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Summary. Meta-analysis in the presence of unexplained heterogeneity is frequently under-
taken by using a random-effects model, in which the effects underlying different studies are
assumed to be drawn from a normal distribution. Here we discuss the justification and interpre-
tation of such models, by addressing in turn the aims of estimation, prediction and hypothesis
testing. A particular issue that we consider is the distinction between inference on the mean
of the random-effects distribution and inference on the whole distribution. We suggest that
random-effects meta-analyses as currently conducted often fail to provide the key results, and
we investigate the extent to which distribution-free, classical and Bayesian approaches can
provide satisfactory methods. We conclude that the Bayesian approach has the advantage of
naturally allowing for full uncertainty, especially for prediction. However, it is not without prob-
lems, including computational intensity and sensitivity to a priori judgements. We propose a
simple prediction interval for classical meta-analysis and offer extensions to standard practice
of Bayesian meta-analysis, making use of an example of studies of ‘set shifting’ ability in people
with eating disorders.
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1. Introduction

In systematic reviews, which attempt to assemble the totality of evidence that is relevant to
specific research questions, a typical approach to meta-analysis is to average the estimates of
a comparable parameter from each study. A ‘fixed effect’ model assumes that a single param-
eter value is common to all studies, and a ‘random-effects’ model that parameters underlying
studies follow some distribution. Occasionally it may be reasonable to assume that a common
effect exists (e.g. for unflawed studies estimating the same physical constant). However, such an
assumption of homogeneity can seldom be made for studies in the biomedical and social sci-
ences. These studies are likely to have numerous differences, including the populations that are
addressed, the exposures or interventions under investigation and the outcomes that are exam-
ined. Unless there is a genuine lack of effect underlying every study, to assume the existence of
a common parameter would seem to be untenable.

If a common effect cannot be assumed then heterogeneity is believed to be present. The effects
may be

(a) assumed different and unrelated,
(b) assumed different but similar or
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(c) modelled by using covariates.

In the first, each study is considered in isolation from the others and meta-analysis is ruled
out as an option. In the second, a random-effects model may be assumed to reflect the simi-
larity. In the third, a regression analysis is suggested. Although sources of heterogeneity should
ideally be investigated (Thompson, 1994), selection of covariates to explain heterogeneity can
be difficult, both practically (Higgins et al., 2002) and theoretically (Thompson and Higgins,
2002). Where no covariates are obvious contenders to explain the heterogeneity, random-effects
meta-analysis is appropriate and is the situation that we address primarily in this paper. Many
of our arguments also apply, however, when heterogeneity may be partially explained by using
covariates and residual heterogeneity is modelled by using a random effect.

The focus of this paper is a re-evaluation of the random-effects approach to meta-analysis
in an attempt to gain a better understanding of its purpose and interpretation. We first dis-
cuss the important questions to be addressed. We then examine the extent to which classical
and Bayesian methodology, both non-parametric and parametric, can satisfactorily address the
important questions (Sections 3–6). An example is introduced in Section 7, and in Section 8
we address some special issues in random-effects meta-analysis, including the implications of
potential bias in the estimates from component studies.

2. Important questions to address in a random-effects meta-analysis

We structure our discussion of random-effects meta-analysis around three basic aims of sta-
tistical methodology, namely estimation, prediction and hypothesis testing. The division is
somewhat artificial, since there is some overlap across the domains. We recognize that different
perspectives will be relevant for different purposes.

We represent the effect underlying the ith of k studies by θi. For the most part we consider these
to be drawn from some unspecified distribution f.Φ/, with parameters Φ, such that E[θi]=μ and
var.θi/ = τ2. The assumption of a common between-study variance for each study is a strong
one that we return to in Section 8.1. For generality, the situation that we address assumes only
the availability of effect estimates θ̂i that are unbiased for θi .i=1, . . . , k/, with sampling variance
(i.e. squared standard error) σ2

i . We shall follow the conventional assumption that estimates σ̂2
i

(which are independent of θ̂i) may be used in place of the true variances, and we use the two
interchangeably. No specific distributional forms are assumed at this stage.

2.1. Estimation in random-effects meta-analysis
In practice, the prevailing inference that is made from a random-effects meta-analysis is an esti-
mate of underlying mean effect μ. This may be the parameter of primary interest: for example,
the average efficacy of a treatment may be the most relevant parameter for health care providers
(Feinstein, 1995; Light, 1987; Ades et al., 2005). Estimates of μ are frequently misinterpreted as
‘the overall effect’. However, a single parameter cannot adequately summarize heterogeneous
effects (Raudenbush and Bryk, 1985) and so focusing on μ alone is usually insufficient.

To illustrate the problem consider Fig. 1, which illustrates two meta-analytic data sets. The
first is a meta-analysis from a systematic review of human albumin treatment for critically ill
patients (Cochrane Injuries Group Albumin Reviewers, 1998). There is no heterogeneity in
log-risk-ratios among these eight trials (method-of-moments estimate τ̂2 = 0/, so a traditional
random-effects meta-analysis coincides numerically with a meta-analysis assuming a common
effect. The second data set we constructed artificially to contain 80 studies with highly heteroge-
neous findings. The larger number of trials decreases uncertainty of the estimated mean effect,
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Fig. 1. Estimates with 95% confidence intervals for (a) a genuine meta-analysis and (b) an artificially con-
structed meta-analysis with identical results for the mean of a random-effects distribution

whereas the presence of heterogeneity increases uncertainty. These counteract each other such
that a random-effects analysis produces an estimate μ̂ and standard error that are identical to
the eight genuine trials. However, there are important differences between the two data sets that
would lead to very different interpretations and consequences for clinical practice. The variation
in directions and magnitudes of effect in the artificial data set would suggest that the effect is
highly variable, and that some exploration of the heterogeneity is warranted.

The naive presentation of inference only on the mean of the random-effects distribution is
highly misleading. Estimation of τ2 is just as important. This variance explicitly describes the
extent of the heterogeneity and has a crucial role in assessing the degree of consistency of effects
across studies, which is an element of random-effects meta-analysis that often receives too little
attention. It is also important to be able to express uncertainty surrounding the estimate of τ2.
There might also be interest in estimating the study-specific treatment effects θi, or in obtaining
‘refined’ estimates of effects in one or more specified studies that most closely resemble a real
life situation.

2.2. Prediction using random-effects meta-analysis
Predictions are one of the most important outcomes of a meta-analysis, since the purpose of
reviewing research is generally to put knowledge gained into future application. Predictions
also offer a convenient format for expressing the full uncertainty around inferences, since both
magnitude and consistency of effects may be considered. A major benefit of a random-effects
model over the common effect model is that inferences can be made for studies that are not
included in the meta-analysis, say for θnew drawn from f.Φ/.

Realistic interpretation of predictions from a random-effects model can, however, be diffi-
cult. For instance, the predicted effect θnew relates to the effect in a new study that is deemed
‘sufficiently similar’ to the existing studies to be eligible for the analysis; in Section 4 we provide
a formal definition of ‘similar’ in terms of ‘exchangeability’. It will usually be more relevant to
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predict true effects (akin to the θi/ rather than effect estimates (the θ̂i/. Prediction intervals for
the latter depend on the sample size and other characteristics of the population (e.g. anticipated
risks, or outcome standard deviations) and so may only have practical use in the design of an
actual study.

2.3. Statistical tests in the presence of heterogeneity
An important rationale for meta-analyses is the possibility of increased power, compared with
the individual studies, to detect moderate effects. Compatibility of results with a null hypothesis
can be at least as useful as estimation of overall effect sizes, because in many meta-analyses
the studies are too diverse to compare estimates, while being sufficiently similar in their aims
to be examining comparable null hypotheses. Here we discuss possible tests in the context of
meta-analysis in the presence of heterogeneity. Extensive discussions of meta-analytic tests, par-
ticularly relating to common effect analyses, appear elsewhere (Hedges and Olkin, 1985; Bailey,
1987; Thompson, 1998). We start by listing five potential null hypotheses.

A basic null hypothesis of general interest in a meta-analysis is

H0 :θi =0 ∀i: .1/

Acceptance of this hypothesis is acceptance that no genuine effect exists in any study, which is
a strong but important conclusion. This is the one situation in which homogeneity of (a lack
of) effect is plausible. The usual heterogeneity test examines a similar null hypothesis that all
effects are equal but allows for this effect to be non-zero:

H0 :θi =θ ∀i:

We have argued that such a null hypothesis is typically untenable and have discouraged the use of
homogeneity tests in favour of quantifying the extent of heterogeneity (Higgins and Thompson,
2002). The usual null hypothesis that is associated with a random-effects analysis is whether the
underlying mean effect μ=E[θi] is non-zero:

H0 :μ=0: .2/

All these null hypotheses are non-directional. Meta-analyses are often built on an assump-
tion that directions of effect are consistent across studies (Peto, 1987), yet formal tests of this
important supposition are not routinely undertaken. Two null hypotheses that do address this
are

H0 :θi �0 ∀i .3/

and, in the context of prediction,

H0 :θnew �0: .4/

The simplest alternative to the basic null hypothesis (1) is that an effect exists in at least one
study:

H1 :θi �=0 for at least one i: .5/

Other alternative hypotheses are feasible. The conventional test from a common effect meta-
analysis is a test of hypothesis (1) that is particularly powerful against the alternative hypothesis

H1 :θi =θ �=0 ∀i:
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Although often useful, the test may be misleading if there is heterogeneity and in particular will
not reject hypothesis (1) if effects are variable and centred on 0. This property is shared with the
conventional test from a random-effects meta-analysis, i.e. of hypothesis (2) against

H1 :μ �=0:

More specifically, neither test can distinguish between the null hypotheses (1) and (2). To inves-
tigate whether effects are in the same direction, we can compare hypothesis (3) with

H1 :θi > 0 for at least one i,

or hypothesis (4) with

H1 :θnew > 0:

We review methods for examining these hypotheses in Section 5.

2.4. Summary: important objectives in random-effects meta-analysis
We propose that the following five aspects are likely to be relevant and useful results from a
random-effects meta-analysis. The exact selection from these for a specific meta-analysis will
depend on its aims and context. We assume a priori that if an effect exists then heterogeneity
exists, although it may be negligible. A sole focus on estimating the mean of a random-effects
distribution may be misleading, as demonstrated in Fig. 1, and emphasis should be placed on
the whole distribution of underlying effects.

(a) Heterogeneity—quantification of heterogeneity of findings—the extent of inconsistency
is important; a test of homogeneity is not.

(b) Mean effect—estimation of the underlying mean μ—this is clearly important but it pro-
vides an incomplete summary.

(c) Study effects—estimation of study-specific effects θi—this may be of interest if studies are
distinguishable from each other in ways that cannot be quantified, or in more respects
than can reasonably be investigated by using a regression approach.

(d) Prediction—prediction of effect in a new study, θnew—predictive distributions are poten-
tially the most relevant and complete statistical inferences to be drawn from random-
effects meta-analyses.

(e) Testing—testing of whether an effect exists in any study, whether an effect has a consistent
direction and/or whether an effect is predicted to exist in a new study—these may be more
important questions than whether or not an effect exists on average.

We now discuss how well these objectives can be met, in turn, by assuming nothing about the
distribution of random effects, by assuming a normal distribution for the random effects and
by allowing a more flexible distribution for the random effects.

3. Meeting the important objectives with no distributional assumption for the
random effects

One widely quoted criticism of random-effects meta-analysis is the need to assume a distribu-
tion for the random effects in the absence of a sound justification. Here we outline the extent
to which a random-effects approach can meet our important objectives in the absence of any
distributional assumption about the random effect. We are willing to assume normality of the
effect estimates from each study, so

θ̂i|θi ∼N.θi, σ2
i /: .6/
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3.1. Heterogeneity
A point estimate of the heterogeneity variance τ2 is available by using a moment-based approach
(Whitehead and Whitehead, 1991; DerSimonian and Laird, 1986):

τ̂2 =max

{
0,

Q− .k −1/∑
σ̂−2

i −∑
σ̂−4

i =
∑

σ̂−2
i

}
,

where

Q=∑
.θ̂i − θ̂/2σ̂−2

i .7/

and

θ̂ =∑
θ̂iσ̂

−2
i

/∑
σ̂−2

i :

The variance of Q, and hence a variance for τ̂2, has been derived (Biggerstaff and Tweedie,
1997). For very large data sets this could form the basis of a symmetric confidence interval.
Alternatively, a gamma distribution has been proposed as an approximation to the skewed
distribution of Q, and this may form the basis of an asymmetric confidence interval for τ2

(Biggerstaff and Tweedie, 1997). Alternatively, we have previously developed functions of τ2,
such as the proportion of variability in the θ̂i that is attributable to heterogeneity, that assess
the effect of heterogeneity and may be compared across all meta-analytic situations (Higgins
and Thompson, 2002).

3.2. Mean effect
A typical classical approach to random-effects meta-analysis (Whitehead and Whitehead, 1991;
DerSimonian and Laird, 1986) takes as an estimate of μ the weighted average μ̂=Σ θ̂iω̂i=Σ ω̂i,
where ‘inverse variance’ weights are ω̂i = .σ̂2

i + τ̂2/−1. The approximate standard error of μ̂ is
given by ŜE.μ̂/=√

.1=Σ ω̂i/. These results are not dependent on a distributional assumption for
the random effects. Invoking the central limit theorem, an approximate 95% confidence interval
may be obtained as

μ̂±1:96 ŜE.μ̂/: .8/

This interval will be valid approximately in a distribution-free context when there are many
studies.

An alternative is a quasi-likelihood approach in which the meta-analysis is performed under
a common effect assumption .τ2 =0/ and the standard error of the estimate inflated to account
for heterogeneity (Detsky et al., 1992). For example, for Poisson and logistic models the stan-
dard error may be multiplied by

√{Q=.k −1/} (Tjur, 1998) which approximates the ratio of
standard errors from usual random-effects analysis and common effect analyses (Higgins and
Thompson, 2002).

3.3. Study effects
Arguments that were put forward by Stein (1956), and those who have subsequently developed
empirical Bayes methods, indicate that an appropriate estimate of a study-specific effect is a
weighted average of that study’s observation and an average across all studies. In particular, for
the case of all estimates having the same (known) sampling error (σ2

1 = . . . =σ2
k =σ2, say), and

with τ2 known, then the linear function of yi that minimizes the expected mean-squared error
is (Robbins, 1983)
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θ̃i =λμ̂+ .1−λ/θ̂i,

where λ=σ2=.σ2 + τ2/.

3.4. Prediction
Attempts to use the empirical distribution of observed effect sizes, θ̂i, to predict future effects
should be avoided. The distribution of the estimates is overdispersed, since the true variance of
an individual θ̂i around the population mean μ is σ2

i + τ2, not τ2. Further, the sampling errors
(σ2

i s) may be substantially different for different studies. A histogram of observed results, for
example, may therefore be misleading.

Predictive distributions and prediction intervals do not follow naturally from distribution-free
approaches. The central limit theorem, although leading to an approximate confidence interval
for μ, is not relevant to a prediction interval for the effect in a new trial, θnew. However, (imprac-
tically wide) intervals would be available via Chebyshev’s inequality, which states that no more
than 1=t2 of the values are more than t standard deviations away from the mean (and, thus, at
least 95% of true effects would lie within

√
20=4:47 standard deviations of the mean).

3.5. Testing
Three hypothesis tests are in common use as part of a classical meta-analysis. These are a
test for non-zero effect under a common effect model, a test for non-zero mean effect under a
random-effects model and a test of homogeneity of effects across studies. The first and third do
not rely on distributional assumptions for the nature of any heterogeneity that may exist. The
random-effects test is built on an assumption of normality for the θi.

None of these tests address the questions that we consider to be important in a random-effects
meta-analysis. Our initial question of whether there is evidence for some treatment effect among
the studies may be addressed by using the test statistic Σθ̂

2
i σ̂

−2
i . This follows a χ2

k-distribution
under the null hypothesis (1) and provides a test against the alternative (5). Unfortunately the
test has poor power, like the test of homogeneity Q in equation (7) (Hardy and Thompson,
1998) of which it is a special case (assigning θ̂ =0 and providing an extra degree of freedom).

To address our second question, of whether all treatment effects lie in the same direction, we
might make use of a test for qualitative interaction. Such tests have been developed (Gail and
Simon, 1985; Piantadosi and Gail, 1993; Pan and Wolfe, 1997), addressing a null hypothesis:

H0 :{θi < 0 ∀i} or {θi > 0 ∀i}:

Gail and Simon (1985) described the use of a test statistic

QÅ =min{∑
θ̂

2
i σ̂

−2
i I+

i ,
∑

θ̂
2
i σ̂

−2
i I−

i }, .9/

where I+
i =1 if θ̂i >0 and I+

i =0 otherwise; I−
i =1 if θ̂i <0 and I−

i =0 otherwise. Critical values
for the statistic were given in Gail and Simon (1985). Tests of whether all study-specific effects
exceed a specified (non-zero) value are also available (Pan and Wolfe, 1997). Such tests would be
useful as an assurance that an effect is truly generalizable across diverse scenarios (or studies).
Unfortunately these tests also suffer from poor power in typical situations (Piantadosi and Gail,
1993).

3.6. Summarizing remarks
In the absence of a specific distributional assumption for f.Φ/, we can address some, but not
all, of our important objectives. Point estimation of μ and τ2 poses no problem, although
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confidence intervals rely on approximating distributions, sometimes based on the central limit
theorem, which may not be realistic when there are few studies. Several statistical tests, and
recent methods for quantifying the effect of heterogeneity, are available. The objective that we
consider to be most important, however, that of prediction, cannot satisfactorily be addressed.

4. Classical parametric and Bayesian approaches to random-effects meta-analysis

On observing the limitations of distribution-free random-effects approaches, we are led to
consider parametric alternatives. From a classical point of view, interpretation of parametric
random-effects meta-analysis is formally in the context of an imaginary ‘universe’, or ‘popu-
lation’ of similar effects from which the effects in the observed studies are independently and
identically sampled. Such an infinite population does not in reality exist, although the construct
does allow inference about treatment effects to be extended to a broader population than the
studies at hand.

A common misinterpretation of the random-effects assumption is that the studies themselves
are sampled from a population of studies (Hedges, 1987; Anello and Fleiss, 1995; Colditz et al.,
1995). This implies that the types of participants, natures of exposures, design aspects, and so
on, are randomly selected from a distribution of possibilities, which is an inappropriate inter-
pretation because studies are individually designed dependent on the results of previous studies
(Peto, 1987) and the evolutionary process of scientific research (Colditz et al., 1995). Random
sampling of participants would correspond to an assumption of a random-effects distribution
for baseline parameters (such as baseline risks or means). Several researchers have implemented
such an assumption, although we consider it an unnecessary constraint that we prefer to avoid.

Fundamental to a Bayesian approach to random-effects meta-analysis is the concept of
exchangeability. Exchangeability represents a judgement that the treatment effects may be non-
identical but their magnitudes cannot be differentiated a priori (Skene and Wakefield, 1990; Gel-
man et al., 1995). Formally, we say that the joint distribution of underlying effects p.θ1, . . . , θk/

is identical under any permutation Π of the subscripts (Bernardo and Smith, 1994):

p.θ1, . . . , θk/=p.θΠ.1/, . . . , θΠ.k//:

Exchangeability describes the a priori position of expecting underlying effects to be similar,
yet non-identical. It also reflects a degree of prior ignorance in that the magnitudes of the
effects cannot be differentiated. If particular covariates are believed to be important then an
exchangeability assumption would not be appropriate. However, partial exchangeability, i.e.
exchangeability for the residual effects conditional on the effect of the covariates, may be a
reasonable position.

If the underlying effects are deemed to be exchangeable then, under broad conditions, it
follows that the θi are independent and identically distributed conditional on f.Φ/ (Bernardo
and Smith, 1994; O’Hagan, 1994). The form of the distribution is a further judgement of the
meta-analyst. Since exchangeability, and hence the random-effects distribution for the treatment
effects, is a judgement of similarity, the Bayesian approach requires no sampling mechanism for
the generation of the θi. We see this as a substantial philosophical advantage over the frequentist
approach.

A simple hierarchical Bayesian model, assuming exchangeability, for meta-analysis of esti-
mates θ̂i with variances σ2

i is

θ̂i|θi ∼N.θi, σ2
i /,

θi|Φ∼f.Φ/,

Φ∼p.Φ/,
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where p.Φ/ is some joint prior distribution. The choice of prior distribution, even among those
that are intended to be non-informative, can have substantial effects on the results of the analysis
(Lambert et al., 2005). We implement our Bayesian analyses by using Markov chain Monte Car-
lo (MCMC) methods, with the software WinBUGS (Spiegelhalter et al., 2003). All inferences
can be readily accompanied by a relevant statement of uncertainty. It is standard to assume
prior independence of μ and τ2. Minimally informative (e.g. locally uniform) distributions are
appropriate in the absence of good reason to introduce prior information. Example WinBUGS
code appears in Appendix A. Other methods for performing Bayesian random-effects analyses
are available (Pauler and Wakefield, 2000; Abrams and Sanso, 1998; DuMouchel, 1994).

5. Meeting the important objectives with a normal assumption for the random effects

No model for the random-effects distribution will be ‘true’, and we might seek a parsimonious
model that adequately fits the observed data. Requiring only two parameters for its full specifi-
cation, the most parsimonious choice is also the conventional choice, where f.Φ/ is chosen to
be a normal distribution:

θi|μ, τ ∼N.μ, τ2/: .10/

Standard random-effects meta-analysis methods make this assumption (Whitehead, 2002), and
we now discuss the extent to which classical and Bayesian approaches with a normal distribution
for the random effects allow the important questions to be addressed.

5.1. Heterogeneity
Several estimators of the heterogeneity variance τ2 are available that are based on normal like-
lihoods, including iterative maximum likelihood and restricted maximum likelihood estimates
(DerSimonian and Laird, 1986; DerSimonian and Kacker, 2007). Some methods allow quanti-
fication of uncertainty in the estimate, including a full likelihood approach to the meta-analysis
(Hardy and Thompson, 1996), and a method based on a χ2-distribution for a random-effects
version of the Q-statistic (Viechtbauer, 2007; Knapp et al., 2006); Viechtbauer (2007) reviewed
several methods. Confidence intervals for measures of inconsistency can be calculated (Higgins
and Thompson, 2002).

In a Bayesian analysis, a posterior distribution for τ2 is readily available. This is likely to be
skewed, and the median and appropriate percentiles are typically used for point and interval
estimation. Alternatively, Bayesian versions of generic approaches to quantifying the effect of
heterogeneity may be used (Higgins and Thompson, 2002).

5.2. Mean effect
With the additional assumption of normality for the random effects, the confidence interval for
the random-effects mean in expression (8) relies only on the assumption that τ2 (in addition
to the σ2

i ) is estimated without uncertainty. To account for uncertainty in τ2, a t-distribution
should provide a better basis than a normal distribution. An effective number of degrees of
freedom for such a t-distribution is difficult to determine, since it depends on the extent of
the heterogeneity and the sizes of the within-study standard errors as well as the number of
studies in the meta-analysis. Several researchers have investigated the distribution of the Wald
statistic T = μ̂=ŜE.μ̂/, with suggestions to use tk−4 (Berkey et al., 1995), tk−2 (Raghunathan
and Ii, 1993) or tk−1 (Follmann and Proschan, 1999), or to use a modified Wald statistic with a
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tk−1-distribution (Hartung and Knapp, 2001a, b). Detailed discussion of the problem is available
in Larholt (1989).

We make use of a compromise of tk−2, which allows application of methods for as few as three
studies, yet also reduces the degrees of freedom compared with, say, the k −1 that are available
when estimating the mean from a sample of observations (rather than the unobserved θi here).
Better, likelihood-based approaches may be used that incorporate uncertainty in the estimation
of τ2 (Hardy and Thompson, 1996; Vangel and Rukhin, 1999).

The posterior distribution for the underlying mean μ is readily available from a Bayesian
meta-analysis. The posterior median and appropriate percentiles enable point and interval es-
timation.

5.3. Study effects
Empirical Bayes methods arise quite naturally from the classical normal random-effects model.
Under the model that is defined by distributions (6) and (10), Bayes theorem determines that
the conditional distribution of θi is given by

θi|θ̂i, σi ∼N{λiμ+ .1−λi/θ̂i, .1−λi/σ
2
i },

with

λi = σ2
i

σ2
i + τ2

:

Substituting standard estimates for the unknown quantities yields a simple, parametric, empir-
ical Bayes estimate of the effect in the ith study:

θ̃i = λ̂iμ̂+ .1− λ̂i/θ̂i,

with approximate standard error σ̂i
√

.1− λ̂i/, where

λ̂i = σ̂2
i

σ̂2
i + τ̂2 :

These expressions can be improved on to account for uncertainty in μ̂ and τ̂2 (Louis, 1991;
Morris and Normand, 1992). The problem was tackled in particular by Morris (1983). Meta-
analytic implementations have made use of the EM algorithm and bootstrapping (Raudenbush
and Bryk, 1985; Laird and Louis, 1989).

The posterior distributions for the study-specific effects θi are readily available from a Bayesian
analysis. These provide fully Bayesian shrunken estimates, in which inference for each particular
study is performed by ‘borrowing strength’ from the other studies.

5.4. Prediction
The derivation of the predictive distributions for the effect θnew in a future study has received
little methodological attention in a frequentist context. If τ2 were known, then μ̂∼N{μ, SE.μ̂/2}
and θnew ∼ N.μ, τ2/ imply (assuming independence of θnew and μ̂, given μ) that θnew − μ̂ ∼
N{0, τ2 +SE.μ̂/2} and hence that

θnew ∼N{μ̂, τ2 +SE.μ̂/2}:

A realistic predictive distribution must recognize, however, that τ2 is estimated, usually from a
small number of studies, and imprecision in τ̂2 affects both terms in the variance of θnew. Again
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taking a t-distribution with k −2 degrees of freedom, we assume that, approximately,

θnew − μ̂
√{τ̂2 + ŜE.μ̂/2}

∼ tk−2: .11/

Thus an approximate 100.1−α/% prediction interval for the effect in an unspecified study can
be obtained as

μ̂± tαk−2
√{τ̂2 + ŜE.μ̂/2}, .12/

where tαk−2 is the 100.1−α=2/% percentile of the t-distribution with k −2 degrees of freedom.
Within a Bayesian framework using MCMC methods, a predictive distribution for the effect

in a new study is available by sampling such a new study, θnew ∼N.μ, τ2/ (Smith et al., 1995). A
95% prediction interval for the new study may be obtained from the 2.5% and 97.5% quantiles
of the posterior distribution of θnew. Alternatively, an approach that illustrates uncertainty in
the whole distribution is to exploit the probability density function of θ:

f.θ/= 1
τ
√

.2π/
exp

{
− .θ −μ/2

2τ2

}
:

The value of f may be sampled in an MCMC analysis for a series of fixed values of θ. A smoothed
plot of these produces an illustration of the predictive distribution. We prefer to plot the cumula-
tive distribution function of the random-effects distribution as it facilitates derivation of useful
posterior probabilities, as we discuss in Section 5.5. Computer code is provided in Appendix A,
and an example is given in Section 7.

5.5. Testing
In the absence of a distributional assumption for the random effect, we saw that a test for
qualitative interaction was available. With the addition of a normal distribution assumption,
a classical hypothesis test of whether the mean of the random-effects distribution is non-zero
is available. This may be performed as a Wald test based on μ̂, analogously to the test for the
common effect. Equivalently, the test refers

UÅ = .
∑

θ̂iω̂i/
2/∑

ω̂i .13/

to a χ2
1-distribution. An improvement to this test, allowing for imprecision in τ̂ , has been pro-

posed by Hartung and Knapp (2001a, b). An approximate approach, which is based on dis-
tribution (11), may be used to test specific hypotheses about the predicted true effect in a new
study, θnew.

Bayes factors are a Bayesian analogue of classical hypothesis tests and have been proposed in
meta-analysis for testing for heterogeneity (Pauler and Wakefield, 2000) and for testing whether
non-zero effects exist in specific studies (Kass and Raftery, 1995) and overall (Goodman, 1999).
A particular advantage is that they may be used to provide evidence specifically in favour of a
null hypothesis. However, it is unclear how prior distributions should be specified, which is an
important limitation since Bayes factors can be very sensitive to them (Kass and Raftery, 1995).
The deviance information criterion provides an alternative criterion, which is analogous to
Akaike’s criterion, which does not require proper prior distributions (Spiegelhalter et al., 2002).

An alternative to hypothesis testing is to determine probabilities, based on the posterior dis-
tribution, for parameters being in particular regions. These are particularly useful for directly
addressing specific, clinically relevant effects. Posterior probabilities for the underlying mean,
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such as P.μ<μ0/ for some specified μ0, may be estimated as the proportion of MCMC itera-
tions in which μ<μ0. For example, the probability that the mean effect is less than 0 provides
a useful one-sided version of the test that is based on equation (13).

Probabilities for study effects may be obtained similarly by counting the proportion of MCMC
iterations in which θnew < θ0. The proportion of positive (or negative) effect sizes provides an
alternative to the test of qualitative interaction. Note that reading vertically from the cumulative
distribution function in Fig. 3(b) in Section 7 directly provides estimates and 95% credibility
intervals for P.θnew < θ0/ for various values of θ0. Bayesian probabilities can address a variety
of questions more readily than classical hypothesis tests.

5.6. Summarizing remarks
The assumption of a normal distribution for the random-effects distribution allows the calcula-
tion of confidence intervals and prediction intervals. Here we proposed approximate prediction
intervals that incorporate uncertainty in both the mean effect and the heterogeneity parameter.
The true predictive distribution is a complex function of the degree of heterogeneity, the num-
ber of studies and the within-study standard errors. An advantage of a Bayesian approach to
random-effects meta-analysis over a classical implementation of the same model is the allow-
ance for all uncertainties, particularly in obtaining a predictive distribution for the true effect in
a new study. This may be important when there are few studies in the meta-analysis. However,
this uncertainty does not extend to the choice of model for the random effects, which is more
difficult to defend empirically when there are few studies. Bayesian posterior probabilities in
particular can depend heavily on the distribution of the assumed likelihood and prior specifi-
cation. A second potential advantage of a Bayesian approach is the intuitive interpretation of
posterior distributions in terms of probability, including the ready availability of probabilities
that effects exceed specified levels.

6. Non-normal and flexible assumptions for the random effects

Using a normal distribution for the underlying effects in different studies is a strong assump-
tion, which is usually made in the absence of convincing evidence in its favour. The
particular form that is assumed for the distribution can impact on the conclusions of the meta-
analysis. Alternative parametric distributions have been suggested for f.Φ/. For example, a
t-distribution or skewed distribution might be used to reduce the effect of outlying studies
(Smith et al., 1995; Lee and Thompson, 2007), and mixture distributions have been advo-
cated to account for studies belonging to unknown groupings (Böhning, 2000). Using MCMC
methods in a Bayesian framework, parametric distributions for the random effects offer the
same opportunities for inference as a normal distribution. However, some parametric distri-
butions may not have parameters that naturally describe an overall mean, or the heterogeneity
across studies. In a classical framework, the major limitation in applying non-normal paramet-
ric random-effects distributions is the computational complexity in performing the inference
(Aitkin, 1999a).

Meta-analyses of a large number of large studies lend themselves to relatively complex mod-
els, since there may be strong evidence against a normal distribution assumption for the random
effect. At the extreme, models may be fitted that are so flexible that the observed data deter-
mine the shape of the random-effects distribution. Below we discuss two examples of these
flexible approaches that have received particular attention: in a classical framework, non-para-
metric maximum likelihood (NPML) procedures and, in a Bayesian framework, semiparametric
random-effects distributions.
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NPML procedures provide a discrete distribution that is based on a finite number of mass
points (Laird, 1978; Böhning, 2005). Estimation can be achieved via the EM algorithm, and
the number of mass points, along with compatibility of the data with different parametric or
common effect models, can be determined by comparing deviances (Aitkin, 1999a,b). Estimates
of the overall mean and the heterogeneity variance τ2 are available (Van Houwelingen et al.,
1993; Aitkin, 1999b), as are empirical Bayes estimates for the individual studies (Stijnen and
Van Houwelingen, 1990). A particular advantage of the NPML approach is its ability to detect
and incorporate outliers. However, NPML has been noted to be unstable (Van Houwelingen
et al., 1993) and has not been widely adopted. Furthermore, the key difficulty with NPML with
regard to our important objectives is that realistic predictions are unlikely to follow from the
discrete distribution for the random effects, especially when the studies include one or more
outliers.

Bayesian semiparametric random-effects distributions have been proposed (Burr et al., 2003;
Burr and Doss, 2005; Ohlssen et al., 2007) based on Dirichlet process priors. These comprise
discrete mass points that are drawn from a baseline distribution, which might be normal,
weighted in such a way that a single parameter α controls how close the discrete distribu-
tion is to the baseline: high values of α correspond to a random-effects distribution that is
close to the baseline; low α to an arbitrary shape. We can in principle use the observed data
to learn about α, although the small or moderate number of studies in a typical meta-analy-
sis would carry little information. A truncated Dirichlet process offers a more convenient way
to implement these models, in which a specified number of mass points is assumed (Ohlssen
et al., 2007), and a mixture of Dirichlet processes allows the discrete points to be replaced
by normal distributions, so that the fitted random-effects distribution is a continuous, highly
adaptable, mixture of normal distributions. These models can be fitted in WinBUGS, offering a
variety of statistical summaries of the posterior distribution for the random effect: nevertheless
it must be acknowledged that the analysis becomes considerably more complex. In common
with classical non-parametric methods, predictions arising from Dirichlet process priors may
be unhelpful, as they can have unconventional shapes that depend heavily on the particular
studies that are included in the meta-analysis, although stronger assumptions about α can
constrain the distribution to be reasonably ‘close’ to a baseline distribution with a specified
shape.

7. Example

We take an example of 14 studies comparing ‘set shifting’ ability (the ability to move back and
forth between different tasks) in people with eating disorders compared with healthy controls
to illustrate the flexibility of a Bayesian approach to random-effects meta-analysis. Effect sizes,
calculated as standardized differences in means, taken from a systematic review of the topic are
reproduced in Table 1 (Roberts et al., 2007). These are based on differences in set shifting ability
using the ‘trail making’ task; positive effect sizes indicate greater deficiency in people with eating
disorders.

Classical normal random-effects meta-analysis results as traditionally presented appear at
the bottom of Table 1. There is some heterogeneity between the effect sizes, accounting for
22% of the variation in point estimates by using the statistic I2 (Higgins and Thompson, 2002).
The estimate of the heterogeneity variance is 0.022 and the test for heterogeneity is statistically
significant at conventional levels of significance. It is evident from Table 1, as well as from
the estimated effect sizes, plotted with 95% confidence intervals in Fig. 2, that the majority of
trials indicate greater set shifting deficiency in people with eating disorders. Correspondingly,
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Table 1. Summary data from 14 comparative studies of set shifting
ability in people with disorders and healthy controls (Roberts et al., 2007)
with a classical meta-analysis using an inverse variance weighted aver-
age with random effects based on estimated standardized mean differ-
ences and a moment estimate of between-study variance (Whitehead
and Whitehead, 1991)†

Study Effect size (standardized Standard error
difference in means) of effect size

Steinglass 0.38 0.40
Holliday 0.07 0.21
Tchanturia 0.52 0.29
Tchanturia, study 1 0.85 0.25
Tchanturia, study 2 0.45 0.29
Murphy, study 1 0.01 0.35
Murphy, study 2 −0.58 0.36
Mathias and Kent 0.44 0.25
Kingston 0.46 0.22
Thompson 0.93 0.47
Jones, study 1 0.28 0.24
Jones, study 2 0.20 0.28
Jones, study 3 0.46 0.23
Witt 0.59 0.36

†Test for heterogeneity (equation (7)): Q = 16:73, 13 degrees of freedom
(P = 0:02); I2 = 22%. Random-effects meta-analysis: standardized mean
difference μ̂= 0:36 (95% credible interval 0.19–0.53); UÅ = 4:23 (P = 2 ×
10−5); τ̂2 =0:0223.

the test for qualitative interaction (9) produces a statistically non-significant test statistic QÅ =
2:56, compared with a critical value of 14.15 for a significance level of 5% (Gail and Simon,
1985). A random-effects meta-analysis reveals a statistically significant benefit on average, based
on the inference in equation (13) regarding μ alone. The approximate prediction interval (12)
for the true effect in a new study, however, ranges from −0.01 to 0.74, which is slightly less
convincing.

Results from a Bayesian normal random-effects meta-analysis appear in Table 2 and are
illustrated in Figs 2 and 3 (the computer code is in Appendix A). We used a uniform prior
distribution for τ .>0/ and a vague N.0, 103/ prior distribution for μ. Results for μ and θnew are
comparable with the classical results, with credible intervals being wider because the Bayesian
analyses properly account for uncertainty in the estimation of τ2. Fig. 3 shows the predictive
distribution of θnew and the cumulative distribution function for the random-effects distribu-
tion (with associated uncertainty). Note that P.θnew < 0/=0:950 in Table 2 corresponds to the
point at which the full curve in Fig. 3(b) crosses the vertical axis (at approximately 5% prob-
ability), and a credible interval around this probability is available from the dotted curves in
Fig. 3(b).

Various sensitivity analyses have small effects on the results, though they do not materially
affect the conclusions from the Bayesian meta-analysis. Using a t-distribution with 4 degrees of
freedom for the random effects yields a prediction interval from −0.16 to 0.89 .P.θnew < 0/=
0:947/. Alternatively using an inverse gamma distribution for τ2 with parameters 0.001 and 0.001
(Smith et al., 1995) produces a prediction interval from −0.008 to 0.73 .P.θnew < 0/ = 0:973/,
and using the shrinkage prior that was advocated by DuMouchel and Normand (2000) pro-
duces a prediction interval from −0.009 to 0.72 .P.θnew < 0/=0:973/. The data in this example
were available only as effect sizes and their confidence intervals, from which we calculated stan-
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Fig. 2. Bayesian normal random-effects meta-analysis of the set shifting data: for each study the estimated
effect size with 95% confidence interval (Table 1) and a posterior median with 95% credible interval are
illustrated; 95% credible intervals for μ and for the predicted effect in a new trial, θnew, are given

Table 2. Summaries from posterior distributions after Bayesian
normal random-effects meta-analysis of set shifting data by assum-
ing a normal distribution for the random effects

Parameter Median 95% credible interval P(parameter > 0)

μ 0.36 (0.18, 0.55) 0.999
θnew 0.36 (−0.12, 0.84) 0.950
τ2 0.023 (0.000024, 0.196) —

dard errors. For some applications, more detailed data are available and should be explicitly
modelled. For example, when 2×2 contingency tables are available for binary outcomes, meta-
analyses are appropriately performed by using binomial likelihoods (Smith et al., 1995; Warn
et al., 2002).

8. Some special considerations in random-effects meta-analysis

8.1. Diversity and bias
An important distinction to make when considering heterogeneity of effect sizes is between
the effects of diversity (variation in populations, interventions, exposures, outcome measures
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Fig. 3. (a) Predictive distribution for θnew and (b) cumulative distribution function of the random-effects dis-
tribution (with 95% interval) estimated from a Bayesian normal random-effects meta-analysis of set shifting
studies

etc.) and bias (variation in the quality of the design and conduct of the studies) (Glasziou and
Sanders, 2002; Greenland and O’Rourke, 2001). Suppose that we represent the true effect in
the absence of biases in the ith study by φi. Variation in φi-parameters reflects diversity, and we
represent this by using a normal distribution φi ∼N.μφ, τ2

φ/ across the ‘true’ (unbiased) effects.
Let us summarize the biases at the study level as βi. The effect being evaluated in the ith study,
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θi, is the sum of the true effect and bias: θi =φi +βi. The important point is that the desired
inference concerns the distribution of true effects only. We wish to estimate μφ, and τ2

φ , and
possibly each φi, and to make inferences on the predictive distribution φnew ∼N.μφ, τ2

φ/.
If study level covariates are available that summarize the risk of bias in a study, then these

may be incorporated in a random-effects metaregression analysis. Providing that these are cen-
tred at a value indicating freedom from bias, then the intercept and residual heterogeneity from
this analysis suitably estimate μφ and τ2

φ respectively. Quality scores or a series of covariates
targeting specific sources of bias may be used. There are strong arguments against the former
(Greenland and O’Rourke, 2001) and an item-based approach to dealing with quality is to
be preferred (Jüni et al., 2001). Such an analysis may not always be possible or appropriate.
Design and conduct are difficult to assess, particularly from reports of studies, and important
information may be unavailable. Sometimes there is no clear ‘best’ category. Sources of control
groups, degrees of adjustment for confounders and use of different outcome measures or lab-
oratory techniques provide some examples of this. Furthermore, if there are no studies falling
into the ‘best’ category for any item, then the intercept in the metaregression analysis cannot
be estimated.

The following approach, which was described by Spiegelhalter and Best (2003), might help
to separate heterogeneity due to biases from heterogeneity due to diversity. Suppose that the
study-specific bias components follow a normal distribution such that βi ∼ N.μβi , τ

2
βi

/. The
random-effects model may then be written as follows, assuming that the diversity and bias
components are uncorrelated:

θi ∼N.μφ +μβi , τ
2
φ + τ2

βi
/:

This may be written as

θi ∼N

(
μφ +μβi ,

τ2
φ

qi

)
,

with ‘quality weights’ of the form

qi =
τ2
φ

τ2
βi

+ τ2
φ

,

describing the proportion of between-study variability due to true variability rather than bias:
these can be either fully specified or have informative prior distributions placed on them. Speci-
fication of μβi and τ2

βi
can become arbitrarily complex. Greenland and O’Rourke (2001) pointed

out that μβi might be separated into components that are observed (particular aspects of the
studies that are known) and bias components that are unobserved. Alternative approaches to
dealing with specific sources of bias are available (Eddy et al., 1992; Greenland, 2005). The usual
random-effects model (10) makes a strong assumption that the distributions of the study-spe-
cific biases βi are identical across studies, thus giving μ=μφ +μβ and τ2 =τ2

φ +τ2
β . Indeed, Cox

(2006) remarked that

‘an assumption that systematic errors in different sections of the data are independent random variables
of zero mean deserves extreme caution’.

In practice, it can be difficult to separate diversity from bias, and it is partly this lack of identifi-
ability that often necessitates the use of the conventional random-effects model. In the presence
of potential biases, therefore, results from a random-effects model are challenging to interpret.
The parameters underlying the bias distributions could also, in principle, be either subjectively
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assessed (Turner et al., 2008) or estimated by using analyses of multiple meta-analyses (Welton
et al., 2008).

8.2. Reporting biases and small study effects
A covariate that may be influential and is highly relevant to random-effects meta-analyses is
study size. A relationship between treatment effect and study size (or study precision) induces an
asymmetric funnel plot. This may reflect publication bias, or correlation between study size and
another important covariate such as quality of study (Egger et al., 1997). Whatever the reason
for it, an asymmetric funnel plot leads necessarily to a difference in point estimates between
common effect and random-effects meta-analyses (using standard inverse variance methods),
because random-effects methods give relatively more weight to less precise studies. Although this
discrepancy is not of direct concern to us here, particular caution is warranted when interpreting
any meta-analysis when a relationship exists between treatment effect and study size.

8.3. Small numbers of studies
Meta-analyses with very small numbers of studies (say 2–4) pose particular problems in a classi-
cal framework since the estimation of τ2, and hence of μ, is highly imprecise. It may be tempting
to resort to a common effect model, often superficially backed up by the lack of a statistically
significant test for heterogeneity. Tests for heterogeneity have low power when there are few
studies, and heterogeneity may be just as likely for small numbers of studies as it is for large
numbers of studies. Thus the rationale is not strong for opting for a common effect model in
this situation. It is usually worth considering whether presentation of the results of individual
studies is more informative than a meta-analysis (Cox, 2006). If a meta-analysis is to be under-
taken, then plausible values for τ2 may be preferable to values that are estimated from very few
studies. A natural alternative is to take a Bayesian approach and to inform the analysis by using
external information, or prior beliefs. For example, an informative prior distribution for τ2,
or equivalently on τ , can be used, based on observed heterogeneity variances in other, similar,
meta-analyses (Higgins and Whitehead, 1996). It has been suggested that a prior distribution on
τ might comprise the positive part of a symmetric distribution around 0, say Cauchy or normal
(Gelman, 2006).

9. Discussion

We have re-evaluated the role of meta-analysis in the presence of heterogeneity and noted some
limitations of commonly used methods. In particular,

(a) implementing a common effect model produces confidence intervals that do not allow for
variation in underlying effects and should be avoided,

(b) testing for heterogeneity addresses an unimportant question (it is preferable to measure
the extent of heterogeneity) and

(c) focusing on the mean of a random-effects distribution is insufficient.

It may be a common misconception that the confidence interval for the underlying mean in
a random-effects meta-analysis, because it is typically wider than for a common effect meta-
analysis, incorporates a measure of the extent of heterogeneity. However, as we demonstrate
in Fig. 1 this is not so, and appropriate consideration must be given to the whole distribu-
tion to avoid misleading generalizations about effects across studies. We argue that predictive
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distributions are often the most sensible way to summarize the results of heterogeneous studies,
and we propose a simple method for producing a prediction interval within a classical frame-
work. These considerations apply to numerous other applications of random-effects methods.

We have, for the most part, concentrated on the usual normal distribution assumption for
random effects. In many situations this is the most feasible assumption given the limited number
of studies and the lack of strong evidence for or against the assumption. Flexible distributions
such as Bayesian semiparametric models are available, although it remains difficult to imple-
ment non-normal distributions outside an MCMC approach to the analysis. Considerably more
detailed modelling of heterogeneity, particularly that due to biases, can be performed when
sufficient information is available.

We note that there are situations in which random-effects meta-analyses should be used with
great caution, or not at all, e.g. when there is important funnel plot asymmetry, or if there is
substantial variation in the direction of effect or if there are obvious covariates that should
be modelled by using a metaregression. Furthermore, certain common effect approaches have
practical advantages over random-effects methods. For example, they are easier to implement,
and the one-step ‘Peto’ method has been observed to have desirable properties when binary
events are rare (Bradburn et al., 2006).

In conclusion, we offer some recommendations for practice. For meta-analyses of a moderate
number of studies, we recommend that

(a) visual inspection of a plot, such as a forest plot, is used as a preliminary inspection of
heterogeneity,

(b) heterogeneity is allowed for in a meta-analysis using covariates and/or random effects,
(c) random-effects meta-analyses are interpreted with due consideration of the whole distri-

bution of effects, ideally by presenting a prediction interval, and
(d) statistical tests focus on the important questions of whether an effect exists anywhere and

whether it has a consistent direction across studies.

All these can be achieved by using a classical framework; we propose a simple prediction interval
in expression (12). A Bayesian approach has the additional advantages of flexibility, allowing
incorporation of full uncertainty in all parameters (but not uncertainty in the model) and of
yielding more readily interpretable inferences. If a normal distribution for the random effects
cannot be assumed then non-parametric approaches (such as Bayesian semiparametric prior
distributions) should be considered. For meta-analyses involving substantial numbers of stud-
ies, covariates representing sources of diversity and bias should be considered, and the latter
should ideally be excluded from prediction intervals. Meta-analyses of very few studies need
not ‘default’ to a common effect model, since informative prior distributions for the extent of
heterogeneity can be incorporated in a simple Bayesian approach.

Acknowledgements

We thank three referees for helpful comments on an earlier draft. The authors are funded by
the UK Medical Research Council (grants U.1052.00.011, U.1052.00.001 and U.1052.00.005).

Appendix A

WinBUGS code is shown for random-effects meta-analysis of estimates y and variances v. Other data
required are k (the number of studies) and low and high (a range for plotting the probability density
function, e.g. from −1 to 1).
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model

{
for.i in 1 :k/ {
w[i] < - 1=v[i]
y[i]∼dnorm.theta[i], w[i]/

# random effect

theta[i]∼dnorm.mu, prec/

}

or< - exp.mu/

# prior distributions

mu∼dnorm.0:0, 0:001/

tau∼dunif.0, 100/

prec< - 1=.tauÅtau/

# describe distribution

for.j in 1 :100/ {
point [j] < - low+ .high - low/Å.j=100/

f[j] < - 1=.tauÅ2:50662827463/Åexp.-..point[j] - mu/Å.point[j] - mu//=.2Åtau:sq//

cdf[j] < - phi..point[j] - mu/=tau/

}

# predictive distribution

theta:new∼dnorm.mu, prec/

# probability of effect less than zero

pmu0< - equals.max.mu, 0/, 0/

ptheta0< - equals.max.theta:new, 0/, 0/

}
# end of model
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