validation sets | 0.960 ± 0.040 | 0.709 | 0.664 ± 0.021 | 0.207 ± 0.250 | 0 |
Test set | 0.811 | 0.709 | 0.609 | 0.711 | 0 |
Model 3a | |||||
Training sets | 0.967 ± 0.009 | 0.772 | 0.452 ± 0.006 | 0.815 ± 0.073 | 0.019 |
Validation sets | 0.967 ± 0.035 | 0.772 | 0.689 ± 0.028 | 0.412 ± 0.292 | 0.019 |
Test set | 0.946 | 0.772 | 0.648 | 0.895 | 0.019 |
Model 4 | |||||
Training sets | 0.951 ± 0.014 | 0.738 | 0.451 ± 0.011 | 0.741 ± 0.058 | 0 |
Validation sets | 0.950 ± 0.054 | 0.738 | 0.709 ± 0.012 | 0.466 ± 0.490 | 0 |
Test set | 0.811 | 0.738 | 0.668 | 0.725 | 0 |
Model 5 | |||||
Training sets | 0.976 ± 0.009 | 0.738 | 0.432 ± 0.007 | 0.825 ± 0.109 | 0 |
Validation sets | 0.976 ± 0.035 | 0.738 | 0.696 ± 0.014 | 0.479 ± 0.292 | 0 |
Test set | 0.865 | 0.738 | 0.654 | 0.781 | 0 |
aModel 3 is adopted as the final model which is specified by values in bold face.