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Extensive efforts have been devoted to determining the
binding specificity of Src homology 3 (SH3) domains usu-
ally in a case-by-case manner. A generic structure-based
model is necessary to decipher the protein recognition
code of the entire domain family. In this study, we have
developed a general framework that combines molecular
modeling and a machine learning algorithm to capture the
energetic characteristics of the domain-peptide interac-
tions and predict the binding specificity of the SH3 domain
family. Our model is not trained for individual SH3 do-
mains; rather it is a generic model for the entire domain
family. Our model not only achieved satisfactory predic-
tion accuracy but also provided structural insights into
which residues are important for the binding specificity.
The success of our framework on SH3 domains suggests
that it is possible to establish a theoretical model to de-
cipher the protein recognition code of any modular
domain. Molecular & Cellular Proteomics 8:639–649,
2009.

Protein-protein interactions play a central role in the cell
and are often mediated by the weak and transient interactions
between peptides and modular domains (1–3). The most
abundant peptide recognition domain in the human proteome
is the Src homology 3 (SH3)1 domain (4) that recognizes
proline-rich peptides with a core motif of PXXP (P is a proline
and X is any amino acid) (5, 6). Peptides can bind to SH3
domains in two opposite orientations and are referred as class
I and II peptides, which often contain �XXPXXP and PXXPX�

(where X refers to any residue and � refers to a positively
charged residue) motifs, respectively. The binding specificity
of an SH3 domain is determined by the amino acids in the
flanking regions of the core motif, which has been investi-
gated extensively for individual domains. However, a universal
model was lacking to decipher the protein recognition code of
the SH3 domain family.

A generic model for the entire domain family needs to 1)
provide a general framework to characterize the domain-
peptide interaction and 2) reliably predict the binding speci-
ficity of each member in the domain family. Previous experi-
mental and computational studies can only satisfy one of
these requirements. For example, peptide library and peptide
or protein array technologies are commonly used to deter-
mine the peptide motifs recognized by a domain, often rep-
resented as a position-specific scoring matrix (7–13). These
approaches have limited coverage of the peptide space be-
cause the peptides tested in the experiments usually only
represent a small portion of all the possible peptides of a
given length. In addition, the prediction power of a sequence
motif on interacting partners of a domain is often unsatisfac-
tory. Along that line, a survey of protein-protein interaction
interfaces (14) also suggested that a sophisticated model,
rather than a set of well defined rules, is needed to decipher
the specificity of protein recognition.

On the other hand, high throughput technologies, such as
yeast two-hybrid assay and complex purification followed by
mass spectrometry, have been used to identify protein-pro-
tein interactions. However, these methods often miss the
weak and transient domain-peptide interactions (15). Various
computational methods have also been developed to predict
the interacting partners of modular domains (16–20). For ex-
ample, the SH3-SPOT method builds a position-specific con-
tact frequency matrix based on the protein-peptide contacts
in a number of crystal structures of SH3-peptide and SH3-
protein complexes. The matrix is then used to calculate the
probability of a peptide binding to a specific SH3 domain.
Recently machine learning algorithms, such as artificial neural
network and support vector machine (SVM), have been intro-
duced to predict binding peptides of SH3 domains based on
the contact information. Training classifiers in these methods
usually require a large amount of interaction data for numer-
ous SH3 domains because the number of possible combina-
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tions of contact pairs is huge. In addition, structural infor-
mation encoded in the contact matrix is crude because the
three-dimensional conformational flexibility of protein/pep-
tides is not considered at all, and the physiochemical prop-
erties of contact pairs are only roughly considered by dividing
the 20 amino acids into several groups. Alternatively molec-
ular modeling methods have been developed to incorporate
the structural information in a more sophisticated way and
consider the domain-peptide interaction based on physical
chemistry (21–23). These structure-based approaches usu-
ally do not need a large amount of binding affinity data to
train the model, but the quality of the modeled structures
and the accuracy of the free energy calculations are critical
for the success of these methods.

Recently we have proposed an integrated approach that
combines molecular modeling and bioinformatics analysis to
build a model for deciphering the specificity of protein recog-
nition. Because free energy is the determining factor for
whether an amino acid is preferred at a position, we used
molecular interaction energy components (MIECs), includ-
ing van der Waals, electrostatic, and desolvation energies,
between domain-peptide and peptide-peptide residue pairs
to characterize the interaction interfaces (24, 25). First, each
domain-peptide complex was modeled from a template
structure by side chain mutation, and this modeled structure
was optimized using molecular mechanics minimization.
Second, the MIECs for all interacting residue-residue pairs,
including both inter- (domain-peptide) and intramolecular
(peptide residues) pairs, were computed using molecular
mechanics/generalized Born solvent area (MM/GBSA) de-
composition analysis. The MIECs were encoded into a ma-
trix that represents the energetic characteristics of the bind-
ing interface. Finally an SVM was trained on the MIEC matrix
to classify peptides into a binder or non-binder category. In
the present study, we applied this approach to predict the
binding specificities of SH3 domains that recognize class I
peptides. Computational predictions and experimental val-
idations showed that our method can successfully establish
a generic model of deciphering the protein recognition code
of the SH3 domain family, not only the individual domain
members.

MATERIALS AND METHODS

Data Set

We have studied 18 SH3 domains that bind to class I peptides, Abl,
Bio1, c-Src, Fyn, Grb2, Itk, Lsb3, Lyn, Myo3, Myo5, Nbp2, P85a,
Rvs167, Sla1, Spta2, Yes, Yha2, and Ysc84, because binding pep-
tides for these SH3 domains were documented in the literature (8–
12). Most of the peptides were 10 residues long, and these 10
residues were referred as P�6 to P3 from the N to C terminus. If a
binding peptide only had nine residues, e.g. PTYPPPPPP for the Abl
SH3 domain, we randomly generated five peptides by adding amino
acids to make it 10 residues long. We assumed that the added
residues would not change the binding specificity of these peptides.
We did not include the binding peptides reported in the literature that
were less than nine residues long.

Based on the previous studies, only a small portion of PXXP
motif-containing peptides (about 5%) are true binders of a specific
SH3 domain (26). To mimic the unbalanced nature of binders versus
non-binders in the proteome, we chose to set the ratio of non-binders
versus binders to 20 when selecting peptides. Enough non-binders of
the Bio1, Myo5, Rvs167, and Lsb3 SH3 domains were reported, and
they were included in the data set (11). For the other SH3 domains, we
randomly selected 10-residue-long peptides that contained the PXXP
motif as non-binders from the human proteome in the Swiss-Prot
database. In total, there were 491 binders and 9820 non-binders in
the data set. A caveat is that the random peptides taken from Swiss-
Prot as true negatives might include a small percentage of peptides
that could bind to a specific SH3 domain.

Modeling the SH3-Peptide Complex Structures

When we started this study, only the Abl (Protein Data Bank code
1bbz) (27) and Fyn (Protein Data Bank code 1fyn) (28) SH3-class I
peptide complex structures were available in the Protein Data Bank.
There were no such complex structures for the other 16 SH3 do-
mains. The Protein Data Bank (codes are in parentheses) only con-
tained the complex structures of class II peptides bound to the SH3
domains of Grb2 (1gbq) (29), Sla1 (1ssh) (30), and c-Src (1qwe) (31).
For Lsb3 (1oot) (30), Myo5 (1zuy) (30), Spta2 (1u06) (32), and Nbp2
(1yn8) (30) there were crystal structures of their SH3 domains only
(without the binding peptides). No structures were available for the
remaining nine SH3 domains, and we thus modeled their structures
from scratch. Multiple sequence alignments of the SH3 domain se-
quences were first generated using MUSCLE (33). The aligned se-
quences included the 18 SH3 domains and the SH3 domains that
Pfam used to generate the hidden Markov model of the SH3 domain
family (34) (supplemental Fig. S1). The modeler program (35) in IN-
SIGHTII (Accelrys Inc., San Diego, CA) was then used to generate a
homology model for each of the nine SH3 domains based on the
multiple sequence alignment. The template was chosen based on
sequence similarity. Among the nine SH3 domains without crystal
structures, seven of them had high sequence similarities (larger than
40%) with the corresponding templates, and only two (P85a and Bio1)
had relatively low sequence similarities (about 30 and 28%) with the
templates. Next each modeled structure was immersed in an 8-Å shell
of water molecules and minimized using the CFF91 force field imple-
mented in the discover module in INSIGHTII (Accelrys Inc.).

For the 16 SH3 domains without SH3-class I peptide complex
structures, we aligned the modeled or unbound SH3 domain to the
complex structure of Abl SH3 domain (Protein Data Bank code 1bbz).
Considering the structural similarity of the SH3-peptide interaction,
we mutated the peptide APSYSPPPPP in 1bbz to the peptide bound
to the modeled/unbound SH3 domain using scap (37). The modeled
complexes were optimized by 5000 steps of minimizations followed
by molecular dynamics (MD) simulations. The MD simulations were
performed using the AMBER9.0 software package (38) and the AM-
BER03 force field (39). The domain-peptide complex was solvated in
a rectangular box that extended 9 Å away from any solute atom.
Counterions of Na� were placed near the SH3 domain on a grid
based on the Coulombic potential to keep the whole simulated sys-
tem neutral. Particle mesh Ewald was used to calculate the long range
electrostatic interactions (40). The SHAKE procedure was used to
constrain all bonds involving hydrogen atoms (41), and the time step
was 2.0 fs. In the MD simulations, temperature was gradually in-
creased from 10 to 300 K during the first 20 ps. The following 1-ns
simulation was for equilibration and data collection. The final snap-
shot of the MD simulation was minimized by 5000 steps of minimi-
zation, and the minimized conformation was used as the template
structure for modeling other peptides in the data set interacting with
the same SH3 domain. The template peptide was mutated to another
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sequence using scap (37). Manual inspection was conducted at
every step to ensure that complex structures were being modeled
reasonably well. We found that MD simulations could optimize most
of the modeled structures as judged by whether the peptide was
kept to the polyproline II helical conformation and whether impor-
tant contacts were retained between the domain and peptide res-
idues. In addition, after MD simulations and optimizations, all the
modeled structures were quality-verified using the Profile-3D pro-
gram in INSIGHTII (Accelrys Inc.), and they all showed good quality
scores (data not shown).

Because of the large number of peptides under consideration, we
only minimized each modeled complex structure using the sander
program in AMBER9.0 (38) and the AMBER03 force field (39). The
solvent effect was considered using the generalized Born (GB) model
(igb � 2) implemented in sander (42). The maximum number of
minimization steps was set to 4000, and the convergence criterion for
the root mean square of the Cartesian elements of the energy gradient
was 0.05 kcal/mol/Å. The first 500 steps were performed with the
steepest descent algorithm, and the rest of the steps were performed
with the conjugate gradient algorithm.

Calculating the MIECs

For each complex, the minimized conformation was used to cal-
culate MIECs. First we identified all the residues that were located
within 7 Å of the binding peptide in any of the template domain-
peptide complexes and defined those as residues important for bind-
ing. Because of the divergence of the SH3 domain binding sites, it is
possible that residues important for one SH3 domain may not be
important for another SH3 domain and/or insertion/deletion may oc-
cur at this position in another SH3 domain. To build a generic model
for SH3-peptide interactions, we took a union of important interacting
pairs identified from all SH3 domains (see Fig. 1A). Twenty-five SH3
positions were identified in such a way to form significant interactions
with the peptides. The spatial distribution of these residues was
mapped onto the structure of the Bio1 SH3 domain, and these resi-
dues covered the entire peptide-binding surface (supplemental Fig.
S2). The most conserved positions were those interacting with the
PXXP motif, and the most non-conserved positions were located in
the loop regions.

Next the sequences of the SH3 domains under consideration were
aligned and 75 important interacting pairs between the 10 peptide
residues and the 25 important SH3 residues were determined. The
important interacting pairs of the Abl SH3 domain are shown in
supplemental Table S2 as an example. An SH3 domain may contain
gaps in the multiple sequence alignment, and we considered these
positions uninformative for inferring the binding specificity of the
domain. Therefore, the MIECs between the peptide residues and the
gap position in the SH3 domain were set to 0.

The MIECs for each residue-residue pair were computed using the
gleap program in AMBER10 (43). The MIECs included (a) electrostatic
(Coulombic) interaction �Eele, (b) van der Waals interaction �Evdw,
and (c) polar contribution to desolvation free energy �GGB. The cutoff
for calculating �Evdw and �Eele was set to 18.0 Å. A distance-inde-
pendent interior dielectric constant of 1 was used to calculate �Eele.
The charges used in the GB calculations were taken from the AM-
BER03 force field, and other GB parameters were taken from Ref. 44.
The values of interior dielectric and exterior dielectric constants in the
GB calculations were set to 1 and 80, respectively.

In addition, we also calculated the MIECs for the nine residue pairs
between the adjacent residues of the 10-residue-long peptides be-
cause they reflect the conformational preference of the peptide. For
each peptide, 84 (�75 � 9) residue-residue pairs were used for
calculating the MIECs. The interaction between an SH3 domain and a
peptide was thus represented by an MIEC vector X. The dimension of

X depends on which MIEC terms were included in the model. For
example, when only �Evdw was considered, the dimension of X was
84; when all three MIECs were considered, the dimension of X was
252 (� 84 � 3).

The MIEC matrix was then normalized and used to train the SVMs
(45, 46) (see Fig. 1B). The value of the response variable Y was 1 for
a binder or �1 for a non-binder. The LIBSVM program was used to
train the SVMs.2 The entire data set was randomly divided into three
groups with equal sizes. Two groups were used for training, and the
third group was used for testing. This procedure was run 500 times to
evaluate the performance of the SVM classifiers. For each SVM, true
positive (TP), false positive (FP), true negative (TN), and false negative
(FN) of the 500 test sets were counted. The predictive performance
was evaluated by calculating the average values of the following:
sensitivity (SE) � TP/(TP � FN); specificity (SP) � TN/(TN � FP);
prediction accuracy for binders, Q� � TP/(TP � FP); prediction
accuracy for non-binders, Q� � TN/(TN � FN); and Matthews corre-
lation coefficient,

C �
TP � TN � FN � FP

��TP � FN��TP � FP��TN � FN��TN � FP�
.

(Eq. 1)

Because the numbers of positives and negatives were quite unbal-
anced, a higher weight (k�) was applied to the positive class (see the
supplemental materials for details).

Calculating binding free energies for peptides using MM/PBSA and
MM/GBSA—Based on the single minimized complex structure, the
binding free energy for each peptide was calculated using the MM/
PBSA and MM/GBSA methods (48–50),

�Gbind � Gcomplex � Gprotein � Gligand (Eq. 2)
� �EMM � �GGB/PB � �Gnonpolar � T�S

where �EMM is the change of molecular mechanics potential energy
upon peptide binding that includes van der Waals �Evdw and electro-
static �Eele energies; �GGB/PB and �Gnon-polar are the polar and non-
polar components of the desolvation free energy, respectively; and
�T�S is the change of conformational entropy upon peptide binding,
which was not considered in this study because of the high compu-
tational cost.

�EMM was calculated using the sander program in AMBER9.0. In
MM/PBSA calculations, �GPB was computed using the pbsa program
in AMBER9.0 to solve the Poisson-Boltzmann equation. The grid
size for the PB calculations was 0.5 Å. In MM/GBSA calculations,
�GGB was computed using the GB model with the parameters
developed by Tsui and Case (44). The values of the interior and
exterior dielectric constants were set to 1 and 80, respectively.
�Gnon-polar was estimated based on the solvent-accessible surface
area (SASA) as Gnon-polar � 0.0072 � SASA.

Peptide Array Experiments

Protein Expression and Purification—GST-tagged Abl SH3 domain
(GST-Abl SH3 in short) was expressed as a fusion protein in Esche-
richia coli BL21 (DE3). Bacteria were lysed by sonication in Buffer A
(140 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, 5 mM

DTT, a mixture of protease inhibitors, pH 7.3). After centrifugation,
bacterial lysate was incubated with the GST�Bind Resin (Novagen) for
1 h at 4 °C. The resin was then washed three times with Buffer A, and
GST-Abl SH3 was eluted in Buffer B (50 mM Tris-HCl, 10 mM reduced

2 C. J. Lin, LIBSVM software.
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glutathione, 5 mM DTT, pH 8.0). Fusion proteins were dialyzed against
TBS buffer (25 mM Tris, pH 8.0, 125 mM NaCl) and stored at 4 °C.
Protein concentration was determined using the Bradford assay (Bio-
Rad). The purity of the fusion protein was checked by SDS-PAGE and
Coomassie Blue staining. The fusion protein was also subjected to
SDS-PAGE followed by Western blotting using a horseradish perox-
idase-conjugated anti-GST antibody (Santa Cruz Biotechnology) and
the SuperSignal West chemiluminescent substrate (Pierce).

Peptide Array Screening—Peptides were synthesized on an amino-
functionalized cellulose membrane as distinct spots using a Multipep
Autospot synthesis robot (Intavis Bioanalytical Instruments AG) fol-
lowing the manufacturer’s directions. A �-alanine spacer was inserted
between the C terminus of the peptide and the membrane support.
The peptide arrays were blocked with TBS-T blocking buffer (TBS, pH
8.0, 0.05% Tween 20, 5% nonfat dry milk). Next the peptide arrays
were incubated with purified GST-Abl SH3 at a final concentration of
5 �M in TBS-T blocking buffer overnight at 4 °C. After washing three
times for 10 min with TBS-T buffer (TBS, pH 8.0, 0.05% Tween 20),
the horseradish peroxidase-conjugated anti-GST antibody was
added to a final concentration of 0.2 �g/ml in TBS-T blocking buffer
for 1 h followed by washing three times for 10 min with TBS-T buffer.
Finally the arrays were developed using the SuperSignal West chemi-
luminescent substrate. As a control, the peptide array was incubated
with the anti-GST antibody alone.

RESULTS

Characterization of SH3-Peptide Interaction Using MIECs

To develop a generic model that characterizes the energetic
pattern of SH3-peptide interaction, we calculated the MIECs

for the interacting residue pairs identified from the domain-
peptide complex structures and the alignment of SH3 do-
mains (Fig. 1B).

A Generic MIEC-SVM Model to Predict Binding
Specificity

MIECs characterized the local environment and the ener-
getic pattern of domain-peptide interaction. SVMs were
trained on MIECs to classify peptides into a binder or non-
binder category. We first evaluated the classification perform-
ance of SVMs with various kernel functions trained only on
MIECs of domain-peptide residue pairs (supplemental Table
S3). Cross-validations showed that RBF and linear kernels
performed significantly better than the other two kernels.
Hereinafter we only focused on SVMs using RBF and linear
kernels. Next we searched for the optimal combination of
various MIECs. The best SVM (model 10 in Table I) considered
both domain-peptide and adjacent peptide residue interac-
tions, and its high prediction accuracy was validated by the
500 runs of cross-validations (C � 0.532, sensitivity � 84.2%,
and specificity � 93.0%). This optimal model was used in the
rest of the analyses. As a comparison, this model performed
significantly better than the SVMs that only considered do-
main-peptide interactions (models 1–6 in Table I and all the
models in supplemental Table S3). The MIECs between the

FIG. 1. The MIEC-SVM method. A, the important positions used to calculate the SH3-peptide MIECs. Asterisks in the first line of the multiple
sequence alignments indicate the 25 important positions. The alignment is colored according to the consensus sequence conservation
(conservation larger than 25%) using the ClustalX coloring scheme (36). The figure was generated using Jalview (47). B, scheme of training the
unified MIEC-SVM model. Step 1, model the SH3-peptide complexes using homology modeling, MD simulation, virtual mutagenesis, and
GB-based molecular mechanics minimization. Step 2, identify the important SH3 residues that form effective interactions with the peptides.
The selected SH3 residues are labeled. Step 3, calculate the SH3-peptide MIECs using the MM/GB free energy decomposition analysis. Red
ball, a peptide residue. Green balls, the SH3 residues interacting with the peptide residue. Step 4, calculate the peptide MIECs for the adjacent
residues. One residue in the peptide is shown as a red ball, and the two adjacent residues are shown as green balls. An MIEC matrix is
established based on the results of steps 3 and 4. In the matrix, column y is the binding class for each peptide, 1 for binder and �1 for
non-binder; columns x1–x75 are the MIECs for the SH3-peptide interaction pairs; columns x75–x84 are the MIECs for the nine pairs between the
adjacent peptide residues. Step 5, train a unified SVM model on the MIEC matrix.

TABLE I
The performance of the SVM classifiers based on multiple MIECs using the linear and the RBF kernel functions

Model MIECsa Kernel SEtrain SPtrain SEtest SPtest Q� Q� C

% % % % % %

SH3-peptide MIECs
1 �Evdw, �Eele Linear 87.5 88.2 76.9 87.4 23.4 98.7 0.377
2 RBF 80.4 88.8 74.9 88.3 24.3 98.6 0.381
3 �Evdw, �Gpolar Linear 89.9 88.3 79.5 87.6 24.3 98.8 0.394
4 RBF 71.1 88.1 67.5 87.8 21.8 98.2 0.333
5 �Evdw, �Eele, �GGB Linear 89.2 89.1 77.5 88.2 24.8 98.7 0.393
6 RBF 79.1 88.6 74.1 88.2 24.0 98.5 0.374

SH3-peptide MIECs and peptide MIECs
7 �Evdw, �Eele Linear 92.5 92.0 83.0 91.2 32.0 99.1 0.480
8 RBF 88.7 92.4 84.8 92.0 34.8 99.2 0.511
9 �Evdw, �Gpolar Linear 93.1 92.6 82.6 91.8 33.5 99.1 0.492
10 RBF 88.4 93.3 84.0 93.0 37.6 99.1 0.532
11 �Evdw, �Eele, �GGB Linear 93.6 93.0 83.5 92.1 34.7 99.1 0.506
12 RBF 89.3 92.8 84.9 92.5 36.2 99.2 0.523

a �Evdw, �Eele, and �GGB are van der Waals, electrostatic, and polar contribution to desolvation, respectively. �Gpolar � �Eele � �GGB.
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adjacent peptide residues reflected the conformational pref-
erences of the binding peptides that, obviously, was impor-
tant in predicting the binding specificity of SH3-peptide inter-
actions. Here we want to emphasize that the data set we used
to train the SVM classifiers was quite unbalanced. As in our
previous work, for training models in Table I and supplemental
Table S3 a higher weight (k�) was first given to the binder
class (k� � 14) while keeping the weight of the non-binder
class at k� � 1 (24). The influence of different k� values on
predictions was systematically investigated (see supplemen-
tal Part S1). We found that k� � 4 was a balanced choice for
achieving good sensitivity, specificity, and prediction accu-
racy. Therefore, the MIEC-SVM model with k� � 4 was used
hereinafter.

Recently Stiffler et al. (13) studied the binding specificity of
PDZ domains in the mouse genome using a protein array.
Based on the positive and negative binders of 74 mouse PDZ
domains, they iteratively refined a sequence-based discrimi-
native model (a modified position-specific frequency matrix
method) and then predicted the binding specificity of the
same 74 PDZ domains. Their testing, which was equivalent to
the cross-validation procedure we used here, achieved sen-
sitivity and specificity of 48 and 88%, respectively, compared
with our results of 84.2 and 93.0%, respectively. Their Q� was
38.5%, which is comparable to ours (37.6%) using the MIEC-
SVM model with k� � 14 and worse than ours (67.5%) using
the MIEC-SVM model with k� � 4 in our study. It is worth
pointing out that the non-binder to binder ratio in their study
was 6.2, which was much smaller than the value of 20 used in
our study and thus should result in fewer false positives due to
the smaller number of non-binders (a relatively easier classi-
fication problem than ours). If we used the same non-binder to
binder ratio of 6.2, the Q� value would be 66.0% using the

MIEC-SVM model with k� � 14 (true positives and false
positives for 500 runs of cross-validations were 68,878 and
114,398, respectively, and therefore Q� � 68,878/(68,878 �

(6.2/20) � 114,398) � 66.0%) and 87.0% using the MIEC-
SVM model with k� � 4 (true positives and false positives for
500 runs of cross-validations were 53,875 and 25,970, re-
spectively, and therefore Q� � 53,785/(53,785 � (6.2/20) �

25,970) � 87.0%).

The Generalization Capability of the MIEC-SVM Model

Our goal is to establish a concrete model to characterize
the interaction specificity between various SH3 domains and
their binding peptides. To examine the generalization capability
of our model, we conducted leave-one-SH3-out cross-valida-
tion. Namely an MIEC-SVM model was trained using the inter-
action data of 17 domains and the left-out domain was used for
testing. Because no interaction data of the left-out domain was
used in the training, this procedure was a more rigorous and
challenging test than the standard cross-validation. Table II
shows that the average specificity for the 18 domains was very
high (98%). Because the non-binder/binder ratio was 20, the
high specificity ensured a satisfactory value of prediction accu-
racy (54%) although the average sensitivity dropped to 50%.
Considering the fact that our prediction was much more difficult
than cross-validation, such a sensitivity was satisfactory al-
though it did leave room for improvement. Nevertheless it was
quite clear that the sensitivity and the specificity of our model
were higher than those reported by Stiffler et al. (13).

Comparison with Other Methods

We further compared the performance of our model with
the pure free energy calculation and bioinformatics methods.

TABLE II
The leave-one-SH3-out cross-validations using the best MIEC-SVM model in Table I (model 10) (k� � 4)

Domain
Binder Non-binder

Accuracy
n ntotal SE n ntotal SP

% % %

Abl_human 24 31 77.4 610 620 98.4 70.6
Boi1_yeast 6 25 24.0 493 500 98.6 46.2
c-Src_human 30 61 49.2 1193 1220 97.8 52.6
Fyn_human 22 27 81.5 532 540 98.5 73.3
Grb2_mouse 0 19 0.0 379 380 99.7 0.00
Itk_human 1 5 20.0 100 100 100 10.0
Lsb3_yeast 10 25 40.0 497 500 99.4 76.9
Lyn_human 24 28 85.7 558 560 99.6 92.3
Myo3_yeast 5 6 83.3 110 120 91.7 33.3
Myo5_yeast 1 52 1.9 1036 1040 99.6 20.0
Nbp2_human 4 25 16.0 497 500 99.4 57.1
P85a_human 29 29 100 571 580 98.4 76.3
Rvs167_yeast 7 19 36.8 367 380 96.6 35.0
Sla1_yeast 0 30 0.0 600 600 100 0.0
Spta2_human 15 20 75.0 367 400 91.7 31.3
Yes_human 25 29 86.2 565 580 97.4 62.5
Yha2_yeast 39 40 97.5 744 800 93.0 41.1
Ysc84_yeast 5 20 25.0 394 400 98.5 45.5

Total 247 491 50.3 9613 9820 97.9 54.4
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Comparison with the MM/GBSA and the MM/PBSA Meth-
ods—We first investigated how well the free energy calcula-
tion methods including MM/PBSA and MM/GBSA could clas-
sify peptides into a binder or non-binder category. Because
MD simulations were computationally expensive, we esti-
mated the binding free energy for each peptide using a single
minimized complex structure, the same as what we used in
the MIEC-SVM analyses. We found that the binders and non-
binders did show distinct distributions of binding free energies
for most SH3 domains (supplemental Table S4 and Fig. S6).
Separation between the two distributions varied upon SH3
domains, and it is interesting to observe that MM/GBSA gen-
erated larger separation between the two distributions than
did MM/PBSA in most cases. Next we trained an SVM on the
total binding free energies calculated by the MM/GBSA
method using the same (RBF) kernel function in the MIEC-
SVM approach. As shown in supplemental Table S5, the
average sensitivity and specificity for the 16 SH3 domains that
had large number of binders were 74.8 and 75.9%, respec-
tively. However, MM/GBSA generated many more false pos-
itives, and Q� was quite low (13.3%) compared with the
MIEC-SVM model. MM/GBSA calculation considers the inter-
actions, including van der Waals, electrostatic, and desolva-
tion energies, between all inter- and intramolecular pairs of
protein and peptide residues. Some of these terms may be
noisy because of, for example, insufficient sampling or inac-
curate approximation of the local dielectric constant by using
a fixed value for the entire complex. On the other hand, SVM
works as an additional filter to select interacting residue pairs
and MIEC terms that are most informative for classification.
As long as the overall pattern of the interaction interface is
captured by the modeled complex structure and the MIECs,
SVM is resistant to noisy interacting pairs and thus, as shown
in our analysis, is able to achieve a much higher prediction
accuracy than MM/GBSA or MM/PBSA.

It should be noted that in the above MM/GBSA or MM/
PBSA calculations the conformational entropy was not in-
cluded. Because it was too computationally expensive to
calculate entropy from multiple snapshots, practically the en-
tropy contribution could only be estimated from a single min-
imized structure, which was not reliable. As an example, the
conformational entropy changes upon binding were calcu-
lated for the 651 peptides of the Abl SH3 domain using the
normal mode analysis implemented in the nmode program in
AMBER9.0. The peptide, the protein, or the complex structure
was fully minimized for 100,000 steps in the presence of a
distance-dependent dielectric of 4rij (rij is the distance be-
tween two atoms) until the root mean square of the elements
of the gradient vector was less than 5 � 10�4 kcal/mol/Å. The
calculated entropies were included in the binding free ener-
gies, and a Student’s t test used to evaluate the separation
between the 31 binders and 620 non-binders gave a p value
of 6.81e�8, which was a little worse than that only based on
the binding free energies without entropy (2.77e�8).

Comparison with SH3-hunter—Among all the methods for
predicting the binding specificity of SH3 domains (17–19)
iSPOT and its improved version of SH3-hunter are publicly
available (17, 18). Sparks et al. (10) studied interactions be-
tween 20 peptides and 13 SH3 domains among which Src,
Yes, Abl, and Grb2 were modeled in our study. We thus
compared the performance of SH3-hunter and our model on
the interaction data between the 20 peptides and the four SH3
domains. It is not clear to us whether these 20 peptides were
included in the training set of SH3-hunter. To have a stringent
test of our method, we excluded these peptides from the
training set and retrained MIEC-SVM on all 18 domains. This
unified MIEC-SVM model was used to predict the binding
specificity between the 20 peptides and the four SH3 domains
(supplemental Table S6). The MIEC-SVM model achieved an
overall accuracy of 81.3% (65 of 80). Of the 29 interacting
pairs, our approach and SH3-hunter correctly predicted 18
and 13, respectively. Of the 51 non-interacting pairs, our
approach and SH3-hunter correctly predicted 47 and 41,
respectively. Apparently MIEC-SVM outperformed SH3-
hunter in this test.

Experimental Validations for the Abl SH3 Domain

We conducted peptide array experiments to further assess
the performance of the MIEC-SVM method. First we ex-
pressed and purified the GST-Abl SH3 fusion protein in E. coli
(Fig. 2A). The fusion protein could be detected by an anti-GST
antibody in Western blot (data not shown). Next we added the
purified GST-Abl SH3 protein to an array containing 30 control
peptides in duplicates (Fig. 2B). The peptide array experiment
confirmed all but one (peptide 11) binder. Peptide 11 (ALPYP-
PPLPP) was identified as a binder by Pisabarro and Serrano
(7), but its binding to the Abl SH3 domain was not observed
here. We also probed an array containing the 30 control
peptides with the anti-GST antibody alone (Fig. 2C). No bind-
ing of the anti-GST antibody to the peptides was detected,
indicating that the binding observed in Fig. 2B was specific.
After we validated the peptide array approach, we probed the
production array containing the 30 control peptides men-
tioned above and 210 testing peptides (Fig. 2D). To make the
test more difficult, we included 91 random peptides contain-
ing the (F/M/W/Y)XXPXXP motif that is recognized by the Abl
SH3 domain. Nine of the 10 known binders were confirmed by
our experiments except peptide 7 in the third row (APKKPAP-
PVP) (Fig. 2D). We found five binders among the 200 random
peptides as indicated by their strong signals (Fig. 2D, blue and
red arrows). Interestingly the random peptide PPWMQPPPPP
was identified as a true binder (Fig. 2D, blue arrow) by both the
MIEC-SVM model and our experiments.

From the 210 testing peptides, the unified MIEC-SVM
model trained from the 18 SH3 domains (no testing peptides
were included in the training set) predicted 12 binders for the
Abl SH3 domain, including nine known and three new binders.
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Eight known binders and one of the three new binders were
confirmed by our peptide array experiment. If we use the
peptide array experiment as the gold standard, the perform-
ance of the MIEC-SVM model on the 210 testing peptides is
as follows: sensitivity � 9/14 � 0.64, specificity � 193/196 �

0.98, positive prediction accuracy Q� � 9/12 � 0.75, negative
prediction accuracy Q� � 193/198 � 0.97, and TF/FP �

9/3 � 3.0. Apparently the peptide array experiments con-
firmed that the prediction accuracy of our method was supe-
rior to the methods we mentioned above.

Mechanistic Insights into the Domain-Peptide Interaction

To examine the contribution of each position in the protein
or the peptide to the binding specificity, we conducted a
leave-one-position-out cross-validation: the MIECs that in-
volve one protein or peptide position were completely re-
moved from the MIEC matrix, and an SVM was retrained on
the remaining matrix. The contribution of the position under
consideration was measured by the change of the Matthews
correlation coefficient C of the SVM (Fig. 3A). We observed
that all 10 positions of the peptides made positive contribu-
tions to the binding specificity. Apparently P�3 was the most
important position as indicated by the biggest decrease of the
C value if excluded. Three positions, including the N-terminal
P�6 and the other two conserved positions in all peptides, P0

and P3, made less of a contribution than the others. In SH3
domains, nine positions were found to contribute the most to
the binding specificity (Fig. 3B), and their spatial locations are
illustrated in Fig. 3, C and D. Among these nine positions, four
of them, Tyr-7, Asp-8, Asn-51, and Tyr-52, form strong inter-
actions with the C-terminal PXXP part of the binding peptide.
The other five positions, Asp-14, Asn-15, Glu-35, Trp-36, and
Trp-47, are located in the loop regions of the SH3 domain and
are involved in interactions with the N-terminal residues of the
binding peptide. Among them, Asp-14, Asn-15, and Glu-35
are not conserved across SH3 domains, suggesting that they
may be particularly important for the binding specificity.

DISCUSSION

The binding specificity of modular domains has been stud-
ied extensively using various experimental and computational
methods. For example, in a study of the interaction between
PDZ domains and peptides using a protein array, Stiffler et al.
(13) found that the peptide sequences recognized by PDZ
domains do not fall into discrete classes; rather they are
evenly distributed in the physicochemical property space.
However, their analyses were still based on individual do-
mains and did not present a model that could describe the
common properties of the domain-peptide interactions.
Namely despite the diversity of amino acids and their physi-

FIG. 2. Peptide array experiments to validate the computational predictions. A, expression and purification of GST-Abl SH3 fusion
protein. The fusion protein was expressed in E. coli BL21 (DE3) and purified on glutathione-agarose. B, control array probed with GST-Abl SH3
followed by anti-GST antibody. The array contained 30 control peptides in duplicates: 15 known binders of the Abl SH3 domain (the first two
rows), 10 binders for other domains but not the Abl SH3 domain (the first 10 peptides in the next two rows), and five random peptides that are
presumably non-binders. C, control array probed with anti-GST antibody only. The array contained the 30 control peptides mentioned above.
D, production array probed with GST-Abl SH3 followed by anti-GST antibody. The array contained the 30 control peptides mentioned above
(first two rows) and 210 testing peptides: 10 known binders (the first 10 peptides in the third row) and 200 random peptides with the PXXP motif
selected from the human proteome. Five binders (blue and red arrows) were identified from the 200 random peptides, one of which (blue arrow)
was also identified as a true binder by the MIEC-SVM method.
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cochemical properties at a peptide position, they did not
identify the commonality of peptides that bind to the same
domain family. As a result, the binding specificity of a domain
that was not included in the training set could not be precisely
predicted.

We present here a general framework that can be used to
decipher the protein recognition code of the entire domain
family: MIEC characterizes the energetic patterns of the do-
main-peptide interaction interface and, when coupled with

SVM, has a high prediction power for the binding specificity
of SH3 domains. Although we only modeled 18 domains in
this study, the leave-one-SH3-out test showed that the MIEC-
SVM model was applicable to any SH3 domain. This is be-
cause MIEC is a free energy-based approach, and it does not
solely rely on amino acid sequences. As long as the contri-
bution to the binding free energy is favorable, an amino acid
is preferred at a peptide position. The capability of generali-
zation suggests that our method provides a generic approach

FIG. 3. Contributions of the domain/peptide residues to the binding specificity. A, changes of the Matthews correlation coefficients (C)
in the leave-one-position-out cross-validation for the peptide. B, changes of the Matthews correlation coefficient in the leave-one-position-out
cross-validation for the 25 important SH3 domain positions. C, spatial locations of the four SH3 domain positions that have a change of C larger
than 0.025. D, spatial locations of the five important SH3 domain positions that have a change of C between 0.020 and 0.025. The SH3 domain
is shown in strand. The peptide and the domain residues at the important positions are shown in stick. The two proline residues in the PXXP
motif are shown in violet, and the other residues in the peptide are shown in green. The residues at the nine important positions are shown in
red (C) and blue (D), respectively.
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to characterizing protein-protein interaction. In addition, given
the similarities in the structures of the SH3 domains and their
interacting patterns with peptides, the peptide binding infor-
mation of multiple SH3 domains may be complementary to
each other. Therefore, integrating the binding information
from multiple SH3 domains into a structure-based prediction
model can improve the prediction accuracy as well as the
generalization capability of the model.

Compared with other approaches, our method has several
advantages. First, the complex structure between each indi-
vidual peptide and domain is modeled and optimized such
that the conformational flexibility is at least partially consid-
ered. The MIECs between adjacent peptide residues also
reflect the conformational preference of the peptide. Second,
the interdependence between neighboring residues is natu-
rally taken into account by structure modeling and SVM, a
non-linear classifier. Third, because MIECs describe the local
environment of the interaction interface, it is less sensitive to
inaccuracy in structure modeling and free energy calculation
compared with approaches that rank peptides solely based
on binding free energy. Fourth, unlike the sparse contact
matrix used in bioinformatics approaches such as SH3-
hunter, the MIEC matrix is a fully filled matrix because the
interactions between residue pairs are represented by energy
terms regardless of amino acid type. For training classifiers,
this MIEC matrix is more informative and less prone to noise
or error than the contact matrix.

In summary, the satisfactory performance of our model in
the test set of cross-validation, the successful generalization
in the leave-one-SH3-out test, and the high consistency be-
tween the prediction and the experimental results suggest
that MIEC-SVM provides a powerful approach to deciphering
the recognition code of the SH3 domain family. Our study will
facilitate the development of new therapeutic inhibitors to
treat human diseases and new strategies to rewire the signal
transduction network. It may also guide experimental investi-
gation of the biological significance of newly predicted pro-
tein-protein interactions. Our method provides a generic
framework that can be applied to studying other protein-
peptide or protein-ligand systems as well. Indeed this method
has successfully predicted the mutations of the human immu-
nodeficiency virus, type 1 protease that causes resistance to
eight United States Food and Drug Administration-approved
drugs (25).
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