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Duarte galactosemia is a mild to asymptomatic condition that results from partial impairment of galactose-1-
phosphate uridylyltransferase (GALT). Patients with Duarte galactosemia demonstrate reduced GALT activity
and carry one profoundly impaired GALT allele (G) along with a second, partially impaired GALT allele
(Duarte-2, D2). Molecular studies reveal at least five sequence changes on D2 alleles: a p.N314D missense
substitution, three intronic base changes and a 4 bp deletion in the 5 proximal sequence. The four non-
coding sequence changes are unique to D2. The p.N314D substitution, however, is not; it is found together
with a silent polymorphism, p.L218(TTA), on functionally normal Duarte-1 alleles (D1, also called Los Angeles
or LA alleles). The HapMap database reveals that p.N314D is a common human variant, and cross-species
comparisons implicate D314 as the ancestral allele. The p.N314D substitution is also functionally neutral in
mammalian cell and yeast expression studies. In contrast, the 4 bp 5 deletion characteristic of D2 alleles
appears to be functionally impaired in reporter gene transfection studies. Here we present allele-specific
qRT-PCR evidence that D2 alleles express less mRNA in vivo than their wild-type counterparts; the differ-
ence is small but statistically significant. Furthermore, we characterize the prevalence of the 4 bp deletion
in GG, NN and DG populations; the deletion appears exclusive to D2 alleles. Combined, these data strongly
implicate the 4 bp 5 deletion as a causal mutation in Duarte galactosemia and suggest that direct tests for
this deletion, as proposed here, could enhance or supplant current tests, which define D2 alleles on the
basis of the presence and absence of linked coding sequence polymorphisms.

INTRODUCTION close to 10 times the detection rate of classic galactosemia

(4). Patients with Duarte galactosemia carry one GALT allele
Duarte galactosemia is a mild to asymptomatic condition that (G) that is profoundly impaired, and a second GALT
results from partial impairment of galactose-1-phosphate uridy- allele (Duarte-2, D2; sometimes called D) that is partially
lyltransferase (GALT) [reviewed in (1)]. Individuals with impaired. Hemolysates from patients with Duarte galactosemia
Duarte galactosemia are identified by newborn screening at demonstrate, on average, ~25% normal GALT activity,
an incidence as high as one in 4000 live births (2,3), which is although there is a broad range in individual values (3).
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Duarte hemolysates also have a characteristic pattern of altered
GALT isozyme mobility on native or isoelectric focusing gels
5-7).

Prior studies have shown that D2 alleles carry the amino acid
substitution p.N314D (c.940A>G) (8—11), which fully
accounts for the altered isozyme mobility (12), but this amino
acid substitution does not cause the partial impairment of
activity (11,12). Of note, p.N314D is also found on Duarte-1
alleles (D1, also called Los Angeles or LA alleles), which
exhibit normal or even above normal activity (13—15). On the
basis of HapMap comparative sequence studies (http://www.
hapmap.org/index.html.en), p.N314D is now considered a
common variant or polymorphism (16) with an allele frequency
of ~11% in European populations (CEPH, or Centre d’Etude du
Polymorphisme Humain) and lower frequencies in other popu-
lations, for a ‘pan-ethnic’ frequency near 8% (4).

A number of different approaches have been taken to the
question of why D2 alleles are functionally compromised,
whereas D1 alleles are not. Andersen et al. (17) used immuno-
chemistry to reveal that the different activities attributed to D1
and D2 alleles reflect differential GALT protein abundance,
rather than differential specific activity. Later studies of the
coding and non-coding nucleotide sequences of D1 and D2
alleles revealed that p.N314D exists on both alleles in
linkage disequilibrium with other sequence variants, and that
these variants differ between D1 and D2 alleles. Specifically,
D1 alleles carry a ¢.652C>T nucleotide change that results
in a silent substitution at codon 218 (p.L218) (CTA to TTA,
p.L218, sometimes called L218L) (14,15,18,19), whereas D2
alleles carry a 4 bp 5 deletion (c.-119_-116delGTCA) (20)
along with three intronic base changes [c.378-27G>C or
IVS4-27G>C, ¢.508-24G> A or IVS5-24G>A, and ¢.507 +
62G>A or IVS5-62G>A (20—22)]. Both D1 and D2 alleles
also carry an extended sequence of adenine nucleotides in
intron 10 (22). Large-scale studies of GALT alleles tested for
the presence or absence of the p.D314 and p.L218(TTA)
sequence variants estimated the pan-ethnic frequencies of
DI and D2 alleles at 2.7 and 5.1%, respectively (4).

The question of which reported base changes account forup to
50% reduction in hemolysate D2 GALT protein levels has
remained a point of controversy for many years. One group pro-
posed that the intronic base changes in D2 alleles might compro-
mise processing or expression of the encoded message (15).
Another group (14,23) compared the GALT mRNA and
protein levels in NN versus DD human cell lines, using RNase
protection and western blots, and concluded that the D2
GALT message levels were normal, but that the p.N314D
GALT protein was destabilized. These authors proposed that
D1 alleles, which also carry p.D314, might fail to manifest
destabilization due to improved translation of the
p.L218(TTA) codon (14,23). However, mammalian and yeast
expression studies found no evidence of compromised p.D314
GALT protein expression or function (11,12).

The plot thickened when Kozak and Francova (20) speculated
that the 5’ 4 bp deletion specific to D2 alleles might be function-
ally significant, because it disrupted the predicted binding sites
of two transcriptional activators (AP1Q2 and AP1Q4). Two
years later, GALT promoter—luciferase reporter gene studies
confirmed that the D2 promoter was indeed less active than
the wild-type promoter in transient transfection experiments
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(24,25). One study (25) also reported diminished total GALT
message in lymphoblasts cultured from a Duarte carrier (DN)
and a Duarte patient (DG) compared with lymphoblasts cultured
from five (NN) controls. These results implicated the 4 bp 5’ del-
etion and perhaps the other D2 non-coding sequence changes as
functionally significant. Nonetheless, variations in GALT
message levels between the individual samples in the study
combined with the inability to distinguish p.N314 from
p.D314 GALT messages in individual samples meant that
altered D2 message abundance could not be confirmed as the
basis for diminished D2 GALT expression.

Here we present studies that address the origin, distribution and
expression of the D2 GALT allele. Specifically, we compared
GALT sequences among humans, non-human hominids, non-
hominid primates and non-primate placental mammals, and
these comparisons clearly implicate p.D314 as the ancestral
allele and p.N314 as a recent sequence variant that may be
unique to humans. We also report that the 4 bp 5" deletion in D2
alleles represents a one-unit contraction of a GTCA tetranucleo-
tide repeat whose repeat number has fluctuated through evolution.
To track the distribution of this 4 bp deletion within cohorts of
patient and control samples, we developed and applied a robust
PCR-based assay that confirmed complete linkage of the 4 bp del-
etion with GALT alleles that also carry p.D314 + L218(CTA),
and complete repulsion of the 4 bp deletion with GALT alleles
that carry p.D314 + p.L218(TTA). Finally, we applied an allele-
specific qRT—PCR approach to quantify the relative abundance of
‘normal’ versus p.D314 GALT messages in four separate DN indi-
viduals. Our results confirm a small, but statistically significant,
under-representation of p.D314 GALT message in each of these
carriers. These data revealed that under-expression, at the
mRNA level, contributes to the compromised function of the
D2 GALT allele.

RESULTS

Origins of the p.N314D and p.L218(TTA) polymorphisms
and the 4 bp 5’ deletion in human GALT

As a first step toward understanding the origin and relationship
of the p.N314D (rs2070074 at position 34,639,442 of chromo-
some 9 in NCBI Build 36.1) and 5’ variations in human GALT,
we performed cross-species comparisons of the appropriate
coding and non-coding sequences from representative
human, non-human hominid (e.g. chimpanzee), non-hominid
primate (e.g. macaque) and non-primate placental mammalian
(e.g. mouse) species. All species examined, other than human,
encoded D rather than N at position 314 (Table 1), strongly
implicating D314 as the ancestral GALT allele; the variant
that is predominant among modern humans is therefore most
appropriately termed p.D314 N (Fig. 1).

Within the CEPH population, the frequency of the ancestral
p.D314 allele is ~11.3% (http://hapmap.org), which is unu-
sually high compared with other human populations;
Yoruba, Chinese and Japanese populations each exhibit a fre-
quency of p.D314 well under 3%. Thus, it seems that the
common allele p.D314 is not only the derived state, but also
that the ancestral allele is nearly absent among non-European
populations.
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Table 1. Cross-species sequence comparisons suggest origins of the p.N314D and p.L218(TTA) polymorphisms and 5" promoter deletion characteristic of the D1
and D2 alleles of GALT

Sequence Humans (European)® Other hominids Other primates Other placental mammals

Amino acid at residue 314 Asparagine (N) ~89%

Aspartate (D) ~11%
CTA (Leu) ~96%

Aspartate (D) Aspartate (D) Aspartate (D)

Sequence at residue 218

CTA (Leu) CTA (Leu) Some CTA (Leu)
TTA (Leu) ~4% Some TTA (Leu)
GTCA repeats (GTCA)? in control and D1 alleles (GTCA)? (GTCA)? (GTCA)!
(GTCA)? in D2 alleles

Species examined that encode D at residue 314 included: chimp, gibbon, gorilla, orangutan, rhesus, galago, tree shrew, mouse, rat, guinea pig, shrew,
dog, cat, horse, cow and armadillo. Species examined encoding N at residue 314 included human only. Species examined with p.L218(CTA) included:
chimp, gibbon, gorilla, orangutan, rhesus, galago, tree shrew, dog, cat, horse and armadillo. Species examined with p.L218(TTA) included: mouse and
rat. Of note, cow GALT encodes p.L218(CTT), whereas guinea pig and rabbit GALT encode p.L218(CTG). Species examined that carry a 5’ (GTCA)®
included: chimp, gibbon, gorilla and orangutan. Species examined that carry a 5’ (GTCA)? included: rhesus and macaque. Species examined that carry a

5 (GTCA)' included: tree shrew, mouse, rat, guinea pig, shrew, hedgehog, dog, cat, cow, elephant and armadillo. Notably, horses carry one copy of
ATCA in place of the GTCA sequence found in other species.

“http://hapmap.org/cgi-perl/gbrowse/hapmap_B35/?name=Sequence:NM_147131.
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Figure 1. Proposed origins and relationship of the p.N314, D1 and D2 alleles of human GALT. The predicted ancestral human GALT allele carries the
(GTCA)? 4 p.L218(CTA) + p.D314 sequences found in other hominid species. The p.D314N substitution occurs early in human evolution, and the 4 bp 5’ del-
etion and p.L218(TTA) silent substitution occur later, on distinct branches of the tree. The three intronic base changes reported to exist in cis with D2 alleles

[c.378-27G>C or IVS4-27G > C, ¢.508-24G > A or IVS5-24G > A and ¢.507 4+ 62G > A or 1VS5-62G > A (20-22), not illustrated here] presumably
occurred subsequent to, or concurrently with, the 4 bp 5" deletion on the D2 branch of the tree.

We also explored the origins of the codon 218 sequence; a
silent substitution in this codon constitutes the p.L218 variation
(CTA to TTA, 152070075 at position 34 638 418 of chromo-
some 9 in NCBI Build 36.1) found on DI, but not on D2,

suggest that the TTA silent substitution may have arisen more
than once through the course of evolution.

As summarized in Table 1, the ancestral CTA (Leu) codon
accounts for ~95.5% of alleles in the CEPH population,

alleles. In non-human hominids and non-hominid primates,
the CTA codon also predominates. Among non-primate placen-
tal mammals, some published sequences carry CTA (e.g. dog,
cat, horse), whereas others carry TTA (e.g. mouse, rat). These
data implicate CTA as the ancestral allele in humans, but also

while the derived TTA (Leu) codon accounts for ~4.5% of
alleles. The derived TTA allele is even rarer in non-European
populations, with an observed frequency of ~1% in the
HapMap Chinese sample and a complete absence in both the
Yoruba and Japanese samples (http://hapmap.org).



Table 2. Distribution of the 4 bp 5" deletion among D1 and D2 alleles of GALT
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GALT genotype of patient No. of No. of D2 alleles No. of D1 alleles Other alleles No. of alleles No. of alleles

(biochemically confirmed) samples [p.D314 + [p.D314 + (N or G) carrying (GTCA)*  carrying (GTCA)?
p.L218(CTA)] p.L218L(TTA)]

D2/D2 18 36 0 0 36 0

D2/N 52 52 0 52N 52 52

D2/G 109 109 0 109 G 109 108*

D2/D1 1 1 1 0 1 1

D1/G 3 0 3 3G 0 6

Total 183 198 4 164 198 167

D1 alleles were identified on the basis of p.D314 + p.L218L(TTA); D2 alleles were identified on the basis of p.D314 + p.L218(CTA). N alleles were
identified on the basis of N314, no detected mutations, and normal biochemical activity.
?One G allele in this cohort was the 5 kb deletion, which removes the 5 GALT sequence.

Cross-species comparisons of the GALT proximal 5
sequence also reveal an interesting pattern (Table 1). GALT
alleles that are predominant in humans and non-human homi-
nids carry three tandem GTCA repeats (GTCA)®, but GALT
alleles in non-hominid primates carry only two repeats
(GTCA)* and GALT alleles in non-primate placental
mammals carry only one repeat unit (GTCA)'. Hence, this
repeat sequence appears to have expanded through the
course of evolution, and the 4 bp deletion seen in human D2
alleles represents a contraction by one repeat unit.

A PCR-based assay to detect the 4 bp 5’ deletion
associated with D2 GALT

To facilitate rapid and direct detection of the 4 bp 5’ deletion in
human genomic DNA, we designed a multiplex allele-specific
PCR-based assay (Fig. 2); allele-specific amplicons are generated
using forward primers specific for either the wild-type (GTCA)?
or mutant (GTCA)* GALT sequences, together with a shared
reverse primer. As illustrated in Figure 2, the (GTCA)*-specific
primer includes a 91 bp ‘tail’ of non-human (Saccharomyces cer-
evisiae) sequence that extends the length of the amplicon without
compromising annealing specificity. The wild-type amplicon is
403 bp, whereas the corresponding (GTCA)*-specific amplicon,
which lacks the 91 bp tail, is 308 bp. This size difference makes
for easy visual distinction between the two amplified fragments
following agarose gel electrophoresis. Figure 3A illustrates the
application of this method to a set of controls, including one
sample homozygous for the (GTCA)? wild-type allele, one homo-
zygous for the (GTCA)* D2 allele and one heterozygous for the
(GTCA)? and (GTCA)? alleles.

To test the sensitivity of this method to template concen-
tration, we performed assays on wild-type and D2 homozy-
gous genomic DNAs ranging in concentration from 1 to
180 ng/reaction. As illustrated in Figure 3B, bands of the
expected sizes, and the expected sizes only, were easily
detected in all reaction lanes, demonstrating tolerance of the
assay for a wide range of template concentrations.

Distribution of the 4 bp 5’ deletion among D1 and D2
GALT alleles

To explore the distribution of the (GTCA)? variant among D1
and D2 GALT alleles, we applied our assay to 183 genomic
samples representing 366 GALT alleles, of which 202 were

known to encode p.D314 and 163 were known to encode
p.N314 (Table 2). Of these 202 p.D314 alleles, 4 had previously
tested positive for the p.L218(TTA) silent base substitution; the
remainder were L218(CTA). Our results demonstrated the
anticipated one-to-one correspondence between the presence
of the 4 bp 5 deletion and the absence of the p.L218(TTA) vari-
ation among the D2 alleles (Table 2). Our results also revealed a
perfect one-to-one correspondence between the absence of the
4 bp 5’ deletion and the presence of the p.L218(TTA) variation
among D1 alleles (Table 2). As expected, these results were
also fully consistent with biochemical data associated with
each sample, with D2 alleles being partially impaired, and D1
alleles not impaired at all (data not shown).

Absence of the 4 bp 5" deletion among N (control) and G
(classic galactosemia) GALT alleles that carry N314

To test the distribution of the 4 bp 5" deletion among control
(N) and classic galactosemia (G) GALT alleles that encode
p-N314, we applied our assay to 98 control genomic DNAs
(196 control alleles) and 48 genomic DNAs derived from
GG patients (96 G alleles). Of note, each of these alleles
had already been shown to mnot carry p.D314 or
p.L218(TTA). As expected, none of these alleles demonstrated
the presence of the 4 bp 5" deletion (Table 3).

Distribution of the 4 bp 5’ deletion among classic
galactosemia (G) GALT alleles that also carry D314

From the many classic galactosemia patient DNA samples
tested, we identified eight unrelated samples that encoded
p.D314 on one or both alleles in cis with a classic (G)
mutation. Indeed, of the 16 alleles represented, 11 carried
p.D314 (Table 4). The GALT genotypes identified in these
samples illustrate two important points. First, classic galacto-
semia (G) mutations are found on both D1 and D2 genetic
backgrounds. Secondly, we found no apparent association of
the D1 or D2 background with a specific G mutation.

D2 GALT mRNA is under-represented in the blood
of DN carriers

To test the hypothesis that D2 alleles express a lower level of
message in vivo than wild-type alleles, we performed allele-
specific quantitative RT—-PCR on blood-derived RNA
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Figure 2. Strategy for allele-specific amplification of (GTCA)? versus (GTCA)* 5" GALT sequences. As illustrated, the forward primer specific for the (GTCA)?
allele includes a 91 bp ‘tail’ of S. cerevisiae sequence that increases the size of the corresponding amplicon.

(GTCA)® GALT allele (GTCA)? GALT allele

hGALT.extwt hGALT.shrtdel
—
- |
— B
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Multiplex PCR amplification
with genomic DNA sample and
all 3 primers added to the
same tube

308bp amplicon reflects the
presence of the (GTCA)? allele

403bp amplicon reflects the
presence of the (GTCA)® allele

Figure 3. Multiplex allele-specific amplification of (GTCA)? and (GTCA)® 5’
GALT sequences. (A) Amplification of (GTCA)?/(GTCA)* and (GTCA)*/
(GTCA)® templates demonstrates the specificity of the primer sets. (B) A
dilution series of template levels establishes the tolerance of both amplification
reactions to a wide range of template concentrations.

samples from DN (D2 carrier) volunteers, as well as from NN
(control) and DD volunteers. Equivalent amounts of RNA
derived from each sample were subjected to qRT—PCR with
each of two sets of primers: one specific for the p.N314
(normal) transcript and one specific for the p.D314 (D2) tran-
script. As anticipated, all NN samples amplified well with the
N314-specific primers and showed only minimal (~3.5%)
background signal when amplified with the p.D314-specific
primers. Similarly, a DD sample amplified well with the
p.D314-specific primers and showed only minimal (~1.5%)
background signal when amplified with the N314-specific
primers. As indicated (Table 5), the ratio of p.N314:p.D314
signals, corrected for background, detected in each of the four
DN samples was close to 54:46%. Though small, the difference
between this distribution and the null hypothesis (50:50%) was
quite statistically significant (P < 0.002). These data demon-
strate that D2 alleles are mildly under-expressed at the level
of RNA in vivo relative to normal GALT alleles.

GALT activity in hemolysates from DG patients

As a final test of the GALT activities attributable to D alleles,
we examined GALT activity levels determined in the Emory
Biochemical Genetics Lab for 133 NN samples, 90 DG
samples and 27 GG samples. As expected (Table 6), average
DG GALT values were ~21% of those in NN patients.
Notably, however, the ranges of both sets were very large.

Table 3. Distribution of the 4 bp promoter deletion among normal (N) and
classic (G) galactosemia alleles of GALT

No. of No. of alleles No. of alleles
alleles carrying carrying

GALT genotype of volunteer No. of
samples

(GTCA)? (GTCA)®
N/N (normal) 98 196 0 196
[p-N314 4 p.L218(CTA)]
G/G (classic) 48 9% 0 96
[P.N314 4 p.L218(CTA)]

There was a more than 2-fold range in the GALT levels of
NN samples, and a more than 6-fold range in the GALT
levels of DG samples. Indeed, ‘high-activity’” DG samples
had >60% of the GALT activity seen in ‘low-activity’” NN
samples. These ranges suggest that there are likely many
factors, including GALT coding and non-coding sequences,
and also factors beyond GALT sequence, that influence
GALT expression or activity, or both, in human cells.

DISCUSSION

The data presented here both extend and clarify our under-
standing of the origins, distribution and expression of the D2
GALT allele associated with Duarte galactosemia.

Origins
To explore the origins of the p.D314, p.L218(TTA) and
(GTCA)? variations found on D1 and/or D2 GALT alleles, we
used interspecies sequence comparisons to reconstruct the var-
iants most likely to represent the ancestral state. These analyses
clearly implicated p.D314 as the ancestral allele and p.N314 as
a polymorphism that may be predominant in modern humans,
but which also appears unique to humans. Of note, p.D314 is
not found with any significant frequency in populations of
African descent, although it is found in African Americans, pre-
sumably due to admixture (26). This distribution pattern
suggests that the p.D314N variant arose in Africa very early
in human evolution, and that the persistence of the p.D314
allele in European and, to a lesser extent, Asian populations
may reflect a founder effect or other factors acting upon descen-
dants of the early waves of human migration out of Africa.
We similarly noted that the 4 bp 5" deletion found in D2
GALT alleles is a one-unit contraction of a tetranucleotide
repeat sequence that has otherwise expanded through evolution
from placental mammals (one repeat unit), to primates (two
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Table 4. Distribution of the D1- and D2-related variations among GALT alleles that also carry a classic galactosemia (G) mutation

Patient G mutation genotype D1- or D2-related variations

A p.R204X/p.P265A p.D314 + (GTCA)*/p.D314 + (GTCA)*

B p.Q207X/p.Q207X p.D314 + (GTCA)*/p.D314 + (GTCA)?

C p-H132Q, p.R204X, p.P265A cis/trans relationships unknown p.D314/p.N314 (GTCA)*/(GTCA)?

D p-QI88R, p.R259Q, p.D273H cis/trans relationships unknown p.D314 + p.L218(TTA) + (GTCA)3/p.N3l4 + (GTCA)3
E p.QI88R/p.R333W p.D314 + p.L218(TTA) 4+ (GTCA)*/p.N314 + (GTCA)®
F p.R204X/unknown p.D314 + (GTCA)*/p.D314 + (GTCA)?

G p.QI88R/unknown p.D314 + p.L218(TTA) 4+ (GTCA)*/p.N314 + (GTCA)*
H Unknown/unknown p.D314 + (GTCA)*p.N314 + (GTCA)®

If the codon at 218 is not specified, it is CTA.

Table 5. Relative expression levels of the p.N314 and p.D314 GALT messages
in DN carriers

Sample GALT genotype Relative expression

of p.N314 GALT

Relative expression
of p.D314 GALT

message message
1 p.D314 + (GTCAY/N 0.525 + 0.048 0.475 + 0.048
2 p.D314 + (GTCA)*/N 0.573 + 0.072 0.427 + 0.072
3 p.D314 + (GTCAY/N 0.541 + 0.052 0.459 + 0.052
4 p.D314 + (GTCAY/N 0.530 % 0.072 0.470 £ 0.072
Total 0.540 + 0.011 (n = 4) 0.460 + 0.011 (n = 4,

P < 0.002)

These values were corrected for background cross-reactivity of the
primers, which was measured at 1.5% for p.D314 signal and 3.5% for
p-N314 signal.

repeat units), to hominids, including humans (three repeat
units). That the repeat number of this tetranucleotide sequence
has varied through evolution is consistent with the instability
observed in other repeat tracts in the mammalian genome.

Distribution of the 4 bp 5’ deletion on human GALT alleles

To explore the distribution of the (GTCA)? sequence variant in
human GALT alleles, we developed and applied a simple and
robust PCR-based assay to identify and distinguish wild-type
(GTCA)® from D2-associated (GTCA)* 5’ sequences. Using
this assay we confirmed the previously described strict linkage
of the (GTCA)? sequence with p.D314 + L218(CTA) coding
sequence alleles, and the strict repulsion of the (GTCA)* 5
sequence with the p.N314 and p.D314 + p.L218(TTA)
coding sequence alleles. Although each of these relationships
had been reported previously (20,24,25), to our knowledge
ours is the largest pan-ethnic collection of GG, DG and control
samples genotyped with regard to the 4 bp 5’ deletion. It is
also noteworthy that, though the HapMap database cites allele
frequencies for the p.D314 and p.L218(TTA) polymorphisms,
that study, which restricted itself to SNPs, did not assay the
(GTCA)” promoter allele in human GALT. Applying the appar-
ently tight linkage of the (GTCA)* 5" variation with GALT
alleles that carry p.D314 but lack p.L218(TTA), we can estimate
the likely allele frequency of this non-coding variation in the
HapMap-tested European population at near 6—7% [the overall
frequency of p.D314 (11%) minus the frequency of the

Table 6. GALT activities detected in hemolysates from GG, DG and NN
individuals

GALT genotype (n) GALT activity (nmol/h/g Hb)

Average + SD Range
NN (133) 335+ 6.8 20.1-47.8
DG (90) 72420 2.0-12.5
GG (27) 0.2+ 0.6 0.0-2.4

p.L218(TTA) allele (4—5%)], with lower frequencies in other
human populations.

It is also interesting to note that the p.D314 sequence, with or
without p.L218(TTA), is also found in cis with many different
G (classic galactosemia) mutations, suggesting that through the
course of human history, although most G mutations have arisen
on the predominant p.N314 GALT genetic background, others
have arisen on p.D314 + p.L218(TTA) backgrounds or on
p.D314 + (GTCA)? backgrounds. In short, with the caveat of
a small p.D314-G data set, we see no clear evidence of prefer-
ential association between specific classic galactosemia
mutations and any given GALT genetic background. Assuming
that all classic galactosemia GALT mutations are younger than
any of the GALT polymorphisms discussed, and assuming G
mutations arise independently of genetic background, we there-
fore predict that in European populations ~89% of GALT
mutations will be found on a p.N314 background, 6—7% on
a D2 [p.D314 + (GTCA)?] background and 4-5% on a
D1 [p.D314 + p.L218(TTA)] background. In non-European
populations, nearly all GALT mutations will be found on a
p-N314 background.

Expression

Another goal of this work was to clarify the basis of the ~50%
decrease in GALT expression and activity typically associated
with D2 alleles. As explained in the Introduction, earlier
reports addressing this point were contradictory. Some
studies claimed normal D2 GALT mRNA levels and attributed
the decrease to altered p.N314D protein stability (14,23);
others claimed decreased D2 GALT mRNA levels ostensibly
resulting from intronic mutations (15) or from impaired D2
promoter function (24,25). All of these studies were limited
by extremely small sample sizes and by analyses of cultured
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transformed cell lines as opposed to primary tissues. Given the
more than 6-fold difference in GALT activity attributed to
Duarte alleles in different DG patients (Table 7), it is difficult
to generalize from the less than 2-fold differences in results
obtained using samples from individual study volunteers,
much less individual cell lines derived from those individual
volunteers. The decreased p.N314D protein stability hypoth-
esis needed to account for the apparently normal or above
normal levels of GALT protein and activity associated with
D1 alleles, which also encode p.N314D. The explanation
posed (but not tested)—namely, improved translation effi-
ciency of DI messages due presence of the silent
p.L218(TTA) variant (14,23)—is also problematic. Both the
Dl-associated TTA (Leu) and D2-associated CTA (Leu)
codons occur at other places in N, DI and D2 GALT alleles.
Indeed, N and D2 alleles each carry a total of six CTA
codons and one TTA codon, whereas D1 alleles carry a total
of five CTA codons and two TTA codons.

To test whether D2 GALT alleles are under-expressed rela-
tive to N alleles in human blood, we applied allele-specific
gqRT—PCR to RNA samples derived from each of the four
individuals heterozygous for the D2 GALT allele. This study
design had the advantages of primary human tissue samples
and the inclusion of an internal control within each sample.
Our results demonstrated a small but consistent and statisti-
cally significant under-representation of p.D314 encoding
message relative to ‘normal’ p.N314 encoding message in
each sample tested. Specifically, the mRNA distribution
detected was 54% p.N314 to 46% p.D314 encoding messages.
While statistically distinct from the 50:50% distribution pre-
dicted if there were no decrease in D2 GALT mRNA, this
54:46% distribution also falls short of the 67% p.N314 to
33% p.D314 distribution predicted if mRNA deficits could
account fully for the average 50% loss of expression/activity
typically attributed to D2 alleles.

The reason for this ‘middle ground’ result remains unclear,
though there may be a small protein expression or stability
effect. It is possible that the full effect is RNA mediated,
but that the primers and qRT—-PCR technology applied
here were unable to confirm it. Another possibility is that
individual-to-individual =~ naturally  occurring  variation
between samples prevented unambiguous demonstration of
the predicted 67:33% p.N314:p.D314 message distribution.

When considering our results, it is also important to note
that, unlike prior reports, our studies used mRNA samples iso-
lated directly from whole blood, and not from cultured trans-
formed, cell lines. These RNAs therefore derived
predominantly from circulating white cells, whereas the
GALT activity values listed here (Table 6) or reported pre-
viously (3,14) were derived from red blood cells or from cul-
tured transformed cells. To our knowledge, there have been no
systematic studies of D2-associated GALT activity or abun-
dance in circulating white cells. It is therefore possible that
the 54:46% distribution reported here is an accurate reflection
of the relative levels of p.N314 to p.D314 encoding GALT
messages in the circulating white blood cells of DN carriers.
Regardless, it is now clear that altered mRNA levels can
indeed account for at least some of the ‘missing” GALT
activity attributable to D2 GALT alleles.

Table 7. Primers used in this study

Comments

Sequence (5'-3")

Primer name

Anneals only to alleles that do not carry the 4 bp 5’ deletion

ATTGGTTCACACACTGTGGTAGAGCTAATTGAGAATGGggcageccagtcagtcagt

ggcagceccagtcagtcacg

TACAAAGTGAAAGTACTTCTAAAATTGTTTTGGTTACAGGTGGTGCTGGATAC

hGALT.extwt (primer 1)

Anneals only to alleles that carry the 4 bp 5 deletion
reverse primer anneals to both p.N314 and p.D314 encoding messages

Reverse primer anneals to both alleles
anneals to p.N314 encoding message
anneals to p.D314 encoding message

gagcgttccaaccttcggaggg
aggtggtaatgaacctcaggaagtgc

gaggctggggccaactgga
gaggctggggcecaactggg

hGALT.481rev (primer 3)

hGALT shrtdel (primer 2)
hGALTN314.13

hGALT.D314.13
hGALT.end.r2

Uppercase letters represent non-human sequence (S. cerevisiae) used to extend the length of the wild-type amplicon. Lowercase letters represent human GALT sequence.



Testing for the D2 allele

Most clinical diagnostic labs currently test for the presence or
absence of a Duarte GALT allele using a combination of mol-
ecular and biochemical studies. The molecular studies gener-
ally involve a direct assay for p.N314D and/or p.L218(TTA)
alleles, or full exon sequencing. The biochemical studies typi-
cally involve a GALT activity assay that will show high
activity in the case of a DI allele and low but detectable
activity in the case of a D2 allele. Isozyme studies are used
to detect the shifted banding pattern characteristic of both
D1 and D2 GALT. These combined approaches can correctly
identify and distinguish D1 from D2 GALT alleles; however,
given the broad range of GALT activity values obtained for
the suspected DG patient population, together with the realiz-
ation that p.N314D and p.L218(TTA) are themselves most
likely linked polymorphisms rather than causal mutations, an
alternative diagnostic plan might prove beneficial.

We propose that DG patients could be accurately diagnosed
through a combination of GALT enzyme assay and molecular
studies to query the coding sequence and/or candidate G
mutations, with an added test for the presence or absence of
the 5 4bp deletion. If low but detectable activity was
present, one G mutation was found, and the 4-bp deletion
seen, the patient would most likely have DG galactosemia.
Defining the presence or absence of the p.N314D substitution
or a shifted isozyme banding pattern would be superfluous.
Given the prevalence of p.N314D in the general population
and its linkage to D1, D2 and G GALT alleles, its utility as
a clinically relevant marker is compromised at best. In fact,
if the 5 4 bp deletion is causative, tests that rely on the
p-N314D polymorphism, with or without p.L218(TTA),
could lead to faulty conclusions in any individual with a
recent recombination between the 5’ deletion and the tested
coding sequence variants.

MATERIALS AND METHODS
Study subjects

All DNA samples were obtained either from consenting volun-
teers from an ongoing IRB-approved study of galactosemia
(Emory IRB Protocol # 618-99, PI: Fridovich-Keil) or as
anonymized discards from the Emory Genetics Laboratory.
All of the samples studied were tested by the Emory Genetics
Laboratory to detect the presence of p.N314D, p.L218(TTA)
and a set of common GALT gene mutations associated with
classic galactosemia.

Quantitative allele-specific RT-PCR

RNA samples were prepared from whole blood collected in
Tempus™ Blood RNA Tubes using the PerfectPure™ RNA
Purification Kit according to the manufacturer’s instructions
(5 Prime Inc., Gaithersburg, MD, USA); RNA was quantified
by UV absorbance. Whole blood was collected and stored at
—20°C until RNA isolation. RNA was stored at —80°C,
until it was used to prepare cDNA for quantitative PCR.
SuperScript III First-Strand Synthesis System for RT—PCR
using Oligo(dT)20 primers was used to prepare cDNA
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according to the manufacturer’s instructions (Invitrogen,
Carlsbad, CA, USA). Each cDNA synthesis reaction contained
250 ng of RNA.

Relative abundance of the D2 transcript in four DN individ-
uals, of whom three were unrelated, was determined by
comparison of the results of QqRT—PCR reactions from each
cDNA sample using primers that specifically amplified a
225 bp fragment of the D314 sequence versus primers that
specifically amplified the corresponding 225 bp fragment of
the N314 sequence. The primers used in these reactions
were hGALT.D314.f3, hGALTN314.f3 and hGALT.end.r2
(Table 7). The specificity/selectivity of each allele-specific
primer set was confirmed by qRT—PCR with RNA derived
from NN or DD homozygous individuals, and subsequent ana-
lyses of DN-mixed message populations were corrected for the
low level of background cross-reactivity (1.5% for D314
primers and 3.5% for N314 primers). All qRT—PCR reactions
were performed using SYBR Green for the LightCycler® 480
in a 96-well plate format (Roche, Indianapolis, IN, USA). The
absolute abundance of the D314 and N314 messages in each
DN sample was calculated using titration curves of DN
cDNA amplified with both primer sets. The relative abundance
of the D314 and N3 14 messages in each sample was calculated
as D/(D+N) and N/(D + N), respectively. Assays were
performed in triplicate or more, with results reported as
mean + SD.

Detection of the 4 bp GTCA proximal promoter deletion

The presence or absence of the 4 bp GALT promoter deletion was
determined by allele-specific genomic PCR with primers hGAL-
T.extwt (specific for the WT allele), hGALT shrtdel (specific for
the deletion allele) and hGALT481rev (reverse primer that recog-
nizes both alleles). Each 20 p.l PCR mixture contained 3.75 pmol
of hGALT.extwt (Table 7), 10 pmol of hGALT shrtdel (Table 7)
20 pmol of hGALT481rev (Table 7), between 1 and 50 ng of
genomic DNA, 4 ul of 5x GoTaq™ buffer (Promega), 3.2 pl
of 25mm dNTPs, 04 pl DMSO and 05U of GoTaq
(Promega). The reaction mixture was collected in 0.5 ml tubes
on ice and transferred directly to a thermal cycler pre-heated to
95°C. The reactions were melted at 95°C for 5 min, followed by
38 cycles of 94°C for 45 s, 65°C for 45 s, and 74°C for 1 min.
In the final cycle, the reactions were extended at 72°C for
5 min, and then held at 16°C for at least 10 min. Following ampli-
fication of each sample, 2 1 of PCR product were diluted 1:5 in
ddH,O and run at 90 V for 55 min on a 2% agarose/TAE gel in
conjunction with an appropriate marker (100 bp ladder, New
England Biolabs); bands were visualized by staining with ethi-
dium bromide.
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