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The oceanic bathypelagic realm (1000–4000 m) is
a nutrient-poor habitat. Most fishes living there
have pelagic larvae using the rich waters of the
upper 200 m. Morphological and behavioural
specializations necessary to occupy such con-
trasting environments have resulted in remark-
able developmental changes and life-history
strategies. We resolve a long-standing biological
and taxonomic conundrum by documenting the
most extreme example of ontogenetic metamor-
phoses and sexual dimorphism in vertebrates.
Based on morphology and mitogenomic
sequence data, we show that fishes currently
assigned to three families with greatly differing
morphologies, Mirapinnidae (tapetails), Mega-
lomycteridae (bignose fishes) and Cetomimidae
(whalefishes), are larvae, males and females,
respectively, of a single family Cetomimidae.
Morphological transformations involve dramatic
changes in the skeleton, most spectacularly in
the head, and are correlated with distinctly
different feeding mechanisms. Larvae have
small, upturned mouths and gorge on copepods.
Females have huge gapes with long, horizontal
jaws and specialized gill arches allowing them to
capture larger prey. Males cease feeding, lose
their stomach and oesophagus, and apparently
convert the energy from the bolus of copepods
found in all transforming males to a massive
liver that supports them throughout adult life.
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1. INTRODUCTION
New specimens from collecting expeditions continue
to provide insights into the many mysteries of the
Earth’s largest ecological habitat, the midwaters of
the deep sea between the sunlit surface waters
and the bottom. The Cetomimidae (whalefishes), one
of the most speciose bathypelagic fish families (nine
genera, 20 species), were described by Goode & Bean
(1895). There are no larvae among the 600C whale-
fish specimens (26–408 mm standard length (SL)),
collected below 1000 m; all sexually mature individ-
uals are females (Paxton 1989). Adults have whale-
shaped bodies, tiny eyes, huge horizontal mouths,
cavernous lateral-line canals, and lack pelvic fins and
external scales (figure 1 f ). The Mirapinnidae (hairy-
fish and tapetails) were described as a new order by
Bertelsen & Marshall (1956) and comprise five
species in three genera; they lack scales and lateral
lines, have large mouths with almost vertically
oriented jaws and pelvic fins (figure 1a–d ). The
hairyfish, known from a single specimen, is uniquely
characterized by a dense covering of hair-like out-
growths over the head, body and fins. Tapetails have
the skin of the caudal fin prolonged into a long
ribbon-like streamer that may extend nine times
the body length. All 120 mirapinnid specimens
(5–56 mm) are sexually immature, and all but
four were collected in the upper 200 m. The Mega-
lomycteridae (bignose fishes), described by Myers &
Freihofer (1966), comprise four monotypic genera.
These small (34–68 mm), elongate fishes have huge
nasal organs, small, horizontal mouths with immobile
upper jaws, non-overlapping, mosaic scales and lack
pelvic fins (figure 1e). Most of the 65 specimens were
collected below 1000 m and all those examined are
males (Paxton 1999).

Gosline (1971) first recognized that these three
families (currently placed in the order Stephano-
beryciformes) are closely related and suggested that
megalomycterids could be macrosomatic male ceto-
mimids. Robins (1974) mentioned that some ‘mira-
pinniforms’ are pre-juvenile cetomimids, without any
supporting evidence. Miya et al. (2003) found the
mitochondrial genome of a mirapinnid specimen to
be almost identical with that of a whalefish, differing
in only seven among 16 500 base pairs sequenced.
The striking morphological differences between these
two families and absence of a voucher specimen for
the mirapinnid caused two of us to question these
results (Paxton & Johnson 2005), even though some
meristic data show striking concordance among
species pairs from each family.

Excellent new Gulf of Mexico megalomycterid
specimens with closing-net data that placed them
together with the cetomimids at 1500–2000 m depth
led us to re-examine the problem. We discovered
that the holotype and only known specimen of the
megalomycterid Megalomycter teevani is actually a
transforming mirapinnid, as evidenced by the
remains of three small pelvic-fin rays, a slightly
oblique mouth, a gut full of copepods and still-
developing nasal organ anlagen. Subsequently, we
found that the holotype of Parataeniophorus gulosus
(figure 2d ), one of the few mirapinnids collected at
depths greater than 200 m, is in a similar, but earlier,
state of transition. The identity of mirapinnids as
This journal is q 2009 The Royal Society
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Figure 1. Life stages and selected skeletal elements of cetomimid whalefishes. (a) Eutaeniophorus festivus postlarva, BSKU
51970, 56 mm SL, approximately 816 mm TL, photo courtesy of Masanori Nakamachi, ‘Sea Fishes of Japan’ q YAMA-
KEI Publishers Co., Ltd. P. brevis?: (b) postlarva, Cozumel, Mexico, photo courtesy of Donald Hughes; (c) postlarva, KPM
NI13654: (i) photo courtesy of Yasuhiro Morita, (ii) photo courtesy of Sandra Raredon, USNM; (d) larva, MCZ 59910,
13 mm SL, photo courtesy of Chris Kenaley, q President and Fellows of Harvard College; (e) Ataxolepis apus adult male,
USNM 391648: (i) dorsal view of nasal organs, (ii) lateral view of viscera, enlarged liver on left, enlarged testes dorsal and
ventral right, intestine middle right. ( f ) Gyrinomimus sp., juvenile female, NE Pacific, photo courtesy of Bruce Robison,
MBARI. (g(i), h(i), i(i)) Cranium and anterior vertebrae, and (g(ii), h(ii), i(ii)) left jaws, palatine arch, suspensorium and
operclular bones of (g) E. festivus postlarva, USNM 391655, 60 mm SL, (h) A. apus adult male, USNM 391649, 58 mm SL
and (i ) C. regani female, USNM 391657, 93 mm SL, respectively. Blue ‘ovals’ enclose maxillae, premaxillae and rostral
cartilage, which, in (h(ii)) are fused to each other and to broken nasals. (g–i ) Photo courtesy of G.D.J.
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Figure 2. (a) ML tree derived from analyses of whole mitogenome sequences from 15 specimens using RAxML v. 7.0.4.
Numerals beside internal branches indicate bootstrap values (only 50% and above are shown) based on 1000 replicates.
Scale indicates expected number of substitutions per site; red asterisks, larvae; blue asterisk, male. Long-finned whalefish
C. regani Zugmayer, 1914: (b) USNM 391563; (c) MCZ 60609 (inset, enlarged nasal organ); (d ) BMNH 1957.7.20.1.00,
holotype of P. gulosus (inset, elongate nasal rachis); (e) USNM 392646; ( f ) USNM 391656. Photo courtesy of S. Raredon
and G.D.J.
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larval megalomycterids was thus established. Fortui-
tously, a transforming specimen of the cetomimid
long-finned whalefish Cetostoma regani (figure 2e) was
captured shortly thereafter.
2. MATERIAL AND METHODS
Clearing and staining procedure follows Dingerkus & Uhler (1977).
Collection acronyms follow Eschmeyer (1998). SLZstandard
length; TLZtotal length.

DNA from 34 individuals of all five whalefish ‘families’
representing 10 genera and 16 presumed species plus two melam-
phaids as outgroups was analysed (see table S1 in the electronic
supplementary material, including GenBank numbers). Whole
mitochondrial genome (mitogenome) sequences for nine species
were newly determined and used with an additional six such
sequences available from GenBank (total 15 species). The mitogen-
omes (approx. 16 500 bp) were determined using a combination of
long and short polymerase chain reactions and direct cycle sequen-
cing techniques following the methods of Miya & Nishida (1999).
For the remaining 21 individuals, we determined partial sequences
of the 16S ribosomal RNA (rRNA) gene (approx. 575 bp).

Unambiguously aligned mitogenome sequences from 15 speci-
mens were divided into five partitions (first, second
and third codon positions of the 13 protein-coding, rRNA and
tRNA genes; totalZ15 886 positions) and subjected to the parti-
tioned maximum-likelihood (ML) analysis using RAxML v. 7.0.4
(Stamatakis 2006). We estimated the best-scoring ML tree using a
general time reversible (GTR)Cgamma model of sequence
evolution with 1000 bootstrap replicates. The resulting ML tree
was then used as a backbone constraint (Kr option in RAxML) for
subsequent ML analysis using unambiguously aligned, partial
sequences of the 16S rRNA gene from all 36 specimens. We
similarly estimated the best-scoring ML tree using a GTRCgamma
model of sequence evolution with 1000 bootstrap replicates.
More details of the DNA methods are in the electronic supple-
mentary material.
3. RESULTS AND DISCUSSION
We identified three specimens in transition from
larval/juvenile stage to adult. The 41.7 mm C. regani
taken in an open net fished to a depth of 5110 m in
the southeastern Atlantic is a late transforming female
that retains only 3–4 of the 8–10 pelvic-fin rays found
in the larvae; pelvic-fin rays are lacking in the other
184 female specimens of this most common whalefish
(figure 2e). This species has uniquely high dorsal- and
anal-fin ray counts of 26–37 compared with 11–22
rays for all other taxa in the family, allowing links
with P. gulosus larvae/postlarvae and Cetomimoides
parri males (figure 2c). The 35 mm holotype of
P. gulosus (figure 2d ) collected in a closing net
between 700–1400 m is an early transforming speci-
men with a full complement of 10 pelvic-fin rays,
moderately long jaws and a gut full of copepods.
Although the nasal organ is incompletely developed,
the elongate, thickened median rachis (figure 2d
inset) indicates that the individual would have
developed into a male. The 34 mm holotype of
M. teevani described above was caught in an open net
fished to a depth of 1650 m. Histology of the gonad
reveals good spermatogenic tissue with pre-sperma-
tids (H. G. Moser 2006, personal communication).

A detailed osteological description of the three life
stages is beyond the scope of this paper, but images
of the various stages shown in figures 1 and 2
illustrate the amazing ontogenetic transformations
that result in extraordinary sexual dimorphism. These
transformations include major changes in jaw
length, depth and angle, and concomitant radical
Biol. Lett. (2009)
modifications of the suspensorium and angle of

attachment of the skull to the vertebral column
(figure 1g–i ). Females develop taxon-specific gill arch

structure and males exhibit hyperossification of
most bones. Of the latter, most remarkable are

fusion of the first vertebra to the occiput and of the
hypertrophied nasal, lacrimal and upper jawbones

(figure 1h), our first clue that males do not feed.
Transformed males lack an oesophagus and

stomach, but retain a vestigial, thin-walled intestine
containing copepod tests; a massive liver and paired

gonads fill the peritoneal cavity (figure 1e(ii)). Most
of the largest juveniles have a gut swollen with

copepods (40–200C, nZ6) visible externally in life as

a swollen orange bulge. This bolus of copepods must
provide the nutrition required to generate the large

liver that sustains the male through the rest of its life.
This is unnecessary in females that continue to feed

and may reach more than 40 cm. The transforming
female Cetostoma has neither a gut full of copepods

nor a massive liver.
The most striking feature of the larvae is the

streamer that grows from the caudal-fin rays, just
visible in the smallest 4–5 mm larvae, but extending

an estimated 75 cm in the largest postlarva photo-
graphed (figure 1a). The two largest photographed

specimens (figure 1a,c), both with copepod-gorged
guts, lost their streamers during capture. The most

striking streamer is that of Parataeniophorus brevis,
with ornamentation reminiscent of a siphonophore

(figure 1b,c). One can only speculate regarding the
possible advantages and disadvantages of this

remarkable appendage in feeding versus predator
avoidance. Videos of live female whalefish show that

their locomotion involves both rapid swimming with

sinusoidal body waves and slow swimming with
undulations of dorsal and anal fins (see video A in

the electronic supplementary material).
In recent years, additional tissues have become

available, with the total mitogenomic analyses that
provided the ML tree (figure 2a) from one male

specimen, three larvae representing two species and
six species of females in five genera. The linking of

larval P. gulosus with C. regani is confirmed, with an
ML tree based on 16S rRNA analyses (see figure S1

in the ESM) including two larvae and nine females of
this species. Larval Eutaeniophorus and male Ataxolepis
are embedded within the genera Cetomimus and
Gyrinomimus. With outgroups of the stephanoberyci-

form Rondeletiidae and Barbourisiidae, the generic
relationships of the cetomimids largely follow those

proposed by Paxton (1989). The basal position of
Procetichthys is confirmed, while notable differences

include the more basal position of Cetostoma and the

paraphyly of Gyrinomimus. Further analyses com-
bining morphologic and genetic data are planned,

while tissues from additional genera and larvae are
needed. With the synonymy of the three families

confirmed, the next challenge is to link the three
life stages of each species. Meristic data establish

Mirapinna esau as the postlarva of Procetichthys kreffti
and suggest that Parataeniophorus bertelseni is the larva

of Ditropichthys storeri.
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Although remarkable ontogenetic transformations
occur in a few other deep-sea fish families (e.g.
Giganturidae), and prominent sexual dimorphism is
widespread among vertebrates, the extraordinary
combination of both that we have documented here
for the whalefishes is unparalleled within Vertebrata.

Research carried out in this study followed animal care and
use guidelines provided by the Smithsonian Institution.
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