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Abstract

Background: After IR stress, DNA double-strand breaks (DSBs) occur and repair proteins (RPs) bind to them, generating DSB-
RP complexes (DSBCs), which results in repaired DSBs (RDSBs). In recent experimental studies, it is suggested that the ATM
proteins detect these DNA lesions depending on the autophosphorylation of ATM which exists as a dimer before
phosphorylation. Interestingly, the ATM proteins can work as a sensor for a small number of DSBs (approximately 18 DSBs in
a cell after exposure to IR). Thus the ATM proteins amplify the small input signals based on the phosphorylation of the ATM
dimer proteins. The true DSB-detection mechanism depending on ATM autophosphorylation has yet to be clarified.

Methodology/Principal Findings: We propose a mathematical model for the detection mechanism of DSBs by ATM. Our
model includes both a DSB-repair mechanism and an ATM-phosphorylation mechanism. We model the former mechanism
as a stochastic process, and obtain theoretical mean values of DSBs and DSBCs. In the latter mechanism, it is known that
ATM autophosphorylates itself, and we find that the autophosphorylation induces bifurcation of the phosphorylated ATM
(ATM*). The bifurcation diagram depends on the total concentration of ATM, which makes three types of steady state
diagrams of ATM*: monostable, reversible bistable, and irreversible bistable. Bistability exists depending on the Hill
coefficient in the equation of ATM autophosphorylation, and it emerges as the total concentration of ATM increases.
Combining these two mechanisms, we find that ATM* exhibits switch-like behaviour in the presence of bistability, and the
detection time after DNA damage decreases when the total concentration of ATM increases.

Conclusions/Significance: This work provides a mathematical model that explains the DSB-detection mechanism
depending on ATM autophosphorylation. These results indicate that positive auto-regulation works both as a sensor and
amplifier of small input signals.
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Introduction

Recently, research suggests that biological functions depend on

specific small components called network motifs [1]. In these motifs,

positive and negative feedbacks are very important for bistability or

oscillatory behaviours, respectively. For example, positive feedback

in mitogen-activated protein kinase (MAPK) cascade produces

bistability of phosphorylated MAPK which contributes to an all-or-

none cell fate switch [2,3], and the production of self-sustained

biochemical ‘‘memories’’ of transient stimuli [4]. A synthetic

regulatory network of a mutually inhibitory double negative

feedback loop in Escherichia coli also provides bistability, and a simple

theory that predicts the conditions necessary for bistability has been

suggested [5]. Also, stochasticity of gene expression in a single cell

has been recently observed [6]. These stochastic single-molecule

events determine a cell’s phenotype depending on positive feedback

[7,8,9]. However, understandings of functions for these positive

feedbacks are limited.

Generally, there are several factors which damage DNA in cells.

Signal-transduction pathways are rapidly activated after exposure

to DNA-damaging agents. ATM, the gene that is mutated in the

human disease ataxia-telangiectasia (AT), is important for

activating signalling pathways in mammalian cells following

exposure to ionizing radiation (IR) or oxidative stress where

DNA double strand breaks (DSBs) are generated [10]. For

example, hydrogen peroxide (H2O2), one type of oxidative stress,

is a normal metabolite in the cell whose steady-state concentration

is in the range 1028–1029 M [11,12], and is one of the products to

protect the mammalian host from the invasion of bacillus [13].

However, if it is not properly controlled, it can cause severe

damage to a cell. In the presence of Fe2+, H2O2 can generate free

radical (OHN). Also, the Haber-Weiss reaction can form OHN in an

interaction between O.{
2 and H2O2 in the presence of Fe2+ or

Fe3+ [12]. These oxygen free radicals and H2O2 are spoken of as

reactive oxygen species (ROS). DNA strand breaks are due to free

radicals in these reactions. Depending on its concentration, H2O2
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induces two types of DNA lesions: DNA single- and double-strand

breaks. DNA single-strand breaks (SSBs) are dominant under H2O2

stress, but these lesions are efficiently repaired and do not appear to

mediate the cytotoxic response [14]. On the other hand, DNA

double-strand breaks (DSBs) seldom occur under H2O2 stress, but

they are toxic and potentially induce apoptosis. In addition, after IR

stress, DNA double-strand breaks are generated and ATM proteins

are phosphorylated. The true mechanism of this process has not

been understood yet. However, one of the targets of ATM

phosphorylation is suggested to be the Nbs1 (nibrin) protein, which

associates with the conserved DSB repair factors Mre11 and Rad50

[15]. The phosphorylated ATM phosphorylates itself, and it is

suggested that ATM is autophosphorylated within 15 min after

exposure to 0.5 Gy IR, which induces only 18 DNA breaks,

approximately [16,17]. However, it has not been known how ATM

detects a small number of DSBs and activates signalling cascades. In

this paper, we propose a mathematical model of the ATM

phosphorylation process after a stochastic generation of a small

number of DSBs regardless of the source of damage.

In our model, we assume that DSBs are generated under DNA

damage, repair proteins (RPs) bind to them and become DSB-RP

complexes (DSBCs), and DSBs are repaired. The numbers of

DSBs and DSBCs are very small and these processes are

stochastic. We will see that we can calculate theoretical values

for the mean numbers of DSBs and DSBCs by using the number

of repair proteins and rate constants of repair processes. The

produced DSBs and DSBCs phosphorylate ATM which autopho-

sphorylates itself. We will find that DSBs are not successfully

repaired and the number of DSBs increases when the number of

repair proteins is small, but when sufficient repair proteins exist,

the number of DSBs is suppressed to low levels. Also, we will find

that autophosphorylation of ATM induces bifurcation of the

phosphorylated ATM (ATM*). Depending on the total concen-

tration of ATM, the fixed points of ATM* will have three types of

steady state diagrams: monostable, reversible bistable, and

irreversible bistable diagrams. Of these steady-state diagrams,

bistability emerges when the total concentration of ATM

increases, and the concentration of ATM* exhibits switch-like

behaviour in the presence of such bistabilities. Furthermore, we

will see that the time to detection after the DNA damage decreases

when the total concentration of ATM increases.

Results

Figure 1 shows a diagram of our model. DSBs are induced by

some stress signal, and repair proteins bind to DSBs, generating

DSBCs. The repaired complex produces a repaired DSB. We

model these processes as stochastic processes. Details are shown in

the next section. The generated DSBs and DSBCs are detected by

ATM, and it phosphorylates itself to amplify the stress signal. In

this paper, we mainly focus on the repair processes of DSBs and

the detection mechanism of ATM. The negative feedback from

p53 is also treated in the Discussion section.

Calculation methods for DSB-production model
In this paper, we assume the following schemes of a stochastic

production mechanism of DSBs and their repair processes:

1 DCA
c1

DSB

DSBzRP /?
c2z

c2-

DSBC

DSBC DCA
c3

RDSBzRP

ð1Þ

where DSB denotes DNA double strand breaks, RP denotes

repair proteins, DSBC denotes DSB and repair protein

complexes, and RDSB denotes the repaired DSB. The constants,

c1, cz
2 , c{

2 , c3, represent the stochastic rate constants [18] (or

reaction parameters [19]). Also, the associated rate laws (or

hazard functions) are hi X ,cið Þ, where i is a reaction type and

X~ XDSB,XRP,XDSBC,XRDSBð Þ is the current state (the number

of molecules (or sites) of each reaction species) of the system.

These chemical reactions occur stochastically, thus the fluctua-

tions of the number of molecules which are produced in these

reactions are stochastic processes [18]. For example, the

production of DSBs is a zeroth-order reaction, and the hazard

of the reaction is

h1 X ,c1ð Þ~c1: ð2Þ

The repair process of the DSBs is a second-order reaction, and

the combined hazard of the reaction is

hz
2 X ,cz

2

� �
~cz

2 XDSBXRP: ð3Þ

The failed and succeeded repair processes are first-order reactions,

and we respectively denote the combined hazards of each reaction as

h{
2 X ,c{

2

� �
~c{

2 XDSBC, ð4Þ

h3 X ,c3ð Þ~c3XDSBC: ð5Þ

The above equations allow us to calculate Xi for each molecular type

i by using the Gillespie algorithm (we use Gillespie’s direct method

[20]). For example, a time course of XDSBzXDSBC is shown in

Figure 1. A diagram of the detection mechanism of DSB
depending on ATM. Abbreviations – DSB: DNA double-strand break;
RP: repair protein; DSBC: DNA double-strand break and repair protein
complex; RDSB: repaired DSB. Asterisks denote phosphorylated
proteins. I denotes an intermediate repressor of ATM. Some stress
signal induces DSBs which are repaired by RPs. ATM detects DSBs and
DSBCs, and then it is phosphorylated. The red arrow denotes
autophosphorylation of ATM, which amplifies the stress signal. The
dotted arrows denote a negative feedback loop. We mainly address
DSB repair processes and the ATM sensor module. We refer to the effect
of the negative feedback from p53 only in the Discussion section.
Details are shown in the main text.
doi:10.1371/journal.pone.0005131.g001
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Figure 2. When there are a large number of repair proteins

(X max
RP ~1000), the numbers of DSBs and DSBCs are fluctuating

with a mean m,20 and standard deviation s,4.5.

Comparison of theoretical and simulation results
In this section, we compare simulation and theoretical results of

mean values of DSBs and DSBCs. Methods for calculating the

theoretical mean values of DSBs and DSBCs are shown in the

Materials and Methods section. The precise mechanism of DNA

damage processes induced by stress signals has not been clarified

yet, and we cannot estimate the stochastic rate constants. In this

paper, we assume that the stochastic rate constants cz
2 , c{

2 , and c3

are not affected by stress signals, and their values are defined in

Table 1. In addition, we assume the parameter c1 is proportional

to the strength of stress signals:

c1! Stress½ �: ð6Þ

For example, when we define the parameters c1~10, and

X max
RP ~100, we can estimate the mean numbers of DSBs and

DSBCs (X̂XDSB and X̂XDSBC). Then the time (tDSB Cð Þ) until the

XDSB Cð Þ approaches the mean as

X̂XDSB~0:525, ð7Þ

X̂XDSBC~20:0, ð8Þ

tDSBC*2:0, ð9Þ

tDSB*0:0525: ð10Þ

Figure 3 shows the comparison between simulation and theoretical

results. The E Xi tð Þ½ � denotes the ensemble average of Xi at time t.

In Figure 3A, we can see that E XDSB tð Þ½ � converges on the steady

state, but its value is a little different from the theoretical value.

The time until the ensemble approaches the steady state

(,2.0 min) is larger than the theoretical value (tDSB). In

Figure 2. Simulation results of repair processes of DSBs. (A) A time course of the numbers of DSBs and DSBCs with the time-dependent
expectation (m) and standard deviation (s). The blue lines denote m6s. (B) The histogram of the numbers of DSBs and DSBCs at time t = 100[min]. In
these figures, the maximum number of repair proteins X max

RP ~1000. Other parameters are as defined in Table 1. Initial numbers of molecules are
X 0

DSB~X 0
DSBC~X 0

RDSB~0, and X 0
RP~X max

RP .
doi:10.1371/journal.pone.0005131.g002

Table 1. Parameters for stochastic models of DSB and ATM
modules.

DSB module

Description Units Values

Xi The number of molecules of type i molecules {

c1 The stochastic rate constant for the
DSB production step

molecules min21 10

cz
2

The stochastic rate constant for
the DSBC production step

molecules21min21 0.25

c{
2 The stochastic rate constant for

DSBC failure
min21 0.025

c3 The stochastic rate constant for
DSBC success

min21 0.5

kDSB DSB- and DSBC-dependent
phosphorylation rate of ATM

molecules21min21 {

t The time until the ensemble X̂Xi

approaches the steady state

min {

ATM module

nA Hill coefficient of ATM*-dependent
ATM autophosphorylation rate

– 2

kATM1 ATM*-dependent
autophosphorylation rate of ATM

min21 1.0

kATM2 Dephosphorylation rate of ATM* min21 1.0

jATM Michaelis constant of ATM*-
dependent autophosphorylation rate
of ATM

mM {

ATMtot Total concentration of ATM and
ATM*

mM {

{These parameters take multiple values and are defined where appropriate in
the text.

doi:10.1371/journal.pone.0005131.t001
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Figure 3B, E XDSBC tð Þ½ � also converges to the steady state, and the

value is approximately the same as the theoretical value. However,

the time until the ensemble approaches the steady state is

approximately 10.0 min. This is larger than the theoretical value

(tDSBC). Also, we compare the theoretical and simulation values of

the mean numbers of DSBs and DSBCs as a function of the

maximum number of repair proteins (X max
RP ) at time t = 100 [min].

For a small number of repair proteins (30ƒX max
RP ƒ100),

theoretical values can explain the simulation values well. However,

as the maximum number of repair proteins increases, the

difference between the theoretical and simulation results increases

for both E XDSB½ � and E XDSBC½ �.

Small differences in the maximum number of repair
proteins induce a large difference in DSB generation

The time course of the model depends largely on the

maximum number of repair proteins, X max
RP . Figure 4 shows

the time course of XDSB and XDSBC with c1~10. If

X max
RP wX̂XDSBC ~20ð Þ, the number of DSBs is very small, and

the number of DSBCs approaches X̂XDSBC~20. However, the

number of DSBCs existing at the same time should be smaller

than the maximum number of repair proteins, X max
RP . Thus, if

the maximum number of repair proteins is smaller than the

mean value of XDSBC, the production rate of DSBs becomes

higher than the rate of the DSB-repair processes, and the free

repair proteins are given out to repair DSBs; as a result, the

number of DSBs increases. Figure 4 shows the time courses of

XDSB Cð Þ with several maximum numbers of repair proteins.

When X max
RP ~20, the number of DSBCs is approximately 20,

and it cannot exceed 20. Then the number of DSBs gradually

increases to nearly 100. On the other hand, when X max
RP is larger

than 30, XDSB does not continuously increase. As the number of

repair proteins X max
RP increases, the number of DSBs gradually

decreases (Figures 4B, C, and D). Therefore, a time course of

the ensemble average of XDSBzXDSBC gradually increases for a

small number of repair proteins X max
RP ~20, but it converges to a

constant value when the number of repair proteins is large

(Figures 4E and F). In the following sections, we assume the

number of repair proteins is sufficient, and the expected value of

XDSBzXDSBC is constant.

Figure 3. Theoretical mean values of DSBs and DSBCs are suitable for small Xmax
RP . (A) The thick line denotes a simulation result of the

ensemble average of the number of DSBs, E XDSB tð Þ½ �. The thin line denotes the theoretical value (X̂XDSB~0:525). (B) The thick line denotes a
simulation result of the ensemble average of the number of DSBCs, E XDSBC tð Þ½ �. The thin line denotes the theoretical value (X̂XDSBC~20:0). The
vertical dotted line denotes the theoretical time tDSB Cð Þ . (C, D) Comparisons of theoretical and simulation results for the mean of XDSB or XDSBC as a
function of the maximum number of repair proteins (X max

RP ) at time t = 100 [min]. Initial numbers of molecules are X 0
DSB~X 0

DSBC~X 0
RDSB~0, and

X 0
RP~X max

RP .
doi:10.1371/journal.pone.0005131.g003
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Figure 4. Small differences in Xmax
RP induce a large difference in DSB generation. (A–D) Time courses of the numbers of DSBs and DSBCs

with several values for the maximum number of repair proteins X max
RP . (E) Time-dependent expectation values for several X max

RP . (F) X max
RP -dependent

expectation values for several times t. Other parameters are as defined in Table 1. Initial numbers of molecules are X 0
DSB~X 0

DSBC~X 0
RDSB~0, and

X 0
RP~X max

RP .
doi:10.1371/journal.pone.0005131.g004
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Autophosphorylation of ATM induces bifurcation
The ATM module is modeled as follows:

d ATM�½ �
dt

~
kATM1 ATM½ � ATM�½ �nA

jATM
nA z ATM�½ �nA

{kATM2 ATM�½ �zkDSB XDSBzXDSBCð Þ ATM½ �,
ð11Þ

where the total concentration of ATM satisfies

ATMtot½ �~ ATM�½ �z ATM½ �, the numbers of DSBs and DSBCs

satisfy XDSBzXDSBCð Þ~c Stress½ �, and other rate constants are as

described in Table 1. The right-first term denotes autopho-

sphorylation of ATM by ATM* (details are shown in the Materials

and Methods section). The true value of the Hill coefficient nA is

unknown, but the steady state features of ATM* depend on this

value. We assume that this value is nA~2 (details of the reasons

are described in the Materials and Methods section), which can

induce bistability of ATM* as we show in Figure 5. The term

kDSB XDSBzXDSBCð Þ ATM½ � indicates that ATM is phosphory-

lated by DSBs and DSBCs. Here Xi and [ATM] have different

dimensions, and therefore kDSB includes a role to adapt the

dimensions. If we plot the fixed points above the (jATM,kDSB)

plane, we get the cusp catastrophe surface [21] shown in

Figure 5A. This figure shows the steady state concentrations of

ATM* and the stability of them. For some parameter regions,

there are three fixed points (one is unstable, but the other two are

stable). We call these regions bistable regions. We show the

parameter regions of three fixed points in Figure 5B. In this figure,

we show two bifurcation curves and they meet at a point

jATM,kDSBð Þ~ 0:825,0:0029ð Þ, which we call a cusp point. Next,

we fix the value of a parameter jATM or kDSB, and plot the fixed

points as a function of jATM or kDSB. In Figure 5C, we show the

fixed points as a function of kDSB with constant jATM values. As we

can estimate from Figure 5B, there exists bistability when the

parameter jATM satisfies the condition 0ƒjATMƒ0:825. Specifi-

cally, we select four values jATM~0:0,0:65,0:78, and 0.85. When

jATM~0, there is a bistable region, but it dominates a very narrow

range of kDSB. When jATM~0:65, or 0.78, the steady state

concentrations of ATM* have bistability. One is irreversible (0.65),

and the other is reversible (0.78). For the other value of the

parameters, jATM~0:85, it is monostable as we can expect from

Figure 5B. Also, in Figure 5D, we show the fixed points of ATM*

as a function of jATM with constant kDSB values. As Figure 5B

suggests, bistability exists in the condition that 0ƒkDSBƒ0:0029.

When kDSB~0:0 or 0:002, the steady state concentration of

ATM* has bistability, but for the other two parameter values it

Figure 5. Bifurcation diagrams for the rate constants of kDSB and jATM. (A) The fixed points as a function of both jATM and kDSB. The red lines
denote stable steady states, and the green lines denote unstable steady states. (B) The number of fixed points on the parameter space jATM,kDSBð Þ.
(C) The fixed points of [ATM*] as a function of kDSB with several jATM. (D) The fixed points of [ATM*] as a function of jATM with several kDSB.
Parameters except for jATM and kDSB are XDSBzXDSBC~20, kATM1~kATM2~1:0, ATMtot½ �~2:0, and nA~2.
doi:10.1371/journal.pone.0005131.g005
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has monostability as we can estimate from Figure 5B. Therefore,

the ATM model generates bistability when it contains an

autophosphorylation mechanism with the Hill coefficient of

nA~2 mentioned above.

The total concentration of ATM determines the
bifurcation diagram

Here we consider the effect of the total concentration of ATM

on the bifurcation diagram. The bistable regions with the rate

constants kDSB and jATM are shown in Figure 6A. When the total

concentration of ATM increases, the bistable region expands. For

a certain rate constant pair (kDSB~0:0023 and jATM~0:78), we

plot the fixed points as a function of XDSBzXDSBC (Figure 6B).

The steady state concentration of phosphorylated ATM exhibits

irreversible bistability when the total concentration of ATM

satisfies ATMtot½ �~3:0 (mM), reversible bistability when

ATMtot½ �~2:0 (mM), or monostability when ATMtot½ �~1:0
(mM). Therefore, the total concentration of ATM determines the

bifurcation diagram. Figure 6C is the bistable region for

XDSBzXDSBC and ATMtot½ �. When ATMtot½ � is higher than

1.89 and lower than 2.19, the model exhibits reversible bistability.

When ATMtot½ � is higher than 2.19, the model exhibits

irreversible bistability. In the presence of noise, characteristics of

the time-dependent concentration of ATM for the three cases

become different. Here the term noise means the repair-process

noise for the DSB-production model in equation (1).

Significance of ATM bifurcation as a DSB sensor
Here we consider the stochastic case where DSBs are generated

stochastically, which means XDSBzXDSBCð Þ is a stochastic

process. To connect these stochastic processes and the determin-

istic ATM model, we used a hybrid simulation algorithm (see

Materials and Methods and reference [22]). We define the

parameters of DSBs and DSBCs as in Table 1. In addition, the

parameters of the ATM model are kATM1~kATM2~1:0.

Furthermore, the initial condition of [ATM*] is 0. In this case,

the concentration of phosphorylated ATM becomes a stochastic

process. Figure 7 shows examples of the time courses of the

concentration of phosphorylated ATM with several parameters of

ATMtot½ �.
In the deterministic case, we calculate the steady state [ATM*]

for the constant XDSBzXDSBCð Þ, but in the stochastic case XDSB

and XDSBC become stochastic processes. Therefore the concen-

tration of [ATM*] fluctuates because of the fluctuations of DSBs

and DSBCs. When the total concentration of ATM is small

( ATMtot½ �~1:89 (mM)), the concentration of ATM* is suppressed

Figure 6. Bistability emerges as the total concentration of ATM increases. (A) Bistable regions for the rate constants kDSB and jATM with
several total concentrations of ATM. The numbers of DSBs and DSBCs are constant XDSBzXDSBC~20. (B) The fixed points of [ATM*] as a function of
XDSBzXDSBC with kDSB~0:0023 and jATM~0:78. (C) Bistable regions for XDSBzXDSBC and ATMtot½ �. The red points denote reversible bistability
and the green points denote irreversible bistability.
doi:10.1371/journal.pone.0005131.g006
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to a low value. When ATMtot½ �~2:0 (mM), transitions of the

concentration of ATM* between low and high values occur. When

ATMtot½ �~2:19 (mM), a transition of the concentration of ATM*

from low to high values occurs. These three cases reflect the

bifurcation diagrams of deterministic cases. For example, when

ATMtot½ � is smaller than 1.89, the fixed points of ATM* are

monostable and ATM* fluctuates around a low concentration.

However, when 1:89ƒ ATMtot½ �ƒ2:19, the fixed points of ATM*

are reversible and bistable. In this case, once the numbers of DSBs

and DSBCs cross over the bifurcation point, ATM* jumps to the

higher concentration state. This high concentration state can

return to the lower state because of the reversibility of ATM*.

When ATMtot½ �w2:19, once ATM* jumps to the higher state,

ATM* cannot return to the lower state because of the

irreversibility of ATM*.

Here we define the transition threshold TATM� as the value that

[ATM*] passes through if transition occurs. When the concentra-

tion of ATM* passes the threshold, we assume the DSBs and

DSBCs are detected by the ATM module. In Figure 8, we show

the detection rate as a function of time. This figure shows that if

the total concentration of ATM increases, the detection rate

increases, and the response becomes quick. This trend can also be

explained from the bifurcation diagrams of the deterministic

model. When the total concentration of ATM is between 1.89 and

2.19, ATM* becomes reversible and bistable. As the total

concentration increases, the bifurcation point of XDSBzXDSBC

decreases as shown in Figure 6B. Therefore, when the total

concentration of ATM is high, ATM* jumps to the higher

concentration state even when the numbers of DSBs and DSBCs

are small. Thus the detection rate increases.

Discussion

In this work, we modeled the stochastic repair processes of

DSBs and a detection mechanism which is based on the

autophosphorylation of ATM. In our first model, we could

simulate time-dependent fluctuations of the numbers of DSBs and

DSBCs, and we proposed theoretical mean values of DSBs and

DSBCs. Depending on the species and strength of stress signals,

DSBs may rarely occur. Even in this case, it is suggested that ATM

can detect DSBs [16]. We propose that ATM can detect a small

number of DSBs by using an ATM autophosphorylation

mechanism, which induces bifurcation of ATM*. In the presence

of bistability, ATM* exhibited switch-like behavior. Also, we

suggested that the total concentration of ATM determines the

bifurcation diagrams, and as the total concentration of ATM

increases, the detection rate also increases. Therefore, we conclude

that the positive auto-regulation works as a sensor of small

fluctuating DSBs and amplifier for the detected signals.

A theoretical method for determining stochastic rate
constants

In experiments, dynamics of repair processes of DSBs are still

unknown. However, based on the experimental result in which

ATM can detect about 18 DSBs in a cell, we defined the

parameter values of c1, cz
2 , c{

2 , and c3 which induces

approximately 20 DSBs plus DSBCs. Then we considered how

ATM detects these small numbers of DSBs and DSBCs. To define

these four parameters, we described theoretical mean values of

DSBs and DSBCs by using the four parameters (equations (19) and

(20) in Materials and Methods). Interestingly, the mean number of

DSBCs (X̂XDSBC) only depends on the production rate of DSBs (c1)

and the success rate of DSBCs (c3). On the other hand, the mean

number of DSBs (X̂XDSB) complexly depends on all rates and the

maximum number of repair proteins (X max
RP ) which is inversely

proportional to X̂XDSB. We compared these theoretical results and

simulation results. As expected, X̂XDSB gradually decreases as X max
RP

Figure 7. Time courses of the concentration of phosphorylated ATM with the threshold TATM�~0:35. For all figures, the rate constants
are jATM~0:78 and kDSB~0:0023. The solid-red lines indicate the time courses. The dashed-blue lines indicate the transition threshold. (A)
ATMtot½ �~1:89 (mM). (B) ATMtot½ �~2:0 (mM), showing two different simulation results with the same parameters. (C) ATMtot½ �~2:19 (mM). Initial

numbers of molecules are X 0
DSB~X 0

DSBC~X 0
RDSB~0, and X 0

RP~X max
RP . Initial concentrations are ATM�

� �
0
~0 and ATM½ �0~ ATMtot½ �.

doi:10.1371/journal.pone.0005131.g007

Figure 8. The time to detection of DSBs decreases as the total
concentration of ATM increases. The detection rate denotes the
fraction of sample paths which pass through the threshold TATM� at
time t. The rate constants are jATM~0:78 and kDSB~0:0023. Other
parameters are as defined in Table 1. Initial numbers of molecules are
X 0

DSB~X 0
DSBC~X 0

RDSB~0, and X 0
RP~X max

RP . Initial concentrations are
ATM�
� �

0
~0 and ATM½ �0~ ATMtot½ �.

doi:10.1371/journal.pone.0005131.g008
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increases (Figure 3). However, the difference between theoretical

and simulation results for X̂XDSB and X̂XDSBC increases as X max
RP

increases. More specifically, the theoretical X̂XDSB converged to 0,

but the simulation result converged to 0.5. This may be because of

the fact that in the simulation results XDSB and XDSBC are small

and they are stochastic processes depending on hazard functions

hm X ,cm

� �
, which define the reaction rates. Therefore, mean-field

approximation of theoretical results cannot evaluate the true mean

numbers of DSBs and DSBCs. For example, XDSB usually

becomes 0 or 1 when X max
RP is large. In this situation, if

XDSB~0, the hazard function h2
z X ,c2

zð Þ~0, and repair

processes are independent of the repair proteins. Therefore, DSBs

can be generated regardless of the number of repair proteins. If

XDSB~1, the hazard function h2
z X ,c2

zð Þ ~c2
zXRPð Þ becomes

very large, and a generated DSB is immediately repaired. In

addition, when X max
RP is very large, each process occurs at

approximately the same rate. Thus the mean value of DSBs does

not converge to 0 but some other value between 0 and 1.

Many experiments should be done to confirm our results. We

have to observe the numbers of DSBs and DSBCs as functions of

time in a single cell. The number of repair proteins characterizes

repair processes of DSBs and also should be observed. Even when

these observations are successful, it is difficult to estimate the

stochastic rate constants for repair processes. For example, when

we get the time until the number of DSBCs approaches the mean

tDSBC, we can estimate the stochastic rate constant c3*1=tDSBC

(see Materials and Methods). Then we can also estimate the

stochastic rate constant c1*X̂X DSBC

�
tDSBC. The other stochastic

rate constants c+2 cannot easily be estimated by using tDSB and

X̂XDSB. However, if we assume that cz
2 &c{

2 , we can estimate the

stochastic rate constants as

c2
z* tDSB X max

RP {X̂X DSBC

� �� �{1
,

c2
{*

X̂X DSB

X̂X DSBtDSB

{
1

tDSBC
,

where the maximum number of repair proteins should be

X max
RP *100 because of the discrepancy between the theoretical

and simulation results. Details are further discussed in the

Materials and Methods section.

Biological interpretations for the emergence and
consequences of bistability of ATM*

Here we discuss biological interpretations of our results. First,

we consider the significance of the ATM autophosphorylation

mechanism. The autophosphorylation of ATM increases the

active ATM proteins, which again increases the active ATM

proteins. Thus it works as a positive feedback loop of ATM*. This

mechanism is described by a nonlinear Hill equation as we show in

the Materials and Methods section. In this equation, a Hill

coefficient nA is an important factor for nonlinearity. For example,

as the Hill coefficient nA increases, the nonlinearity of the equation

also increases. For our model, we assume that inactive ATM

proteins exist as dimers and two ATM* proteins autopho-

sphorylate the dimer which is indicated by Bakkenist et al. [16].

In this case, we can generally define the Hill coefficient as nA~2,

which means that two ATM* proteins bind to an ATM dimer

protein and phosphorylate it. Then bistability emerges in this

system for appropriate values of parameters. In Figure 5, we

consider conditions for parameters jATM and kDSB where

bistability arises. Thus, our results indicate an physical importance

of the ATM dimer proteins, in that the dimer leads to the high

value of the Hill coefficient which emerges bistability of the steady

state concentration of ATM*.

Biological importance of a positive feedback loop is considered

by Xiong et al. [4]. They provide experimental evidence that in a

physiological process of cell fate induction, Xenopus oocyte

maturation, a bistable signalling system of a MAPK cascade

converts a transient stimulus into a reliable, self-sustaining,

effectively irreversible pattern of protein activities. Also, in DNA

damage response processes, our model suggests that bistability,

which is generated from autophosphorylation, amplifies transient

damage signals (DSBs and DSBCs), and sustains the active state in

the presence of DSB and DSBC noise. Other experiments indicate

that bistability arises when there is a positive feedback loop in gene

regulation networks [5,23,24]. In general, it is suggested that

hysteresis, which is caused by bistability, leads to robustness

against noise rather than an ultra-sensitive response in which the

system is monostable [25]. Therefore, biological meanings of

bistability which have two states (on and off states) will be (i)

amplifying the input signal by the mechanism of hysteresis, and (ii)

maintaining an on or off state in the presence of noise.

Other experimental results suggest that positive feedback of

ATM contributes to genomic stability [26]. In the experiments,

authors indicate that the initial DNA damage signal induces ATM

activation and recruitment, and results in early H2AX phosphor-

ylation immediately adjacent to DSBs. Phosphorylated H2AX

then binds to MDC1 (mediator of DNA damage checkpoint

protein 1) and causes additional activation of ATM. ATM then

phosphorylates its substrates, resulting in checkpoint activation

and DNA repair [26]. In the experiments, authors concluded that

positive feedback of ATM amplifies the damage signal and it is

vital in controlling proper DNA damage response and maintaining

genomic stability [26]. Assumptions of our model are different

from those of the above experiments in that positive feedback is

caused by the autophosphorylation of ATM. However, our model

also suggested that positive feedback of ATM amplifies DSB and

DSBC damage signals and maintains a state in the presence of

fluctuation of DSBs and DSBCs. Therefore, our model provides

theoretical bases of the genomic stability which is indicated in the

previous experimental results.

Effects of a negative feedback for the phosphorylated
ATM concentration

Recent studies suggest that the p53/Mdm2 negative feedback

loop generates oscillation of p53 and Mdm2 [27,28]. These pulses

are initiated by DNA damage and the signaling kinase, ATM.

Batchelor et al. suggest that the negative feedback between p53

and ATM, via Wip1, is essential for maintaining the uniform

shape of p53 pulses [29]. We consider how this negative feedback

affects ATM’s dynamical behaviour. For simplicity, we only

consider the case that the fixed points of ATM* have irreversible

bistability in which the detection time is short. In the absence of

negative feedback from p53, once ATM* is activated to the higher

state, the concentration of ATM* is sustained with the same value

because of the irreversibility. This phenomenon means that ATM

works as a memory module of DNA damage. Figure 9A shows

time courses of the concentration of ATM* without negative

feedback. In this case, even when we add some transient stress

(0#t#100 [min]), the concentration of ATM* sustains high values.

Therefore, once the DNA damage is detected, the concentration

of ATM* maintains high values without further DNA damage. In

the presence of negative feedback from p53, the concentration of

ATM* exhibits instability, and it oscillates under the constant

stress. Figure 9B shows time courses of ATM* with a negative

feedback loop. The concentration of ATM* is oscillating under
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some constant stress. However, it suddenly decreases after some

transient stress (0#t#100 [min]). Detailed models are described in

the Materials and Methods section. These results indicate that

when DNA damage occurs, ATM detects DSBs as quickly as

possible, and the concentration of ATM* becomes high. This high

concentration state sustains until p53 is activated to suppress ATM

phosphorylation. In addition, the concentration of p53 oscillates,

which results from reactivation from ATM when DNA damage

persistently exists.

Further challenges for the initial DNA damage response
model

Experiments are needed to confirm whether ATM* has

bistability which is caused by the autophosphorylation of ATM.

As we show above, bistability collapses when the negative feedback

from p53* exists. Therefore the phosphorylation of p53 should be

blocked when we identify bistability. In addition, there are many

signaling pathways from ATM [10,30]. The phosphorylation sites

of p53 vary depending on the DNA damage agents, and it has not

been known whether p53 is always phosphorylated and generates

negative feedback to ATM for all stress signals. Quantitative data

of the concentrations of p53 and ATM under several stress signals

have not been observed enough. Further observations might

provide new insight into DNA damage responses and signaling

processes after damage. In addition, other experiments suggest

that after exposure to H2O2, the p53 and ERK proteins are

phosphorylated, which induce apoptosis or survival, respectively

[31]. Also, the decision of the two exclusive fates is stochastically

determined in independent cells. In this paper, our model only

addresses the initial responses to DNA damage, but we may

expand this model and clarify the mechanism of stochastic and

exclusive decision of apoptosis.

Materials and Methods

Theoretical description of the mean numbers of DSBs
and DSBCs

We can estimate the production rates of molecules per unit

time. Here we denote such rates as vi, where i is a molecular type.

vDSB~c1zc2
{XDSBC{c2

zXDSBXRP, ð12Þ

vDSBC~c2
zXDSBXRP{c3XDSBC{c2

{XDSBC, ð13Þ

vRDSB~c3XDSBC: ð14Þ

The number of molecules for Xi is time dependent (X t
i ), but some

of them are assumed to be in the mean convergence, X̂Xi, meaning

lim
t??

S Xi
t{X̂X i

� �2
T~0: ð15Þ

If there are enough repair proteins, we can assume that the

numbers of DSBs, DSBCs, and free RP are in the mean convergence,

and we describe them as X̂XDSB, X̂XDSBC, and X̂XRP. In addition, when

we assume that the maximum number of repair proteins (X max
RP )

is fixed and larger than X̂XDSBC, we can estimate

X̂XRP~X max
RP {X̂XDSBC. In this situation, the mean production rates

v̂vDSB and v̂vDSBC approach their steady states and become 0, and the

mean rate v̂vRDSB approaches c3X̂XDSBC. Here we estimate mean values

of DSBs and DSBCs. In the steady states, XDSB and XDSBC satisfy

c1zc2
{X̂XDSBC{c2

zX̂XDSBX̂XRP~0, ð16Þ

c2
zX̂XDSBX̂XRP{c3X̂XDSBC{c2

{X̂XDSBC~0, ð17Þ

X̂XRP~X max
RP {X̂XDSBC: ð18Þ

When we add equation (16) to equation (17), we have the mean

number of DSBCs by using the stochastic rate constants:

Figure 9. Negative feedback from p53 induces oscillations of ATM*. Models are defined in the Materials and Methods section (equations
(37)–(38)). (A) Time courses of ATM* without feedback from p53. (B) Time courses of ATM* with negative feedback from p53. For both cases, the total
concentration of ATM is ATMtot½ �~2:5, which induces irreversible bistability. Constant stress means that c1~10 indefinitely. Transient stress means
that c1~10 for 0#t#100 [min], but c1~0 for t.100 [min]. The rate constants are kDSB~0:0023, jATM~0:78, and X max

RP ~1000. Initial numbers of
molecules are X 0

DSB~X 0
DSBC~X 0

RDSB~0, and X 0
RP~X max

RP . Other parameters and initial concentrations are defined in Table 1 and in the Materials
and Methods section.
doi:10.1371/journal.pone.0005131.g009

A Model for ATM Sensor

PLoS ONE | www.plosone.org 10 April 2009 | Volume 4 | Issue 4 | e5131



c1zc2
{X̂X DSBC{c3X̂X DSBC{c2

{X̂X DSBC~0

uX̂X DSBC~c1=c3:
ð19Þ

Then we substitute equations (18) and (19) to (16), and we can

describe the mean number of molecules for DSBs by using the

stochastic rate constants and the maximum number of repair

proteins X max
RP :

X̂XDSB~
c1 c3zc2

{ð Þ
c2

z c3X max
RP {c1

� � : ð20Þ

Because the number of DSBs which are generated per unit time

is c1, it takes at least X̂X DSB Cð Þ
�

c1 to generate enough DSB(C)s.

Thus the time until the number of DSBCs approaches the mean,

X̂XDSBC, is calculated by

tDSBC*X̂X DSBC

�
c1

~1=c3,
ð21Þ

and that for DSBs is calculated by

tDSB*X̂X DSB

�
c1

~
c3zc2

{ð Þ
c2

z c3X max
RP {c1

� � : ð22Þ

Steady state analysis
Here we show the calculation method of steady states and their

stability [21]. The steady state concentration of ATM* is

calculated by equation (11). Here we denote it as:

dx

dt
~f xð Þ, ð23Þ

where x denotes the concentration of ATM*. The steady states of x

satisfy dx/dt = 0 and they are solutions of

f xð Þ~0: ð24Þ

When we set a solution of f(x) = 0 as x~~xx, the stable steady

states satisfy

Lf xð Þ
Lx

����
x~~xx

v0: ð25Þ

We used Mathematica (version 5.2) to solve equation (24) and

estimate the stability of solutions. The source code to find steady

state concentrations of ATM* and the stability of them is included

in Text S1.

The Gillespie algorithm
In this section, we introduce a method for calculating stochastic

repair processes of DSBs. The Gillespie algorithm is one of the

famous simulation methods [18,20]. It is clear that the time course

of the state of the reaction system (the number of molecules of each

type) can be regarded as a continuous Markov process with a

discrete state space, because of the fact that the reaction hazards

depend only on the current state of the system. Here we show a

method for stochastic simulation of the time-evolution of the

system.

In a reaction system which contains m reactions, the hazard of

reaction Ri obeys hi X ,cið Þ, so the total hazard for all reactions is

h0 X ,cð Þ~
Xm

i~1

hi X ,cið Þ ð26Þ

In this reaction system, each chemical reaction occurs following a

Poisson process, and therefore time to the next reaction (dt) obeys an

exponential distribution with parameter h0 X ,cð Þ, thus dt obeys

p dtð Þ~ h0 X ; cð Þe{h0 X ;cð Þdt; dt§0,

0; otherwise:

(
ð27Þ

Also, the probability that the ith reaction occurs after this time

interval dt is proportional to hi X ,cið Þ, independent of the time to

the next event. Therefore, the reaction type will be i with

probability hi X ,cið Þ=h0 X ,cð Þ. Using the time to the next reaction

and the reaction type, the state of the system can be updated, and

simulation can continue. This simulation procedure was first

proposed by Gillespie and is known as the ‘‘Gillespie algorithm’’

(or ‘‘Gillespie’s direct method’’) [20]. The concrete procedure of

this algorithm is as follows:

Gillespie’s direct method

1. Set the rate constants c1,cz
2 ,c{

2 ,c3 and initial numbers of

molecules XDSB,XDSBC,XRP,XRDSB at time t = 0.

2. For each reaction, calculate hi X ,cið Þ (i~1,2z,2{,3) based on

the current state, Xj (j = DSB, DSBC, RP, or RDSB).

3. Calculate a combined reaction hazard h0 X ,cð Þ~
Pm
i~1

hi X ,cið Þ.
4. Calculate the time to the next event dt which follows the

exponential distribution.

5. Set t = t+dt.
6. Select a reaction type, i , based on probabilit ies

hi X ,cið Þ=h0 X ,cð Þ for each reaction i.

7. Update X according to reaction i.

8. Output X and t.

9. If tvTmax, return to step 2.

The source code of this algorithm is included in Text S1.

Hybrid simulation algorithm
The stochastic behavior of DSBs can be calculated by the

Gillespie algorithm [19,20]. In equation (11), the numbers of DSBs

and DSBCs, XDSB and XDSBC, are random variables. Here, we

have to connect the continuous equations and the stochastic ones

to solve the ATM sensor equation (equation (11)). In other words,

the time until the next reaction occurs in the discrete (stochastic)

regime, dt, is not constant, and it does not match the time step of

the numerical algorithm in the continuous regime, dt. To settle the

problem, we used a hybrid simulation method [18,22] in which

some processes are simulated discretely while other processes are
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handled in a continuous manner by differential equations. Kiehl et

al.’s method treats the effects of round trip conversions between

discrete and continuous variables [22]. In our model, the numbers

of DSBs and DSBCs affect the phosphorylation of ATM, but

ATM proteins do not affect repair processes of DSBs, and thus the

discrete reactions do not depend on the continuous reactions. That

is to say, there are no time-varying hazard functions which are

affected by ATM. Thus the hybrid simulation algorithm for our

model can be simplified to the following procedure. In this

algorithm, the time step of the numerical algorithm in the

continuous regime is fixed as dt. At first, we determine initial

conditions of both discrete and continuous values, and calculate

reaction hazards of discrete reactions hi X ,cið Þð Þ at time t. From

these hazards, we can calculate the time to the next reaction (dt),
and the reaction type i of the discrete regime by using Gillespie’s

direct method [20]. After these preparations, we compare the step

sizes of discrete and continuous regimes, and select a smaller step

size to update the simulation time as t: = t+min{dt,dt}. For both

cases, we update the continuous variables to the values for the new

time by using a numerical solution algorithm for ordinary

differential equations (Euler, Runge-Kutta, etc.). Only when some

discrete reaction has occurred, we update the discrete variable

according to the reaction type i. The concrete procedure of this

algorithm is as follows:

1. Set time t = 0, and determine initial conditions of Xj t~0ð Þ
(j = DSB, DSBC, RP, RDSB) and [ATM*](t = 0).

2. Calculate the discrete reaction hazards hi X ,cið Þð Þ at time t.

3. From the hazards of the discrete reactions, select a discrete

time step size dt and type of reaction i by using Gillespie’s

direct method.

4. If dt.dt (no discrete reaction has taken place), set t = t+dt, and

update the continuous variables to the values appropriate for

this new time.

5. If dt#dt (some discrete reaction has occurred), set t = t+dt,
update the continuous values to those appropriate for this new

time, and update the discrete variables according to the

reaction type which is selected in step 3.

6. If t is less than the simulation duration, return to step 2.

The source code of this algorithm is included in Text S1.

Hill equation for the autophosphorylation mechanism of
ATM

In this section, we introduce a detailed description of the

autophosphorylation mechanism of ATM in equation (11). Thus

we only focus on the first term of the equation, and clarify the

meanings of the Hill coefficient nA and the parameters jATM and

kATM1. It is suggested that when ATM is phosphorylated by DNA

damage, the activated ATM phosphorylates the inactive ATM

[16,28]. The inactive ATM exists as dimers which consist of two

ATM* [16]. We assume that nA molecules of the active ATM

(ATM*) bind to the ATM dimer (ATMD), becomes a complex

nAATM�ATMD, and the dimer is phosphorylated to the active

form two ATM* molecules. This scheme is described as follows:

nA ATM�f gz ATMDf g/?
r1

r{1

nAATM�ATMDf g

DCA
r2

nA ATM�f gz2 ATM�f g,

where {} denotes molecular species, r1 denotes the binding rate of

ATM* to ATMD (R), r{1 denotes the disassociation rate (r),

and r2 denotes the phosphorylation rate from the binding form.

The conservation equation satisfies

ATMtot½ �~ ATM�½ �z2 ATMD½ �

z nAz2ð Þ nAATM�ATMD½ �
ð28Þ

where the relationship between the concentrations of ATM and

ATMD is

ATM½ �~2 ATMD½ �: ð29Þ

The reaction rate law for the complex nAATM�ATMD is

d nAATM�ATMD½ �
dt

~r1 ATM�½ �nA ATMD½ �

{ r{1zr2ð Þ nAATM�ATMD½ �~0,

ð30Þ

where we assume the quasi-steady state approximation, and the

right term of this equation becomes zero. Equations (28) and (30)

allow us to calculate the concentration of the complex as

nAATM�ATMD½ �~ ATMtot½ �{ ATM�½ �ð Þ ATM�½ �nA

2 r{1zr2ð Þ=r1z nAz2ð Þ ATM�½ �nA
: ð31Þ

Thus the rate law of the concentration of ATM* (only for

autophosphorylation mechanism) is

d ATM�½ �
dt

~r2 nAATM�ATMD½ � ð32Þ

~
r2= nAz2ð Þð Þ ATM½ � ATM�½ �nA

KMz ATM�½ �nA
, ð33Þ

where we assume ATM½ �& nAATM�ATMD½ � and

ATMtot½ �{ ATM�½ �~ ATM½ �. In addition, KM denotes

KM~
2 r{1zr2ð Þ
r1 nAz2ð Þ : ð34Þ

When we compare equations (11) and (34), the rate constants satisfy

kATM1~
r2

nAz2
, ð35Þ

j nA

ATM~KM: ð36Þ

In our model, we do not define the parameters, r1,r{1,r2, but

directly define the parameters kATM1 and jATM as we show in the

next section.

Parameter values
Parameter values which are used in our model are shown in

Table 1. The true units of DSBs and DSBCs are not ‘‘molecules’’

but ‘‘sites’’. However, we can deal with them as molecules in the

DSB-repair process model, and therefore we simply denote their
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units as ‘‘molecules’’. In previous experiments, it is suggested that

ATM is autophosphorylated in 15 min after exposure to 0.5 Gy IR,

which causes only 18 DNA double-strand breaks in a cell [16]. In

addition, equation (20) indicates that if the maximum number of

repair proteins is large, the mean number of DSBs becomes small.

This result is also supported by our simulation results in Figure 4D.

Therefore, we estimate that the main products in DNA damage

processes are DSBCs which phosphorylate ATM. Based on this

assumption, we estimate the theoretical time until DSBCs reach the

steady state tDSBCv15 (min) because the time until ATM is

autophosphorylated is within 15 min. Simulation results indicate

that when tDSBC~2 (min), the mean number of DSBCs becomes

the steady state in 15 min (Figure 3B). In this case, the stochastic rate

constant c3 becomes c3~1=tDSBC~0:5 (see equation (21)). Also we

estimate the mean number of DSBCs as X̂XDSBC*20, and define the

stochastic rate constants as c1~c3X̂XDSBC~10 (see equation (19)).

When the maximum number of repair proteins is large, both X̂XDSB

and tDSB become small, and the stochastic rate constants cz
2 and c{

2

have small effects on X̂XDSB and tDSB. Here we assume that the

association rate of repair proteins (cz
2 ) is larger than the dissociation

rate (c{
2 ), as the previous work suggested [28]. Thus we simply define

these parameters as cz
2 ~0:25 and c{

2 ~0:025.

As we showed in the previous section, the Hill coefficient nA

denotes the number of molecules which bind to inactive ATM.

Experimental results indicate that inactive ATM exists as a dimer

[16], and thus we can assume two phosphorylated ATMs bind to

an inactive ATM dimer. Therefore we estimate the Hill coefficient

as nA~2 in our model. In addition, the rate constants kATM1 and

kATM2 are estimated to be 0.1,10 in Ma et al.’s work [28]. Their

model successfully explained the previous experimental results

[28,32]. Thus we simply selected two values kATM1~1 and

kATM2~1 which are between 0.1 and 10.

After the above preparations, we finally estimated parameters

jATM, kDSB, and ATMtot. To begin with, we fixed the total

concentration of ATM as ATMtot½ �~2:0 (mM), and calculated the

steady state concentrations of ATM* as functions of jATM and

kDSB (Figure 5). Then we found the region of jATM and kDSB

where bistability of ATM* exists. We selected the rate constants as

jATM~0:78 and kDSB~0:0023 from bistable regions, because we

predict that bistability plays an important role in DNA damage

detection. Next, we studied dependencies of the total concentra-

tion of ATM on bistability (Figure 6). This figure suggests that if

bistability of ATM* exists, the total concentration of ATM needs

to be larger than 1.89 mM.

ATM/p53 negative feedback model
A negative feedback model of ATM is defined as follows:

d ATM�½ �
dt

~
kATM1 ATM½ � ATM�½ �nA

jnA

ATMz ATM�½ �nA
{kATM2 ATM�½ �

zkDSB XDSBzXDSBCð Þ ATM½ �

{kATM3 Inhibitor½ � ATM�½ �,

ð37Þ

d p53�½ �
dt

~
kp53 p53tot½ �{ p53�½ �ð Þ ATM�½ �

jp53z ATM�½ � {mp53 p53�½ �, ð38Þ

d Inhibitor½ �
dt

~kI p53�½ �{mI Inhibitor½ �: ð39Þ

In the ATM equation, XDSB and XDSBC are stochastic processes

which are calculated from scheme (1). We assume that the ATM

proteins are directly dephosphorylated by the inhibitor proteins

(the dephosphorylation rate is kATM3). The p53 proteins are

phosphorylated by the activated ATM proteins (the phosphory-

lation rate of p53 is kp53 and the Michaelis constant of it is jp53).

Then the inhibitor proteins are induced by activated p53 (the

induction rate of the inhibitor proteins is kI). We do not consider

the gene expression of p53 for simplicity. Parameters used in

Figure 9 are as follows: kATM3~0:1, kp53~0:6, jp53~1:9,

mp53~0:1, kI~0:25, mI~0:08, and p53tot½ �~2:0. These param-

eters are selected such that the system triggers p53 pulses (leading

to the ATM* pulses) which is indicated in the previous

experiments [29]. The initial concentrations are

Inhibitor½ �0~0:1 (mM), p53�½ �0~0 (mM), and ATM�½ �0~0
(mM). Other parameters are defined in Table 1 or in the main text.

Estimation of the stochastic rate constants
Here we show how we can estimate the stochastic rate constants

from experimental results of (i) the mean numbers of DSBs and

DSBCs and (ii) the time until the numbers of DSBs and DSBCs

approach their mean. Theoretical values of (i) and (ii) are as follows:

X̂XDSBC~
c1

c3
, ð40Þ

X̂XDSB~
c1 c3zc2

{ð Þ
c2

z c3X max
RP {c1

� � , ð41Þ

tDSBC*
X̂X DSBC

c1
~

1

c3
, ð42Þ

tDSB*
X̂X DSB

c1
~

c3zc2
{ð Þ

c2
z c3X max

RP {c1

� � : ð43Þ

Examining the right hand terms of the above equations, c3 is

easily estimated by equation (42):

c3*
1

tDSBC
: ð44Þ

Therefore, c1 can be estimated by equation (40):

c1*
X̂X DSBC

tDSBC

: ð45Þ

We can directly estimate c1 and c3 from equations (40) and (42),

but c2 cannot be estimated directly from equations (41) and (43)

because of the complexity of those equations. However if we

assume that cz
2 &c{

2 , the approximate values of cz
2 can be

estimated as follows:

c2
z*

c3

tDSB c3X max
RP {c1

� � , ð46Þ

where we use c{
2

�
cz

2 *0 when cz
2 &c{

2 . When we substitute c1

and c3 of equations (44) and (45) into equation (46), we get
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c2
z* tDSB X max

RP {X̂X DSBC

� �� �{1
: ð47Þ

In addition, when we substitute equations (44), (45), and (47)

into equation (41), c{
2 can be approximated as

c2
{*

X̂X DSB

X̂X DSBCtDSB

{t{1
DSBC: ð48Þ

In equation (47), we have to estimate a value of X max
RP . However,

the discrepancy between theoretical and simulation results makes

it difficult to estimate the value. In particular, even if there are

enough repair proteins, the mean number of DSBs from a

simulation converges to X̂XDSB*0:5, which is not 0 as theoretical

results predict. In equation (41), X max
RP *100 when the mean

number of DSBs satisfies X̂XDSB*0:5.

Supporting Information

Text S1 This file includes 4 source codes of C program and 1

source code of Mathematica to calculate our models, which use

Gillespie algorithm or hybrid simulation algorithm (for C codes),

and steady state analysis (for a Mathematica code). Details are

shown in the README text.

Found at: doi:10.1371/journal.pone.0005131.s001 (0.01 MB ZIP)
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